贴片机的技术和原理

贴片机的技术和原理
贴片机的技术和原理

贴片机视觉系统构成原理及其视觉定位

1 贴片机视觉系统构成及实现原理

如图1所示,贴片机视觉系统一般由两类CCD摄像机组成。其一是安装在吸头上并随之作x-y方向移动的基准(MARK)摄像机,它通过拍摄PCB上的基准点来确定PCB板在系统坐标系中的坐标;其二是检测对中摄像机,用来获取元件中心相对于吸嘴中心的偏差值和元件相对于应贴装位置的转角θ。最后通过摄像机之间的坐标变换找出元件与贴装位置之间的精确差值,完成贴装任务。

1.1 系统的基本组成

视觉系统的基本组成如图2所示。该系统由三台相互独立的CCD成像单元、光源、图像采集卡、图像处理专用计算机、主控计算机系统等单元组成,为了提高视觉系统的精度和速度,把检测对中像机设计成为针对小型Chip元件的低分辨力摄像机CCD1和针对大型I C的高分辨力摄像机CCD2,CCD3为MARK点搜寻摄像机。当吸嘴中心到达检测对中像机的视野中心位置时发出触发信号获取图像,在触发的同时对应光源闪亮一次。

1.2 系统各坐标系的关系

为了能够精确的找出待贴元件与目标位置之间的实际偏差,必须对景物、CCD摄像机、CCD成像平面和显示屏上像素坐标之间的关系进行分析,以便将显示屏幕像素坐标系的点与场景坐标系中的点联系起来;并通过图像处理软件分析计算出待贴元件中心相对于吸嘴中心的偏差值。

对于单台摄像机,针孔模型是适合于很多计算机视觉应用的最简单的近似模型[3]。摄像机完成的是从3D射影空间P3到2D射影空间P2的线性变换,其几何关系如图3所示,

为便于进一步解释,定义如下4个坐标系统:

(1)欧氏场景坐标系(下标为w):原点在OW,点X和U用场景坐标系来表示。

(2)欧氏摄像机坐标系(下标为c),原点在焦点C=Oc,坐标轴Zc与光轴重合并指向图像平面外。在场景坐标系和摄像机坐标系之间存在着唯一的关系,可以通过一个平移t和一个旋转R构成的欧氏变换将场景坐标系转化为摄像机坐标。其关系如式(1)所示:

(3)欧氏图像坐标系(下标为i),坐标轴与摄像机坐标系一致,Xi和Yi位于图像平面上,Oi像素坐标系的坐标为(xp0,yp0)。

(4)像素坐标系(下标为P),它是图像处理过程中使用的坐标系。在本系统中与欧氏图像坐标系方向相同,但原点坐标不同,尺度不同。

场景点Xc投影到图像平面π上是点Uc(uc,vc,-f)。通过相似三角形来可以导出它们之间的坐标关系:

由于视野小,采用的镜头畸变非常低,可将Uc直接简化为等于欧氏图像坐标系下的坐标,让uc=ui,vc=vi,而ui=(up-xp0)δ,vi=(vp-yp0)δ,δ为单个像素的大小。

这样可以得到欧氏场景坐标系和欧氏图像坐标系之间的映射关系:

由于在该系统中各摄像机之间是相互独立的,所以各路成像出来的坐标都可以转换为同一场景坐标下的坐标。

1.3 系统实现原理

贴片机视觉系统工作原理如图4所示。当一块新的待贴装PCB板通过送板机构传送

到指定位置固定起来,安装在贴片头上的基准摄像机CCD3在相应的区域通过图像识别算法搜寻出MARK点,并通过(3)式计算出其在欧氏场景坐标系中的坐标。接下来将相应的元器件应贴装的位置数据送给主控计算机。利用对中检测摄像机(CCD1,CCD2)对元器件检测,得到其在显示屏幕坐标系下的坐标及转角值,再通过(3)式转换为场景坐标系下的坐标,与目标位置比较,得到贴装头应移动的位置和转角。

2 图像处理

2.1 图像预处理

图像预处理的目的是改善图像数据,抑制不需要的变形或者增强某些对于后续处理重要的图像特征。由于SMT生产现场的非洁净因素造成CCD镜头上的尘埃等,易给图像带来较大的外界噪声。另外,图像的采集过程中也不可避免地引入了来自光路扰动、系统电路失真等噪声。因此,对图像进行预处理以消除这些噪声的影响是非常必要的。

对噪声平滑方法主要的要求是:既能有效地减少噪声,又不致引起边缘轮廓的模糊,同时还要求运算速度快。常规的方法有高斯滤波、均值滤波、Lee滤波、中值滤波、边缘保持滤波等。

中值滤波是一种较少边缘模糊的非线性平滑方法,它的基本思想是用邻域中亮度的中值代替图像的当前点,是一种能够在去除脉冲噪声、椒盐噪声的同时又能保留图像边缘细节的平滑方法。并且由于中值滤波不会明显的模糊边缘,因此可以迭代使用。显然,在每个像素上都要对一个矩阵(通常是3×3)内部的所有像素进行排序,这样开销会很大。一个更有效的算法[4](由T S Huang等人提出)是注意到当窗口沿着行移动一列时,窗口内容的变化只是丢掉了最左边的列而取代为在右侧的一个新的列。对于m行n列的中值窗口,m ×n-2×m个像素没有变化,并不需要重新排序,具体的算法为:

(1)设置th=mn/2;

(2)将窗口移至一个新的行的开始,对其内容排序,建立窗口像素的直方图H,确定其中值Med,记下亮度等于或小于Med的像素数目LMed;

(3)对于最左列亮度是Pg的每个像素P做:H[Pg]=H[Pg]-1;

(4)将窗口右移一列,对于最右列亮度是Pg的每个像素P做:H[Pg]=H[Pg]+1,如果Pg<Med,置LMed=LEed+1;

(5)如果LMed>th 侧转(6),重复LMed=LMed+H[Med] Med=Med+1直到L Med≥th,则转(7);

(6)重复Med=Med-1,LMed=LMed-H[Med]直到LMed≤th;

(7)如果窗口的右侧列不是图像的右边界转(3);

(8)如果窗口的底行不是图像的下边界转(2);

2.2 图像分割

阈值法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术,已被应用于很多的领域。在这些应用中,分割是对图像进一步分析、识别的前提,分割的准确性直接影响后续任务的有效性,其中阈值的选取是图像阈值分割方法中的关键技术。

由Otsu于1978年提出的最大类间方差法[5]以其计算简单、稳定有效,一直广为使用。从模式识别的角度看,最佳阈值应当产生最佳的目标类与背景类的分离性能,此性能用类别方差来表征,为此引入类内方差σ2W、类间方差σ2B和总体方差σ2T ,并定义3个等效的准则测量:

鉴于计算量的考虑,一般通过优化第三个准则获取阈值。在实际运用中,使用以下简化计算公式:

其中:σ2为两类间最大方差,WA为A类概率,μa为A类平均灰度,WB为B类概

率,μb为B类平均灰度,μ为图像总体平均灰度。

即阈值T将图像分成A、B两部分,使得两类总方差σ2(T)取最大值的T,即为最佳分割阈值。

2.3 图像识别定位

区域的矩表示把一个归一化的灰度级图像函数理解为一个二维随机变量的概率密度。这个随机变量的属性可以用统计特征--矩(Moment)[6]来描述。通过假设非零的像素值表示区域,矩可以用于二值或灰度的区域描述。数字图像的(p+q)阶矩可以通过下式来计算:

其中i,j是区域点的像素坐标,f(i,j)是图像区域的灰度值。那么图像区域的质心(对二值化后图形区域即为中心)的坐标可以通过下面的关系来得到。

Chip元件的长宽比2:1,因此二值化后的区域是细长的,定义区域的方向为最小外接矩形的最长边方向。根据图像中心矩可以通过下式来计算区域方向。

其中:

2.4 实验结果

针对本文提出的贴片视觉系统Chip元件对中校准图像处理方法,在VC++6.0环境下进行了实验,表1是对0402的片式元件在同一位置下,不同光照的4次仿真试验结果,可以看出图像处理取得了满意的结果,误差范围在允许范围内,图像处理的时间在100ms以内,能够满足贴片机对实时性的要求。

3 结语

本文在阐述了贴片机视觉系统构成的基础上,提出了一种非常简单的针对Chip元件的对中方法,实验证明,该方法能够满足中速贴片机实时性和精度方面的要求具有先进和实用的特点。

结合部刚度对贴片机模态的影响研究

新闻出处:电子生产设备资讯网发布时间:2007-11-15

1 引言

机械结构是由许多零部件按一定功能要求结合起来的整体,零部件之间相的互结合的部位被称之为"结合部"。

结合部分为可动与固定,可动的如导轨与滑块结合、轴和轴承结合;固定的如螺栓连接、铆接等。无论是何种结合部,其结合部均属于"柔性结合"。当结合部受到外加复杂动载荷作用时,结合面问会产生多自由度、有阻尼的微幅振动(即变化微小的相对位移或转动),从而使结合部有可能表现出既有弹性又有阻尼,既储存能量又消耗能量的"柔性结合"的本质及特性。结合部的这种特性将对机械结构整体的动态性能产生显著影响,表现为使机械结构的整体刚度降低、阻尼增加,从而导致结构固何频率降低,振动形态复杂化。

文献研究表明,机床结构中结合部的弹性和阻尼,往往比结构本身的弹性和阻尼还大,因此研究机械结构整体动力特性,必须考虑结合部及其动力特性的影响。利用有限元软件MSC.P ATRAN/NASTRAN研究了结合部刚度对贴片机模态的影响,目的是揭示结合部刚度值的变化对整机模态的影响,从而为装配工艺确定指导作用。

2 模态分析模型

2.1 贴片机结合部动力学模型

贴片机实体示意力如图1所示。不考虑x向滑块与贴装头底座结合面刚度的影响,只采用两层结合面,即:(1)左右上机架与下机架的结合面;(2)y向滑块与横梁联接板的结合面。将结合部等效为弹簧和阻尼器构成的动力学模型,具体的模型建立方法是在PAT RAN软件中实现:用相应的弹簧单元(spring)将各子结构联接起来,假设在各结合部上等效刚度都平均分配到该结合部上所有联接节点上,各结合部的动力学模型如图2所示。

2.2 有限元模型的建立

贴片机主要由上机架、下机架、横梁、x向丝杠螺母副、y向丝杠螺母副等组成。由于贴片机的结构比较复杂,首先在三维软件中建立贴片机的简化模型,再导入PATRAN中进行装配体网格划分。

3 模态分析

3.1 模态参数

为了分忻结合部刚度对贴片机模态的影响,就接合部刚度分别为1E6,1E7,1E8 3种情况(见表1)进行了贴片机装配体的模态分析,得到前六阶固有频率.

随着结合部刚度的增加,结合部引起的对应模态固频相应增加,甚至超越零件本身的固频;但其零件本身的固频在装配体分析中基本保持不变。

3.2 结合部刚度为1E6的系统振型

当结合部刚度为lE6N/m时,其前六阶模态为结合部的平动与扭转模态。

贴片机抛料的主要原因

新闻出处:电子生产设备资讯网发布时间:2007-11-15

贴片机抛料的主要原因分析

在SMT生产过程中,怎么控制生产成本,提高生产效率,是企业老板及工程师们很关心的事情,而这些跟贴片机的抛料率有很大的联系,以下就谈谈贴片机的抛料问题。所谓抛料就是指贴片机在生产过种中,吸到料之后不贴,而是将料拋到拋料盒里或其他地方,或者是没有吸到料而执行以上的一个抛料动作。抛料造成材料的损耗,延长了生产时间,降抵了生产效率,抬高了生产成本,为了优化生产效率,降低成本,必须解决抛料率高的问题。

抛料的主要原因及对策:

原因1:吸嘴问题,吸嘴变形,堵塞,破损造成气压不足,漏气,造成吸料不起,取料不正,识别通不过而抛料。对策:清洁更换吸嘴;

原因2:识别系统问题,视觉不良,视觉或雷射镜头不清洁,有杂物干扰识别,识别光源选择不当和强度、灰度不够,还有可能识别系统已坏。对策:清洁擦拭识别系统表面,保持干净无杂物沾污等,调整光源强度、灰度,更换识别系统部件;

原因3:位置问题,取料不在料的中心位置,取料高度不正确(一般以碰到零件后下压0. 05MM为准)而造成偏位,取料不正,有偏移,识别时跟对应的数据参数不符而被识别系统当做无效料抛弃。对策:调整取料位置;

原因4:真空问题,气压不足,真空气管通道不顺畅,有导物堵塞真空通道,或是真空有泄漏造成气压不足而取料不起或取起之后在去贴的途中掉落。对策:调气压陡坡到设备要求气压值(比如0.5~~0.6Mpa--YAMAHA贴片机),清洁气压管道,修复泄漏气路;

原因5:程序问题,所编辑的程序中元件参数设置不对,跟来料实物尺寸,亮度等参数不符造成识别通不过而被丢弃。对策:修改元件参数,搜寻元件最佳参数设定;

原因6:来料的问题,来料不规则,为引脚氧化等不合格产品。对策:IQC做好来料检测,跟元件供应商联系;

原因7:供料器问题,供料器位置变形,供料器进料不良(供料器棘齿轮损坏,料带孔没有卡在供料器的棘齿轮上,供料器下方有异物,弹簧老化,或电气不良),造成取料不到或取料不良而抛料,还有供料器损坏。对策:供料器调整,清扫供料器平台,更换已坏部件或供料器;有抛料现象出现要解决时,可以先询问现场人员,通过描述,再根据观察分析直接找到问题所在,这样更能有效的找出问题,加以解决,同时提高生产效率,不过多的占用机器生产时间。

【关闭】【打印】

贴片机视觉对中系统

新闻出处:电子生产设备资讯网发布时间:2007-11-15

1 引言

随着电子设备对小型、轻型、薄型和高可靠性的需求,促进各种新型器件特别是细间距、微细间距器件得到迅速发展,并被越来越多地用于各类电子设计上,于是对SMT中的关键设备-贴盘机的贴片精度提出了更高的要求。作为贴片机的重要组成部分,视觉对中系统对贴片机整体性能的影响巨大。本文从应用角度对贴片机视觉对中系统进行了详细介绍,以使从事SMT的有关技术人员更好地了解当今高精度贴片机的图像处理技术是如何适应器件高精度贴装的需求。

2 贴片机视觉对中的原理

贴片机在吸取元件后,首先遇到的问题是"对中"问题,即要将元件的中心与贴片头的主轴中心线保持一致。传统的贴片机的元件"对中"是用机械方法来实现的(称为"机械对中")。当贴片头吸取元件后,主轴提升时波动四个抓把元件抓一下,使元件轻微地移动到主轴的中心

上来。这种"对中"方法,由于是依靠机械动作,因此速度受到限制。同时,元件受到机械力的作用也容易损坏。不易保持贴片质量。

现在的贴片机普遍采用视觉对中系统。视觉对中是指贴片机贴片头上的吸嘴吸取元件后,在移到贴放位置的过程中,由固定在贴片头上的或固定在机身上某处的摄像机对元件进行对中(该方法有效降低对中所需时间及减少对元件的损坏),并且通过影像探测元件的光强分布,将其转换为模拟电信号,再经过A/D转换成能进一步处理的数字形式。这些值表示视野内给定点的平均光强度,这些平均光强度再经过固态摄像机上许多细小精密的光敏元件组成的C CD阵列,输出0-255级的灰度值。灰度值与光强度成正比,灰度值越大,则数字化图像越清晰。数字化信息,经存贮、编码、放大、整理和分析,最后将结果反馈到控制单元指令执行机构完成准确的贴片操作。

贴片机视觉系统由视觉硬件和软件构成。硬件一般由影像探测、影像存贮和处理以及影像显示三部分组成。视觉系统硬件功能如图1所示。

摄像机是视觉系统的传感部件,用于贴片机的视觉系统一般采用固态摄像机。固态摄像机的主要部分是一块集成电路,集成电路芯片上制作有许多细小精度光敏元件组成的CCD阵列。每个光敏探测元件输出的电信号与被观察目标上相应位置反射光强度成正比,这一电信号即作为这一像元的灰度8值被记录下来。像元坐标决定了该点在图像中的位置。每个像元产生的模拟电信号经过模数转换变成0-255之的某一数值,并传送到计算机。固态摄像机具有体积小、重量轻、灵敏度高、频谱和动态范围宽等优点。标准固态摄像机像元阵列为512×51 2,当视野为25.4mm时,分辨率为0.05mm。

摄像机获取的大量信息由微处理机处理,处理结果由显示器显示。摄像机与微处理机,微处理机与执行机构及显示器之间由通信电缆连接,一般采用RS232接口。

3 视觉系统光学性能的4项最基本参数

视觉系统光学性能的4项最基本参数是视野(field of view)、分辨率(resolution)、工作距离(working distance)和视野深度(depth of field)(见图2)。

(1)视野。简单而言,视野就是摄像机需要检测的区域尺寸。很多从事机器视觉系统规格的工程师是从放大倍数的角度来思考的。然而,放大倍数是一种相对规格,依赖于图像传感器的尺寸和显示器件的尺寸。从视野或分辨率的角度来说,它没有真正意义。例如,一种具备50倍放大倍数的系统可能具有5.3mm的视野(加入该系统使用的是1/2英寸CCD和13英寸显示器)或15.2mm的视野(1英寸CCD、19英寸显示器)。

(2)分辨率。分辨率是系统可以测到的受检验物体上的最小可分辨特征尺寸。在多数情况下,视野越小,分辨率越好。在机器视觉中采用2种分辨率:灰度分辨率和空间分辨率。灰度值法是用图像多级亮度来表示分辨率的方法。灰度值分辨率规定在多大的离散值时机器能

分辨给定点的测量光强度,需要处理的光强度越小,灰度值分辨率就越高。但是,光学系统的分辨能力有限,所以灰度值分辨率超过256的系统将失去意义。灰度值越大,数字化图像与人观察的试图越接近。有关研究表明,人视力分辨到的灰度级在50-60之间,因而64灰度足以提供必要的观察信息。目前很多贴片机视觉系统都采用了256级灰度值,这类系统具有很强的区别目标特征的能力。空间分辨率规定覆盖原始影像的栅网的大小;栅网越细,即网点和像元数越高,尺寸测量就越精细。在网格尺寸相同时,具有1024×1024网格的系统比具有512×512网格的系统测量精度高。在一个光学测量系统中,灰度值分辨率和空间分辨率要相匹配。

(3)工作距离。工作距离是指从镜头前部到受检验物体的距离。工作距离越长,保持小视野的难度和成本就越高。通常人们会出于需要而规定小视野,同时出于方便而规定相当长的工作距离。然而这种配置会极大地增加成本,往往会降低分辨率,并削弱光学器件的采光能力,从而不必要地降低了系统的总体成像性能。

(4)视野深度(又称景深)。假如成像的物体是三维的,那么还必须考虑视野深度。镜头的视野深度是物体离最佳焦点较近或较远时,镜头保持所需分辨率的能力。大的视野深度能够简化各种安装限制,这是因为不需要进行精确的移动来使物体定位于镜头的额定工作距离。

4 视觉系统的精度

影响视觉系统解读的因素主要是由摄像机的分辨率决定。摄像机的分辨率越高,对应于单位面积像元数就越多,精度就越高。但是,分辨率越高,找到相应图像就更加困难,因而就会降低贴装系统的贴装效率,所以要根据实际需要确定合适的摄像机分辨率。例如美国环球公司GSM贴片机的仰视摄像机分辨率有0.0254mm、0.0660mm、0.1016mm3种。0.1016mm摄像机所能处理的最小引脚宽度为0.203mm,针对33.358mm以下尺寸(例如QFP208)可一次成像,而对大于33.358mm尺寸的元件(例如QFP240)会采取4次照相合成的方法来增大照相面积的目的,先分别照四边,然后合成一个整个的器件,但所花费的时间将会成倍增长。0.0660

mm摄像机所能处理得最小引脚宽度为0.132mm一次成像的最大元件尺寸为20.8mm。0.0254m m摄像机所能处理得最小引脚宽度为0.066mm,一次成像的最大元件尺寸仅为8mm。从上面的介绍可以看出,随着像机分辨率的提升,可处理元件的精度也提高,但所花费的时间也大幅提升。

5 视觉系统的种类

视觉系统一般分为俯视、仰视、头部或激光对齐,视位置或摄像机的类型而定。图3列出了一个典型的贴片视觉对中系统。

(1)俯视摄像机安装在贴片头上,用来在电路板上搜寻目标(称作基准),一边在贴装前将电路板至于正确位置。

(2)仰视摄像机用于在固定位置检测元件,一般采用CCD技术,在安装之前,元件必须移过摄像机上方,以便做视觉对中处理。粗看起来,好象有些耗时。但是,由于贴片头必须移至送料器收集元件,如果摄像机安装在拾取位置(从送料处)和安装位置(板上)之间,视像的获取和处理便可在安装头移动的过程中同时进行,从而缩短贴装时间。

(3)头部摄像机直接安装在贴片上,一般采用line-sensor技术,在拾取元件移到指定位置的过程中完成对元件的检测,这种技术又成为"飞行对中技术",它可以大幅度提高贴装效率。该系统由两个模块组成:一个模块是由光源与镜头组成的光源模块。光源采用LED发光二极管与散射透镜,光源透镜组成光源模块;另一个模块为接受模块,采用LineCCD及一组

光学镜头组成接受模块,见图4。此两个模块分别装在贴片头主轴的两边,与主轴及其他组建组成贴片头。贴片机有几个贴片头,就会有向的几套系统。

(4)激光对齐是指从光源产生一适中光束,照射在元件上,来测量元件投射的影响。这种方法可以测量元件的尺寸、形状以及吸嘴中心轴的偏差。这种方法快速,因为不要求从摄像机上方走过。但其主要缺陷是不能对引脚和密脚元件作引脚检查,对片状元件则是一个好的选择。20世纪90年代激光对位技术推出时只能处理7mm×7mm的元件,目前安必昂公司推出的第二代激光对位系统处理元件尺寸增至18mm×18mm,激光技术可识别更多的形状,精度也有显著提高,见图5。

在3种元件对中方式(CCD、line-sensor、激光)中,以CCD技术为最佳,目前的CCD硬件性能都具备相当的水平。在CCD硬件开发方面前些时候开发了"背光"(Back-Lighting)及"前光"(Front-Lighting)技术(如图6),以及可编程的照明控制,以更好应付各种不同元件贴装需要。例如引脚QFP元件从后面照明,因为没有虚光反射出现。相反,BGA元件最好是从前光照明,将完整的锡球分布在包装底面上显示出来。有些微型BGA元件底面有可见的走线,可能混淆视觉系统。这些元件要求侧面照明系统。它将从侧面照明锡球,而不是底面的走线,因此视觉系统可检查细球分布,正确地识别元件。

6 贴片机视觉系统的评估

在评估面向SMD贴放对位系统和应用的贴片机视觉系统时,可以遵循如下的一些准则:

6.1 确定PCB基准标记位置的能力

由于PCB基准标记的可靠定位是任何SMD贴放对位的第一步,视觉系统必须可以识别不同的基准,即使在基准外观并不理想的状况下。例如,来自制造工艺的氧化、镀锡和波峰焊料导致的各种变化,可能造成镜面反射和表面不一致,它们会极大地改变标记的外观。客观影响基准外观的其它因素包括电路板变形、焊料堆积过多、电路板颜色改变等等。具有容忍这些

状况的视觉系统可以帮助使用者提高对位成功率,减少操作者的干预。

6.2 识别非标准器件能力

机器视觉系统应该能够可靠地识别各类非标准器件的外形,不论它们的形状如何少见。现有的贴片对位软件,带有内置的几何图案寻找工具,这些工具能"学习"器件的几何属性,即使它形状怪异,系统也能够识别器件。

6.3 可靠避开吸嘴的能力

SMD元件贴装一般使用前光照明或背光照明,或两者都用。背光照明用于差距器件的背影,显现的图像类似于二进制图像,使视觉系统更容易识别器件。在识别片式组容类等简单器件时通常采用这类照明。但背光也会给视觉系统带来难题:拾取器件吸嘴的背影经常会从器件后面突出或部分遮蔽芯片(如图7)。尽管正面照明技术可以防止这种现象,但吸嘴本身的象素灰度值可能会使视觉系统无法可靠地区分吸嘴和器件。选择能够识别器件和拾取器件的吸嘴之间形状差别的视觉系统,这样的系统能容忍吸嘴的部分遮蔽,因此将提高器件对中精度,防止由于视觉错误而使器件被误放。

6.4 识别密间距器件和白色陶瓷表面器件的能力

为了精确地识别BGA、倒装芯片或CSP等各种器件,并检查引脚偏差,视觉系统必须能够准确定位每一个元件。视觉系统还应该可靠地识别白色陶瓷表面器件,它的低对比度反射性质会使传统的视觉技术失去作用。这些功能应该得到核实,测试软件应该能区分各个物体。

6.5 具有自动化编程能力

针对非常特殊的元件,新型视觉软件工具应该具有自动"学习"的能力,用户不必把参数人工输入到系统中,从头创建器件描述,他们只需把器件拿到视觉摄像机前照张相就可以了,系统将自动地产生类似CAD的综合描述。这项技术可以提高器件描述精度,并减少很多操作者的错误,加快元件库的创建速度,尤其是在频繁引入新型器件或使用形状独特器件的情况下,从而提升生产效率。

6.6 支持多种类型的摄像机

以前处理图像的时间一直要比获取它们的时间长,但CPU技术的新发展加速了图像处理速度,图像获取速度反而可能成为限制因素。为了提高系统处理效率,要把获取图像的时间降到最低程度,视觉系统应该能够支持多种先进的行扫描、高分辨率(1024×1024像素)、高速的数字式摄像机。

在评估面向SMD贴放对中的贴片机视觉系统时应充分考虑上述几个因素,确保您所选择的系统具有高度的灵活性,能够轻松处理新的元件类型和来自不同制造商的不同器件,使用户的工作变得更为简单。

贴片机的日常维护及工艺要求

新闻出处:电子生产设备资讯网发布时间:2007-11-15

1.目的:

指导进行SMT生产线高精度贴片机的日常检查与维护。

2.适用范围:

SMT生产线上YAMAHA公司YVL88II型贴片机

3.引用标准:

YAMAHA公司YVL88II型贴片机使用手册。

4.检查与维护操作规程

检查必须定期进行,每日、每月、每季等的规定如下:4.1 每日检查

【关闭】【打印】

友情链接:

? 2007 电子设备网网站地图

贴片机使用说明书中文版

11.6 疑难解答 危险: 严格遵守11.1章中“危险”一节的要求。 警告: 在(废料)切割器或者料盘分隔板附近工作时不论何时都必须戴厚度适度的保护手套。不论(废料)切割器及料盘分隔板刀片处于固定还是可动状态,甚至贴片机已经断电,都存在高风险的受伤可能性。 严禁从下方进入气压切割装置或者从上方进入空的皮带供料器,甚至是为了解决问题(如供料器卡住时)。 11.6.1 更换气压切割刀片 警告: 佩戴厚度适度的保护手套。 取出刀片时,只能捏住它的外面,左边和右边。 严禁将刀片放置身体上,例如,放到膝盖或者腿上。 不要将脚放到刀片上。你可能会重伤自己或者至少将衣服划破。 拆除刀片后确保没人会因踩到刀片伤到他们自己。 11.6.1.1 移除刀片 运行贴片机,开启压缩空气系统。 中断贴片机菜单中可动器件,然后将它取出。 停止运行贴片机,切断总电源,然后关闭压缩空气。开启位于压缩空气单元的针状阀以使压缩空气流动(查看11.1章中“危险”一节)。 松弛螺丝更换喷嘴,略微将它举起并保持它在这一位置。 拔下电缆和喷嘴气动软管 慢慢的拔出喷嘴。 拧下空供料器各个配件的螺丝(参考图11.4.1 -> 11, 9),然后将这些管道移出机器。 警告: 刀片的刀刃处始终可能伤到你自己。 基于这一原因,挡板、顶盖及保护罩(参见图11.4.3 -> 6,7, 2)必须安装到位。 打开连接电缆顶盖(见图11.6.6 -> 5) 拧下位于连接线缆(见图11.6.6 -> 5)处的气压连接阀(Y型插座:见图11.6.3 -> 9) 拔下电源和控制面板插头插座。(见图:see Fig. 11.6.5 -> 11, 10) 仔细解开外部控制面板箱内(见图11.6.5 -> 15)对应的接线头(向左或者向右)。在此期间不要损坏连线。 将顶盖放回控制面板及连接线缆处。 取出供料器斜槽(它只是扣住而已)。这使得取下刀片变得容易。 警告: 刀片下方必须保持干净。(例如,不要把脚放到下面) 在贴装元器件情况下松弛位于贴片机左右两个侧面的缓冲部件(2头M8六角头两边螺钉,见图 11.4.1 -> 15)。

JUKI贴片机的使用教程

贴片机的介绍与使用 目录 一:贴片技术与贴片机关系讲解 二:贴片机的编程循序 三:贴片机的保养目的 贴片技术与贴片机关系讲解 (一)X-Y 与Z轴 X-Y 定位系统是评价贴片机精度的主要指标,它包括传动机构和伺服系统;贴片速度的提高意味着X-Y 传动机构运行速度的提高而发热,而滚珠丝杆是主要的热源,其热量的变化会影响贴装精度,最新研制的X-Y 传动系统在导轨内设有冷却系统;在高速机中采用无磨擦线性马达和空气轴承导轨传动,运行速度做得更快。 西门子贴片机是采用同步带-直线轴承驱动,该系统运行噪声低,工作环境好。 X-Y 伺服系统(定位控制系统) 由交流伺服电机驱动,并在传感器及控制系统指挥下实现精确定位,因此传感器的精度起关键作用。位移传感器有园光栅编码器、磁栅尺和光栅尺。 1.园光栅编码器园光栅编码器的转动部位上装有两片园光栅,园光栅由玻璃片或透明塑料制成,并在片上镀有明暗相间的放射状铬线,相邻的明暗间距称为一个栅节,整个园周总栅节数为编码器的线脉冲数。铬线的多少也表示精度的高低。其中一片光栅固定在转动部位作指标光栅,另一片则随转动轴同眇运动并用来计数,因此指标光栅与转动光栅组成一对扫描系统,相当于计数传感器。园光栅编码器装在伺服电机中,它可测出转动件的位置、角度及角加速度,它可以将这些物理量转换为电信号舆给控制系统。编码器能记录丝杆的放置数并将信息反馈给比较器,直至符合被线性量。该系统抗干扰性强,测量精度取决于编码器中光栅盘上的光栅数及溢珠丝杆导轨的精度。 2.磁栅尺 由磁栅尺和磁头检测电路组成,利用电磁特性和录磁原理对位移进行测量。磁栅尺是在非导磁性标尺基础上采用化学涂覆或电镀工艺在非磁性标尺上沉积一层磁性膜(一般10~20um)在磁性膜上录制代 表一定年度具有一定波长的方波或正弦波磁轨迹信号。磁头在磁栅尺上移动和读取磁恪,并转变成电信号输入到控制电路,最终控制AC伺服电机的运行。磁栅尺的优点是制造简单、安装方便、稳定性高、量程范围大,测量精度高达1~5um,贴片精度一般在0.02mm。 深圳金狮王科技长期有JUKI:750、760、2010、2020、2030、2050、2060、2070、2080、JX-100LED、JX-200LED、JX-300LED等机器。 金狮王:1、3、5、7、0、8、6、9、7、1、5李工 3.光栅尺 由光栅尺、光栅读数头与检测电路组成。光栅尺是在透明下班或金属镜面上真空沉积镀膜,利用光刻技术制作均匀密集条纹(每毫米100~300 条),条纹距离相等且平等。光栅读数头由指示光栅、光源、透镜及光敏器件组成,光栅尺有相同的条纹,光栅尺是根据根据物理

磨煤机原理

一、. 代号和技术数据 1.1 代号 Z G M 113 G 分K、N、G三个型号,K为小型,N为中型,G为大型。 磨环滚道平均半径(cm) 磨煤机 辊式 中速 1.2 技术数据 1.2.1 煤种范围 煤种烟煤,部分贫煤和部分褐煤 发热量16~31MJ/kg 表面水份〈18% 可磨性系数HGI=40~80(哈氏) 可燃质挥发份16~40% 原煤颗粒0~40mm 煤粉细度R90=15~40% 1.2.2 磨煤机技术数据 标准研磨出力87.7t/h (当R90=16%,HGI=80,W Y=4%) 额定功率570 kW 电动机额定功率650 kW 电动机电压6000 V 电动机转速992 r/min 电动机旋转方向逆时针(正对电机输入轴) 磨煤机磨盘转速24.2 r/min 磨煤机旋转方向顺时针(俯视) 通风阻力≤6540 Pa 磨机额定空气流量21.75 Nm3/s 磨煤机磨煤电耗量6~10 kW·h/t (100%磨煤机出力)

二、MPS磨煤机的特点: 1、与其他磨盘尺寸相仿的其他中速磨相比,MPS磨煤机的磨辊直径较大。这样, 一方面使磨辊具有较大的碾磨面积,。从而使磨辊的碾磨能力即磨煤机的出力增 加,同时改善了磨辊的工作条件,使磨辊的磨损比较均匀,提高碾磨元件的金属 利用率。磨辊与磨碗之间具有较小的滚动阻力,起动时的阻力矩较小,同时它的 空载电耗也较低,这将有助于降低磨煤的能量消耗。 2、磨辊的辊胎采用对称结构,当一侧磨损到一定程度后,可拆下翻身后继续使用, 从而提高磨辊的利用率。 3、采用三个位置固定的磨辊,形成三点受力状态,碾磨的压紧力是通过弹簧压盖均 匀得传递给三个磨辊,磨辊上的压紧力通过减速机传递给框架和基础,而压紧力 的反作用通过加压装置也传递给框架和基础,形成了封闭力系。磨煤机的机体是 不受力的,这样可以在碾磨元件间施加尽可能高的压紧力,而不影响机壳连接的 密封性。 4、采用液压加载装置。其功能是为磨辊施加合适的碾磨压力,加载压力由比例调节 阀根据指令信号来控制,同步升起和落下磨辊。磨辊所需的碾磨压力是由液压系 统提供的,加压系统包括三个油缸和蓄能器蓄能器的充油侧直接和油缸活塞杆侧 连接。加载油缸安装和蓄能器安装在磨煤机上,三个带蓄能器的油缸由高压油泵 站提供动力。 5、可靠的密封装置,使磨煤机既能在正常工况下运行,不会使煤粉外泄,也能在负 压工况下运行而不吸入外界的冷风。 6、磨煤单位电耗小,磨煤电耗率为6.5KW.h/t。 7、煤种适应性好广 三、工作原理: ZGM113G磨煤机是一种中速辊盘式磨煤机,磨煤机的碾磨部分是由转动的磨环和三个沿磨环滚动的固定且可自转的磨辊组成。需粉磨的原煤从磨煤机的中央落煤管落到磨环上,旋转磨环借助于离心力将原煤运动至碾磨滚道上,通过磨辊进行碾磨。三个磨辊沿圆周方向均布于磨盘滚道上,碾磨力则由液压加载系统产生,通过静定的三点系统,碾磨力均匀作用至三个磨辊上,这个力是经磨环、磨辊、压架、拉杆、传动盘、减速机、液压缸后通过底板传至基础。原煤的碾磨和干燥同时进行,一次风通过喷嘴环均匀进入磨环周围,将经过碾磨从磨环上切向甩出的煤粉混合物烘干并输送至磨机上部的分离器,在分离器中进行分离,粗粉被分离出来返回磨环重磨,合格的细粉被一次风带出分离器。

贴片机结构(硬件知识)

贴片机结构(硬件知识) 06-10-2212:50发表于:《SMT技术交流》分类:未分类 贴片技术与贴片机 SMT生产中的贴片技术通常是指用一定的方式将片式元器件准确地贴放到PCB指定的位置,这个过程英文称之为“Pick and Place”,显然它是指吸取/拾取与放置两个动作。在SMT 初期,由于片式元器件尺寸相对较大,人们用镊子等简单的工具就可以实现上述动作,至今尚有少数工厂仍采用或部分采用人工放置元件的方法。但为了满足大生产的需要,特别是随着SMC/SMD的精细化,人们越来越重视采用自动化的机器--贴片机来实现高速高精度的贴放元器件。 近30年来,贴片机已由早期的低速度(1-1.5秒/片)和低精度(机械对中)发展到高速(0.08秒/片)和高精度(光学对中,贴片精度+-60um/4δ)。高精度全自动贴片机是由计算机、光学、精密机械、滚珠丝杆、直线导轨、线性马达、谐波驱动器以及真空系统和各种传感器构成的机电一体化的高科技装备。从某种意义上来说,贴片机技术已经成为SMT的支柱和深入发展的重要标志,贴片机是整个SMT生产中最关键、最复杂的设备,也是人们初次建立SMT生产线时最难选择的设备。 本章将着重讨论贴片机的主要结构,工作原理,各类贴片机的主要特点以及IPC最新推出的贴片机验收标准,为选购及组织验收贴片机提供依据。 9.1贴片机的结构与特性 目前,世界上生产贴片机的厂家有几十家,贴片机的品种达几百个之多,但无论是全自动贴片机还是手动贴片机,无论是高速贴片机还是中低速贴片机,它的总体结构均有类似之处。贴片机的结构可分为:机架,PCB传送机构及支撑台X,Y与Z/θ伺服,定位系统,光学识别系统,贴片头,供料器,传感器和计算机操作软件。现将上述各种结构的特征及原理简介如下。 9.1.1机架 机架是机器的基础,所有的传动、定位、传送机构均牢固地固定在它上面,大部分型号的贴片机及其各种送料器也安置在上面,因此机架应有足够的机械强度和刚性。目前贴片机有各种形式的机架,大致可分为两类。 1.整体铸造式 整体铸造的机架的特点是整体性强,刚性好,整个机架铸造后采用时效处理,机架的变形微小,工作时稳固。高档机多采用此类结构。 2.钢板烧焊式 这类机架由各种规格的钢板等烧焊而成,再经时效处理以减少应力变形.它的整体性比整体铸造低一点,但具有加工简单,成本较低的特点.在外观上(去掉机器外壳)可见到焊缝. 机器采用那种结构的机架,取决于机器的整体设计和承重.通常机器在运行过程中应平稳,轻松,无震动感(用金属币立于机器上不会出现翻倒),从某种意义上来讲机架起着关键作用. 9.1.2传送机构与支撑台 传送机构的作用是将需要贴片的PCB送到预定位置,贴片完成后再将SMA送至下道工序。传送机构是安放在轨道上的超薄型皮带传送系统。通常皮带安置在轨道边缘,皮带分为A,B,C三段,并在B区传送部位设有PCB夹紧机构,在A,C区装有红外传感器,更先进的机器还带有条形码阅读器,它能识别PCB的进入和送出,记录PCB的数量。 传送机构根据贴片机的类型又分为两种。 (1)整体式导轨 在这种方式贴片机中,PCB的进入、贴片、送出始终在导轨上,当PCB送到导轨上并前进到B区时,PCB会有一个后退动作并遇到后制限位块,于是PCB停止运行,与此同时,PCB

磨煤机的工作原理及日常维护

磨煤机的工作原理及日常维护 (大唐珲春发电厂) 摘要:磨煤机是一种将煤块破碎并磨成煤粉的机械, 是电厂的重要辅机,近年来由于磨煤机故障造成电厂停机的事故屡见不鲜,究其原因是检修维护部门没有很好把握磨煤机故障出现的原因。本文以中速磨煤机为例,介绍了磨煤机的工作原理与日常维护,以此为检修维护部门提供更多可借鉴的资料。掌握磨煤机的设备劣化趋势,合理安排磨煤机的 计划性检修,防止设备“过维修、欠维修”,最终提高磨煤机的设备可靠性和设备利用率。 关键词: 磨煤机是一种将煤块破碎并磨成煤粉的机械,是电厂的 重要辅机,目前市场上所广泛应用的磨煤机一般都是中速辊盘式磨煤机,这种磨煤机的碾磨位置主要由两部分组成,即可以转动的磨环与三个能够自转的固定的磨辊。在碾磨过程中,在圆周作用下,平均分布于在磨盘滚道上的三个磨辊同时产生碾磨力,对原煤进行碾磨的同时强化其干燥操作。碾磨好的煤粉混合物经过烘干后输送至分离器,经过分离与筛选后获得合格的细粉。 近年来由于磨煤机故障造成电厂停机的事故屡见不鲜,

究其原因是检修维护部门没有很好把握磨煤机故障出现的原因。本文以中速磨煤机为例,介绍了磨煤机的工作原理与日常维护,以此为检修维护部门提供更多可借鉴的资料。掌握磨煤机的设备劣化趋势,合理安排磨煤机的计划性检修,防止设备“过维修、欠维修” ,最终提高磨煤机的设备可靠性和设备利用率。 、磨煤机的工作原理 磨煤机是将煤块破碎并磨成煤粉的机械,磨煤的过程是 煤被粉碎及其表面积不断增加的过程,主要通过压碎、击碎和研碎三种方式进行。磨煤机的型式很多,按磨煤工作部件的转速分为三类,转速为16-25r/min 是低速磨煤机,转速为 60-300r/min 是中速磨煤机,转速大于300r/min 即为高速磨煤 机, 中速磨煤机应用最广泛的是碗式磨煤机。 碗式磨煤机主要由台板基础、电动机、减速机、侧机体、 机座密封装置、磨碗及叶轮装置、刮板装置、磨辊装置、弹簧加载装置、铰轴装置、排渣装置、分离器等部件组成。磨煤机其碾磨部分是由传动的磨碗和三个沿磨碗滚动的固定且可自转的磨辊组成。原煤落入磨碗后,在离心力的作用下沿径向朝外移动至研磨环,由于径向和周向移动,煤在可绕轴转动的磨辊装置下通过,由此弹簧加载装置产生的研磨力通过转动的磨辊施压在煤上。磨辊装置使煤在磨辊下形成煤床,并在磨?h 与磨辊之间碾磨成粉。 碾磨压力由液压系统提供,可根据煤种进行调整。碾磨 压力及碾磨件的自重全部作用于减速机上,由减速机传至基础。三个磨辊均分布于磨盘辊道上,并铰固在加载架上。加 载架与磨辊支架通过滚柱可沿径向作倾斜12?15。的摆动,以适应物料层厚度的变化及磨辊与磨盘瓦磨损时所带来的角度变化。 用于输送煤粉和干燥原煤的热风由热风口进入磨煤机, 通过磨盘外侧的喷嘴环将静压转化为动压,并以75-90m/s

中速磨煤机的工作原理及应用

中速磨煤机的工作原理及应用 各种中速磨煤机在结构上有一定差异,按其碾磨部件的形状可分为辊盘式和球环式两种。辊盘式磨煤机由于各制造厂家的不同设计,磨辊和磨盘的结构形式各不相同,又有平盘磨(Loesche磨)、斜盘磨(RP磨和HP磨)及辊环磨(MPS磨和Berz磨)等多种类型。球环中速磨又称E型磨。 由于驱动磨盘、磨碗或磨环的主轴都是垂直装设的,故中速磨又有立轴磨之称。 1.1.1 中速磨煤机的工作原理与结构 各种中速磨煤机的工作原理基本相似,如图2-20所示。原煤由落煤管进入两个碾磨部件的表面之间,在压紧力的作用下受到挤压和碾磨而被粉碎成煤粉。由于碾磨部件的旋转,磨成的煤粉被抛至风环处。装有均流导向叶片的环形热风道称为风环。热风以一定的速度通过风环进入干燥空间,对煤粉进行干燥,并将其带入碾磨上部的粗粉分离器中。经过分离,不符合燃烧要求的粗粉返回碾磨区重磨。合格的煤粉经煤粉分配器由干燥剂带出磨外,引至一次风

管。来煤中夹带的杂物(如石块、黄铁矿块和金属块等)被抛至风环处后,因由下而上的热风不足以阻止它们下落,故经风环落至杂物箱,上述的杂物亦称石子煤。 图2-20 中速磨煤机工作原理 (a) Loesche平盘磨;(b)Lopulco平盘磨;(c)RP碗式磨; (d) MPS磨;(e)E型磨 平盘磨、碗式磨(RP、HP型)、MPS磨和E型磨煤机结构见图4-2。

⑴平盘磨 平盘磨如图2-21(a)所示。平盘磨内,煤在平盘和锥形的辊子之间被碾磨成煤粉,压紧力由加压弹簧或液力一气动压紧装置来提供。磨辊与磨盘之间保持一定间隙,不直接接触。装有均流导向叶片的风环,一种是固定于磨煤机机壳上(如Leosche平盘磨);另一种是固定在转动的磨盘上,并随其一起转动(如Lopulco平盘磨)。

SMT贴片机操作与编程说明书+文召召

SMT基本操作说明书,“鑫久盛”贴片机厂编写 软件系统: 软件系统主界面如图1 图 1 软件系统分为两大块,左边部分为操作界面,包括软件的启动、停止、电机移动等等,右边部分为参数设置、坐标设置、I/0口测试及软件管理等等。 软件设定 1、在不同的机型、不同的操作模式下,变灰的编辑框或设置框都是不需要操作或不能操作的。 2、速度参数页里的参数出厂前已经调式到最佳状态,为保护机器更稳定的运行,用户不能擅自改变其速度参数。 3、以下的软件,软件工程数据的格式为.txt;以上的软件,工程数据文件为.dot,坐标文件格式为.txt,坐标文件飞达等相关数据为.log。把数据改为.dot格式的文件,可使用到以上的软件。 SMT文件系统 SMT文件系统提供一种非常简单快捷的操作模式,跟Window的文件系统一样,用户可以进行复制、粘贴、删除、重命名文件等操作。文件系统里保存了系统的所有参数,文件系统又是独立的,因此用户可以通过管理不同的文件,载入不同的基板参数,从而省去的重复设置参数的时间。 如图1,在软件的左上角,单击【载入数据】,载入材料的参数数据,在文件名称栏里显示当前载入的文件名。修改好参数,单击【保存数据】,将保存系统所有的数据到当前文件;同时也可以选择了【另存为】,保存为另一个文件。 文件系统的操作技巧:在重新做一个材料参数之前,把先前已存在的参数文件复制一份,命名为该材料的名称,然后再打开软件,载入该文件,从而达到快速制作参数的目的。 电机移动 电机移动主要是为后面的设置参数服务的,选择【×5】X轴、Y轴、Z轴移动约40μm,选择【×50】,移动约是, 【×500】则移动4mm。 快捷键:键盘的四个方向键,分别对应X轴Y轴的四个方向,Delete和PgDnd 对应送料电机的两个方向,End是切换速度。 时间和速度 时间是系统后台计算贴装所选吸嘴个数单个周期的时间,作为速度计算的参考参数。 调式选项 调式选项主要是在参数设置和验证时使用。需要强调的是,在做吸料高度和放料高度之后一定的先复位Z1和Z2轴后再移动X/Y轴,否则可能会把吸嘴撞坏。

SMT贴片机编程、原理、与维修

SMT贴片机 编程、原理、保养与维修“实训班” 一、参加对象与学院介绍 为了满足广大SMT行内人士的要求,学院最近推出SMT贴片机编程实训班,专门教授贴片机的编程、保养与维修等,报名者要求曾经从事过SMT技术人员,有一定的实践基础,想在SMT贴片机实践与理论上有提高的人士。 学习中包含了现代电子厂工程师所要掌握的全部知识量,有机器的编程操控、保养与维护控制等等。学院有与现代化电子厂相同的生产设备:EKRA 自动锡膏印刷机、YAMAHA YV-100Xg high speed 贴片机、FOLUNG 科隆威回流焊机、FOLUNG 波峰焊机、HOIKI、ICT 检测机等现代化电子生产设备,同时也讲到JUKI、YAMAHA、SANYO、FUJI (FLEXA)、SAMSUNG等机型机器结构与编程软件。 全新YAMAHA YV-100Xg 贴片机、锡膏印刷机、回流焊机、波峰焊机整条生产设备,YGOS、FLEXA、SAMSUNG学习,电子专家学者、厂家工程师手把手每天在生产线上教学,机器全天候开放给大家练习使用! 二、学习资料与培训内容 资料:SMT培训教材来源于贴片机厂家与技术研究机构的大力支持。除了有JUKI、YAMAHA、SANYO、FUJI(FLEXA)、SAMSUNG等机型机器的操作手册(全中文)提供给大家学习外,主要是教广东技术师

范学院SMT工程培训部教师自己编辑的书籍《贴片机编程、原理、维修与保养手册》(广东技术师范学院SMT培训部编辑,保密资料,仅供内部培训使用)。 本书详细讲述了SMT贴片机的工作原理、编程的步骤、常见故障的维修实例及贴片机的保养过程。讲述FUJI、SAMSUNG、YAMAHA机器的编程步骤与整体过程。尤其值得一提的是本书讲述了贴片机视觉系统工作的原理与结构,这个填补了国内贴片机资料的空白。 内容:讲到YAMAHA、SANYO、FUJI(FLEXA)、JUKI、SAMSUNG等机器结构与编程软件。 1、SMT贴片机编程生产实操(上机编程,也会教到其他机型) (1)设定电路板基本信息(Board); (2)固定电路板 (Unit Conveyor); (3)设定原点信息 (Board Offset); (4)设定基准点信息 (Board Fiducial); (5)设定标记点信息 (Mark); (6)设定贴装信息 (Board Mount); (7)设定元器件信息(Parts); (8)设定贴装信息里每个贴装元器件 (Board Mount); (9)保存、优化程序; (Save 、 Optimizer); (10)调出程序,按机器控制面板"start"按钮开始自动加工。 2、离线软件应用(YGOS、FLEXA、SAMSUNG) YGOS离线程序的应用;PROTEL文件的打开、材料清单BOM的提

第一讲 SMT贴片机介绍

第一讲SMT贴片机介绍 一、贴片机类型 1、按速度分类 中速贴片机高速贴片机超高速贴片机 2、按功能分类 高速/超高速贴片机(主要贴一些规则元件) 多功能机(主要贴一些不规则元件) 3、按贴装方式分类 顺序式同时式同时在线式 4、按工作原理分类 动臂式贴片机复合式贴片机转塔式贴片机大型平行系统1)、.动臂式贴片机具有较好的灵活性和精度,适用于大部分元件,高精度机器一般都是这种类型,但其速度无法与复合式、转盘式和大型平行系统相比。又可分为单臂式和多臂式。 2)、复合式机器是从动臂式机器发展而来,它集合了转盘式和动臂式的特点,在动臂上安装有转盘,如Siemens最新推出的HS50机器就安装有4个这样的旋转头,贴装速度可达每小时5万片 3)、转塔式机器由于拾取元件和贴片动作同时进行,使得贴片速度大幅度提高,如松下公司的MSH3机器贴装速度可达到0.075秒/片 4)、大型平行系统由一系列的小型独立组装机组成。各自有丝杠定位系统机械手,机械手带有摄象机和安装头。如PHILIPS公司的FCM机器有16个安装头,实现了0.0375秒/片的贴装速度,但就每个安装头而言,贴装速度在0.6秒/片左右

二、贴片机的组成 1、贴装头 贴装头也叫做吸/放头,它的工作由移动/定位、拾取/释放两种模式组成: 第一,贴装头通过程序控制完成三维的往复运动,实现从供料系统取料后移动到SMB的指定位置上。 第二,贴装头的端部有一个用真空泵控制的吸盘,当换向阀打开时,吸盘上的负压把元器件从供料系统中吸上来;当换向阀门关闭时吸盘把元器件释放到SMB上 2、视觉系统 它也是以计算机为主体的图像观察、识别和分析系统。 视觉检测系统的主要功能通常有: ●SMB的精确定位、 ●元器件定心和对准、 ●元器件有/无检测、 ●机械性能及电器性能的检测等。 随着SMT技术的发展,全自动贴片机的功能、效率、精度及灵活性越来越强,全视觉、多功能、模块式、高速度的贴片机不断推出,能适应从片状元件直至BGA、CSP及0.3mm 细间隙QPF等精密器件的贴放;精度达到0.03mm;贴片速度达到0.04s/片甚至更高。 所以,SMA的装联效率之高是通孔插装组件所无法比拟的。 贴片机的摄像机可分为以下几类: 1)俯视摄像机(CCD) 2)仰视摄像机(CCD) 3)头部摄像机(Line-sensor) 4)激光对齐

贴片机视觉系统构成原理及其视觉定位

1 贴片机视觉系统构成及实现原理 如图1所示,贴片机视觉系统一般由两类CCD摄像机组成。其一是安装在吸头上并随之作x-y 方向移动的基准(MARK)摄像机,它通过拍摄PCB上的基准点来确定PCB板在系统坐标系中的坐标;其二是检测对中摄像机,用来获取元件中心相对于吸嘴中心的偏差值和元件相对于应贴装位置的转角θ。最后通过摄像机之间的坐标变换找出元件与贴装位置之间的精确差值,完成贴装任务。 龌 傒 鮯 [ e 1.2 系统各坐标系的关系 韕 为了能够精确的找出待贴元件与目标位置之间的实际偏差,必须对景物、CCD摄像机、CCD成像平面和显示屏上像素坐标之间的关系进行分析,以便将显示屏幕像素坐标系的点与场景坐标系中的点联系起来;并通过图像处理软件分析计算出待贴元件中心相对于吸嘴中心的偏差值。

对于单台摄像机,针孔模型是适合于很多计算机视觉应用的最简单的近似模型[3]。摄像机完成的是从3D射影空间P3到2D射影空间P2的线性变换,其几何关系如图3所示,为便于进一步解释,定义如下4个坐标系统:棤咞 脮朩1? 垡々 } ?犹 坐标关系: 狨 由于视野小,采用的镜头畸变非常低,可将Uc直接简化为等于欧氏图像坐标系下的坐标,让uc =ui,vc=vi,而ui=(up-xp0)δ,vi=(vp-yp0)δ,δ为单个像素的大小。

这样可以得到欧氏场景坐标系和欧氏图像坐标系之间的映射关系: 郠?? 由于在该系统中各摄像机之间是相互独立的,所以各路成像出来的坐标都可以转换为同一场景坐标下的坐标。 狇 韻 姹R+逿 2.1 图像预处理 图像预处理的目的是改善图像数据,抑制不需要的变形或者增强某些对于后续处理重要的图像特征。由于SMT生产现场的非洁净因素造成CCD镜头上的尘埃等,易给图像带来较大的外界噪声。另外,图像的采集过程中也不可避免地引入了来自光路扰动、系统电路失真等噪声。因此,对图像进行预处理以消除这些噪声的影响是非常必要的。 对噪声平滑方法主要的要求是:既能有效地减少噪声,又不致引起边缘轮廓的模糊,同时还要求

常见泵的分类及工作原理(学习类别)

第十六章常见泵的分类和工作原理 泵是输送液体或使液体增压的机械。它将原动机的机械能或其他外部能量传送给液体,使液体能量增加,主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。水泵性能的技术参数有流量、吸程、扬程、轴功率、水功率、效率等;根据不同的工作原理可分为容积水泵、叶片泵等类型。容积泵是利用其工作室容积的变化来传递能量;叶片泵是利用回转叶片与水的相互作用来传递能量,有离心泵、轴流泵和混流泵等类型。 第一节泵的分类及在电厂中的应用 一、泵的分类 (一)按照泵的工作原理来分类,泵可分为以下几类 1、容积式泵 容积式泵是指靠工作部件的运动造成工作容积周期性地增大和缩小而吸排液体,并靠工作部件的挤压而直接使液体的压力能增加。 容积泵根据运动部件运动方式的不同又分为:往复泵和回转泵两类。 按运动部件结构不同有:活塞泵和柱塞泵,有齿轮泵、螺杆泵、叶片泵和水环泵。 2、叶轮式泵 叶轮式泵是靠叶轮带动液体高速回转而把机械能传递给所输送的液体。 根据泵的叶轮和流道结构特点的不同,叶轮式泵又可分为: 离心泵(centrifugal pump) 轴流泵(axial pump) 混流泵(mixed-flow pump) 旋涡泵(peripheral pump) 喷射式泵(jet pump) (二)其它分类 1、泵还可以按泵轴位置分为:

(1)立式泵(vertical pump) (2)卧式泵(horizontal pump) 2、按吸口数目分为: (1)单吸泵 (single suction pump) (2)双吸泵 (double suction pump) 3、按驱动泵的原动机来分: (1)电动泵(motor pump ) (2)汽轮机泵(steam turbine pump) (3)柴油机泵(diesel pump) (4)气动隔膜泵(diaphragm pump 如图16-1 为泵的分类 图16-1 泵的分类 二、各种类型泵在电厂中的典型应用 离心泵凝结水泵、给水泵、闭式水泵、凝补水泵、 定子冷却水泵、定排水泵、炉水循环泵 轴流泵循环水泵

贴片机操作指导书模板

贴片机操作指导书模板 机器名称:多功能贴片机机型:YVL88Ⅱ 一、.操作步骤 1开启机器运行 1.1 开启主机电源,按YPU的[READY]钮开伺服。 2操作方法 2.1 选择所需的PCB数据,检查周围安全,执行回原点。 2.2 执行暖机操作,如停机时间较短(2 小时或更少),无须暖机。 2.3 按[F2] 键选取所要生产的PCB名,然后在YPU上按[RUN]键或选择执行[1/1/A2/AUTO RUNNING],机器开始自动操作。 2.4 PCB生产开始,如果贴片期间发生故障,及时处置,继续贴片。 2.5 元件贴装完成,检查贴片结果是否与SAMPLE和BOM相符。2.6 批量生产,人工检查修正,准备过回形炉。 3停止机器 3.1 生产结束,退出各项显示及系统运用,按异常停止钮,清屏幕显示,关主电源。 3.2 清洁机器,做好维护保养事项。 二、.操作说明 操作条件及注意事项 1.操作期间如遇紧急情况,可按机器紧急停止按钮。

2.机器出现故障,马上通知技术人员排除。 3.检查供料器安装位置是否与排料单相符。 4.生产时,应及时放板取板。 5.定期保养,保持机器清洁,运行正常。 6.集成电路属易被静电损坏之器件,接触时注意戴防静电环。 机器名称:中速贴片机机型:YV100Ⅱ 一、操作步骤 1 开启机器运行 1.1开启主机电源,按YPU的[READY] 钮开伺服。 2操作方法 2.1 选择所需的PCB数据,检查周围安全,执行回原点。 2.2 执行暖机操作,如停机时间较短(2 小时或更少),无须暖机。 2.3 按[F2] 键选取所要生产的PCB名,然后在YPU上按[RUN]键或选择执行[1/1/A2/AUTO RUNNING] ,机器开始自动操作。 2.4 PCB生产开始,如果贴片期间发生故障,及时处置,继续贴片。 2.5 元件贴装完成,检查贴片结果是否与SAMPLE和BOM相符。2.6 批量生产,人工检查修正,准备过回形炉。 3停止机器 3.1 生产结束,退出各项显示及系统运用,按异常停止钮,清屏幕显示,关主机电源。 3.2 清洁机器,做好维护保养事项。

贴片机的结构分类

目前贴片机结构大致可分为四种结构:拱架式贴片机、复合式贴片机、转塔式贴片机和大型平行系统贴片机。 (1)拱架式贴片机。拱架式(又称动臂式)机器是最传统的贴片机,具有较好的灵活性和精度,适用于大部分元件,高精度机器一般都是这种类型,但其速度无法与复合式、转塔式和大型平行系统相比。不过元件排列越来越集中在有源部件上,比如有引线的QFP(Quad flat package,四边扁平封装器件)和BGA(Ball grid array,球栅阵列器件),安装精度对高产量有至关重要的作用。复合式、转塔式和大型平行系统一般不适用于这种类型的元件安装。 拱架式机器分为单臂式和多臂式,单臂式是最早先发展起来的现在仍然使用的多功能贴片机。在单臂式基础上发展起来的多臂式贴片机可将工作效率成倍提高,如美国Universal公司的GSM2贴片机就有2个动臂安装头,可分别交替对两块PCB(Print Circuit Board,印刷线路板)同时进行安装。绝大多数贴片机厂商均推出了采用这一结构的高精度贴片机和中速贴片机,例如美国Universal公司的AC72、荷兰Assembleon公司的AQ-1、日本Hitachi公司的TIM-X、日本Fuji 公司的QP-341E和XP系列、日本Panasonic公司的BM221、韩国Samsung公司的CP60系列、日本Yamaha公司的YV系列、日本Juki 公司的KE系列 (2)复合式贴片机。复合式机器是从拱架式机器发展而来,它集合了转塔式和拱架式的特点,在动臂上安装有转盘,像Siemens 的

Siplace80S25贴片机,有两个带有12个吸嘴的旋转头。Universal 公司也推出了带有30个吸嘴的旋转头,称之为“闪电头”,两个这样的旋转头安装在Genesis贴片平台上,可实现每小时60,000片贴片速度。从严格意义上来说,复合式机器仍属于动臂式结构。由于复合式机器可通过增加动臂数量来提高速度,具有较大灵活性,因此它的发展前景被看好,例如Siemens推出的HS60机器就安装有4个旋转头,贴装速度高达每小时60,000片。 (3)转塔式贴片机。转塔的概念是使用一组移动的送料器,转塔从这里吸取元件,然后把元件贴放在位于移动的工作台上的电路板上面。转塔式机器由于拾取元件和贴片动作同时进行,使得贴片速度大幅度提高。这种结构的高速贴片机在我国的应用也很普遍,不但速度快,而且历经十余年的发展技术已非常成熟,如Fuji公司的CP842E 机器贴装速度可达到0.068秒/片。但是这种机器由于机械结构所限,其贴装速度已达到一个极限值,不可能再大幅度提高。该机型的不足之处是只能处理带状料。 转塔式机器主要应用于大规模的计算机板卡、移动电话、家电等产品的生产上,这是因为在这些产品当中,阻容元件特别多、装配密度大,很适合采用这一机型进行生产。相当多的台资、港资电子组装企业以及国内电器生产商都采用这一机型,以满足高速组装的要求。生产转塔式机器的厂商主要有Panasonic、Hitachi、Fuji。

SIEMENS贴片机的操作指南

SIEMENS贴片机的操作指南(简装) 1.1 生产线启动 1.1.1 启动监控计算机 * 打开显示器 * 打开不间断电源,约2分钟之后,屏幕出现对话框 * 在“AUTxxxx”区输入 plr * 回车之后约2分钟,主菜单出现 1.1.2 打开 SiplaceHS50 注意:机器启动过程中不要擅自关电,否则会导致不可预估的故障 * 仔细检查机器,确认没有任何障碍物出现在旋转头的运动范围内。 * 保证旋转头处于Z轴最上端 * 打开电源开关,计算机屏幕将出现 * 操作信息行出现“ Press Start Key”时,按下开始按钮,则机器处于准备工作状态 1.1.3 关闭 SIPLACE 生产线: 注意:* 所有的机器已完成生产

* 旋转头处于Z轴最上端 * 吸嘴上没有任何元件 * 旋转头处于等待位置 1.1.3.1 关闭监控计算机 注意:必须按下列步骤关闭监控计算机,不能简单地关掉UPS电源否则系统有可能出现故障. * 将光标移到屏幕的右边, 光标将变成十字线 * 按下鼠标左键, 屏幕出现下拉式菜单 * 继续按下鼠标左键,将光标移到“shut down”处, 屏幕将出现 Really shut down? Yes No * 点中“yes” , 监控计算机将关闭所有程序. 然后屏幕出现 Safe to power of Press any key to reboot * 关闭 UPS 及显示屏 1.1.3.2 关闭SIPLACE * 必须在监控计算机完全关闭之后才能关闭贴片机 * 不要在机器执行命令时关闭贴片机 * 不要在机器打板子时关闭贴片机 * 不要在计算机启动过程中关闭贴片机 * 应在机器处于等待状态时关闭贴片机

SMT贴片机知识(精)教学教材

第四章贴片机识 一、贴片机在SMT中的发展应用 随着电子产品的发展,现代高科技的需要,电子零件以越来越精细,元件结构也由以前的DIP直插件发展到表面贴装件,各种IC的形状也正朝向SMT 件的形状发展,很明显的一种情况为芯片的包装,以由过去的QFP、PLCC向BGA 方向发展,这都是电子产品随科技发展的必然趋势,0603(1608)件在人的肉眼下可以操作已到了极限,同如QFP在现所允许的体积下已不能满足新时代的要求,产生了BGA,同样的主板在大量SMD件下手工是无法有效生产一样,贴片机在SMT中的发展领域是自然的。 二、 YAMAHA贴片机简介 1. YVL88Ⅱ为Laser/Vision Mounter(激光/视觉多功能贴片机)YVL88Ⅱ是YAMAHA系列中的一种,它的功能体现在可以贴装电阻、电容片件尺寸在1005以上的范围,和各种形状的QFP、PLCC以及BGA。 2.YAMAHA贴片机的电压要求。 2.1 HYPER系列、YVI2U/Ⅱ、YV100、YVL80/88、YV64/YV64D/YV100/HSD等为单相AC200V+10%,50HZ 2.2 YV112Ⅲ、YV100Ⅱ、YVL88Ⅱ等为三相AC380V±10%,50HZ 2.3 通过对变压器接线的改变,单相电压适用范围为220-240V±10%,三相电压范围为200-416V±10% 3. YAMAHA贴片机的压缩空气要求。 3.1 空气压力应大于5.0kg/cm2,否则当检测系统检测到小于此值时,将会出于安全考虑停止 机器工作并报警,同时如果气压达不到,吸料会经常出错。 3.2 空气必须经过过滤或干燥后的干净气体。如果气体含有水份、油、灰尘时,机器就不能正 常工作,电磁阀、滤芯、传感器、密封件等部件也会加速老化。 4. YAMAHA贴片机的环境要求 4.1 室温应为24℃左右,温度太低或太高都将对机器的机械运动部份和控制箱时的控制模块 产生不良影响。 4.2 车间是封密无尘的,当空气中灰尘较多时,它们也会影响到机械运动部份和传感器灵敏度。 4.3 贴片机周边不能有产生较大机械振动和电磁干扰的其它设备,以免影响贴片机的正常工 作。 5. YAMAHA贴片机对PCB板的要求 5.1 尺寸最小:L50×W50mm 最大:L457×W407mm 其最大尺寸会因机器型号或安装的选择不同而不同。

双进双出磨煤机的结构原理及工作中的影响因素(尹立杰)

600MW机组双进双出磨煤机的结构原理及影响工作的主要因素 尹立杰 (山东诚信国电聊城项目监理部) 摘要:本论文介绍了山东聊城发电厂二期双进双出钢球磨煤机的型号、性能及特点,以及分析影响磨煤机工作的主要因素,及有效的控制方法。通过上述内容的,对安装工程起到辅导性的作用。 关键词:结构原理影响因素 1 概述 近年来,随着我国进口锅炉投用的逐渐增多,与之相配套的制粉系统的形式也越来越多。双进双出低速滚筒式钢球磨煤机就是其中的一种。我国原来采用的低速钢球磨煤机一般均为单进单出式磨煤机,即单侧进煤单侧出风,而双进双出式磨煤机为双侧进煤双侧出风,较单侧进煤单侧出风磨煤机的效率有大大的提高。目前,国电聊城发电厂2×600MW二期工程机组所选用的制粉系统均为双进双出正压直吹低速滚筒式钢球磨煤机(BBD4360型)。 该类型磨煤机由两端完全对称的给煤机进煤,由两端完全对称的分离器出粉,故称为双进双出球型磨煤机.由于磨煤机正压运行,在耳轴的固定部分和转动部分之间,密封风机提供反向压力以防止煤粉泄漏;磨煤机配制一套惰性置换系统,目的是在磨煤机运行条件要求的情况下向磨内进行充惰,一旦有着火报警,可以喷高压蒸汽进行灭火;磨煤机自身装有的一套加球系统,磨煤机无需停运的情况下,即可给磨煤机补加钢球。 2 磨煤机总体结构 如上图所示,该类型磨煤机主要由:磨煤机壳体、主轴承、给煤/出粉管,驱动装置、润滑油系统等部件组成。另外还包括空心轴、衬板、大、小齿轮、空气离合器、减速机、电机、分离器等附件。 1)双进双出磨煤机的系统简图如下:

如上图所示,每台磨煤机对应4只BSOD(磨煤机一次风/粉出口挡板)和2只PSOD(磨煤机入口一次风关断挡板),在磨煤机停运或紧急跳闸时快速关闭,防止一次风/粉经过磨煤机进入炉膛,保证锅炉的安全运行。2只磨煤机密封风挡板,调节磨煤机内外差压在1700pa 左右,防止磨煤机向外冒粉污染环境。1只容量风挡板,磨煤机运行时调节磨煤机进入炉膛的风/粉量大小。1只热风挡板和1只调温风挡板,用来调节控制磨煤机的出口温度在66?C,保证磨煤机的安全稳定运行。 (2)国电聊城发电厂2×600MW机组锅炉额定出力为2027T/H,配有上海重型机器厂有限公司制造的双进双出磨煤机6台。每台磨煤机对应4只(2对)燃烧器,整台锅炉共有24只燃烧器。下面以山东聊城发电厂600MW机组双进双出磨煤机为例,进一步对照说明。 1)国电聊城发电厂2×600MW二期工程双进双出磨煤机相关参数: 磨煤机本体 型号: BBD4360型数量: 6台 筒体直径: 4250mm筒体转速: 16r/min 筒体长度: 6140mm铭牌出力: 75t/h 磨煤机出口温度: 145℃煤粉细度R200: 15%

贴片机选型的几大要点

贴片机选型的几大要点 ——李剑锋随着表面贴装技术的迅速发展,贴片机在我国电子组装行业中的应用越来越广泛。面对型号众多的贴片机,如何选型仍是一个复杂而艰难的工作,对贴片机选型时应注意以下几个关键技术问题。 贴片机类型 目前贴片机大致可分为四种类型:动臂式、复合式、转盘式和大型平行系统。不同种类的贴片机各有优劣,通常取决于应用或工艺对系统的要求,在其速度和精度之间也存在一定的平衡。 动臂式机器具有较好的灵活性和精度,适用于大部分元件,高精度机器一般都是这种类型,但其速度无法与复合式、转盘式和大型平行系统相比。不过元件排列越来越集中在有源部件上,比如有引线的QFP 和BGA阵列元件,安装精度对高产量有至关重要的作用。复合式、转盘式和大型平行系统一般不适用于这种类型的元件安装。动臂式机器分为单臂式和多臂式,单臂式是最早先发展起来的现在仍然使用的多功能贴片机。在单臂式基础上发展起来的多臂式贴片机可将工作效率成倍提高,如YAMAHA公司的YV112就含有两个带有12个吸嘴的动臂安装头,可同时对两块电路板进行安装。 复合式机器是从动臂式机器发展而来的,它集合了转盘式和动臂式的特点,在动臂上安装有转盘,像Siemens的Siplace HS系列贴片机,有两个带有12个吸嘴的转盘。由于复合式机器可通过增加动臂数量来提高速度,具有较大灵活性,因此它的发展前景被看好,如Siemens推出的HS50机器就安装有4个这样的旋转头,贴装速度可达每小时5万片。 转盘式机器由于拾取元件和贴片动作同时进行,使得贴片速度大幅度提高,这种结构的高速贴片机在我国的应用最为普遍,不但速度较高,而且性能非常的稳定,如松下公司的MSH3机器贴装速度可达到0.075秒/片。但是这种机器由于机械结构所限,其贴装速度已达到一个极限值,不可能再有大幅度提高。 大型平行系统由一系列的小型独立组装机组成。各自有丝杠定位系统机械手,机械手带有摄像机和安装头。各安装头都从几个带式送料器拾取元件,并能为多块电路板的多块分区进行安装,这些板通过机器定时转换角度对准位置。如PHILIPS公司的FCM机器有16个安装头,实现了0.0375秒/片的贴装速度,但就每个安装头而言,贴装速度在0.6秒/片左右,仍有大幅度提高的可能。 复合式、转盘式和大型平行系统属于高速安装系统,一般用于小型片状元件安装。转盘式机器也被称作"射片机"(Chip shooter),因为它通常用于组装片式电阻电容。另外,此类机器具有高速"射出"的能力。高速机器由于结构较普通动臂式机器复杂许多,因而价格也高出许多,在选择设备时要考虑到这一点。 试验表明,动臂式机器的安装精度较好,安装速度为每小时5000-20000个元件(cph)。复合式和转盘式机器的组装速度较高,一般为每小时20000-50000个。大型平行系统的组装速度最快,可达每小时50000-100000个。 视觉系统 机器视觉系统是显著影响元件安装的第二个因素,机器需要知道电路板的准确位置并确定元件与板

浅谈HP磨煤机工作原理

浅谈HP磨煤机工作原理 作者:××电厂××指导老师:××、×× 摘要:磨煤机是制粉系统的关键设备,特别是现今普遍采用中速磨煤机直吹式制粉系统,它的可靠性直接影响整个机组的良好运行。本文主要根据作者在××电厂锅炉检修队磨班实习期间依据对HP743磨煤机的学习了解,产生了一些心得由此对HP磨煤机的构造和工作原理做简要的介绍。 关键词:中速磨煤机直吹式制粉系统、HP碗式中速磨煤机 ××发电厂#3、#4号锅炉最初安装的是日本日立的8.5E型磨煤机,由于使用时间长等原因,从2002年开始改造,换装了12台上海重型机器厂生产的HP743磨煤机。HP磨煤机的规格是用数字来表示的,个位数表示磨辊的个数,十位上的数和百位上的数联合组成的数表示磨碗的名义尺寸,如HP743中,3表示有三个磨辊,74表示磨碗的名义尺寸为74英寸(1900mm),按照磨碗大小分25种规格,为了优化设计和制造,在设计时将25种规格的磨煤机分成7大系列,系列内的大多数部件能通用。 HP磨煤机沿高度方向自下而上可分为驱动装置、碾磨部件、干燥分离空间及煤粉分配装置,主要由以下部件组成:润滑油站、电动机、联轴器、齿轮减速箱、侧机体及衬板装置、刮板装置、裙罩装置、缝隙气封及护罩装置、气封系统、分离器体装置、磨碗和叶轮装置、磨辊装置、弹簧加载装置、中心落煤管、内锥体及陶瓷衬板装置、倒锥体装置、分离器顶盖装置、文丘里叶片和衬板装置、排出阀与多出口装置、压差装置等。 HP磨煤机的功能是碾磨原煤,使其达到能在炉内有效地燃烧的细度。原煤和一次风被输入磨煤机,煤粉与风的混合物被输出磨煤机。工作原理为:由电机驱动,通过减速装置和垂直分布的主轴带动磨碗转动。原煤从磨煤机中央落煤管落到旋转的磨碗上,在离心力的作用下原煤沿径向往外运动形成一层煤床,通过磨辊碾压进行碾磨。磨碗上三个磨辊按120°分布在圆周上,它们可以沿磨碗滚动且可绕各自的耳轴自转,工作时独立的弹簧加载装置施加压力于磨辊使磨辊有垂直向磨碗的压力,转动的磨碗带动磨辊转动碾磨煤。正常安装位置时,不能让磨辊与磨碗衬板直接接触,通过紧固“T”型螺栓螺母调整磨辊与磨碗衬板间隙;弹簧加载装置工作面与磨辊头工作面之间也要求间隙,可通过调节加载定位螺栓

相关文档
最新文档