matlab5二次规划问题

matlab5二次规划问题
matlab5二次规划问题

二次规划的标准形式为:

min (1/2)X’HX+f’X

约束条件:Ax≤b Aeqx=beq,lb≤x≤ub,其中:f、b、beq、lb、ub、x是矢量,H、 A、Aeq为矩阵。

在MATLAB中可以使用quadprog函数来求最小值。

调用格式:

x=quadprog (H,f,A,b)

x=quadprog (H,f,A,b,Aeq,beq)

x=quadprog (H,f,A,b,Aeq,beq,lb,ub)

x=quadprog (H,f,A,b,Aeq,beq,lb,ub,x0)

x=quadprog (H,f,A,b,Aeq,beq,lb,ub,x0,options) x=quadprog

(H,f,A,b,Aeq,beq,lb,ub,x0,options,P1,P2,…) [x,fval]= quadprog (…)

[x,fval,exitflag]= quadprog (…)

[x,fval,exitflag,output]= quadprog (…)

[x,fval,exitflag,output,lambda]= quadprog (…) fval为目标函数的最优值;其中:H,f,A,b为标准形中的参数,x为目标函数的最小值;x0为初值;Aeq,beq 满足等式约束Aeq.x=beq;lb,ub满足lb lambda是Lagrange乘数,它体现有效约束的个数;output输出优化信息;exitflag为终止迭代的条件:若

exitflag>0,表示函数收敛于解x;若exitflag=0,表示超过函数估值或迭代的最大次数;exitflag<0表示函数不收敛于解x;output为优化信息:若参数output=iterations表示迭代次数,

output=funccount表示函数赋值次数,

output=algorithm表示所使用的算法。

例0-6 计算下面二次规划问题

minf(x)= (1/2)x1^2+x2^2- x1x2-2x1-6x2

约束条件: x1+x2≤2

-x1+x2≤2,

2x1+x2≤3;

x1≤0; x2≤0

解:把二次规划问题写成标准形式:(1/2)XTHX+fTX 这里:

H= 1 -1 f= -2 X= x1

-1 2 -6 x2

在命令窗口键入命令:

>>H=[1 –1;-1 2];

>>f=[-2;-6];

>>A=[1 1;-1 2;2 1];

>>b=[2;2;3];

>>lb=[zeros(2,1)];

>>[x,fval,exitflag,output,lambda]=quadprog(H,f,A,b,[],[],lb)

运行以上命令得到的显示结果如下:

x= %最优值点 §3 二次规划模型 数学模型: ub x lb beq x Aeq

b

x A x f Hx x T T x ≤≤=?≤?+2

1min

其中H 为二次型矩阵,A 、Aeq 分别为不等式约束与等式约束系数矩阵,f,b,beq,lb,ub,x 为向量。

求解二次规划问题函数为quadprog( )

调用格式: X= quadprog(H,f,A,b)

X= quadprog(H,f,A,b,Aeq,beq)

X= quadprog(H,f,A,b,Aeq,beq,lb,ub)

X= quadprog(H,f,A,b,Aeq,beq,lb,ub,x0)

X= quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options)

[x,fval]= quadprog(…)

[x,fval,exitflag]= quadprog(…)

[x,fval,exitflag,output]= quadprog(…) [x,fval,exitflag,output,lambda]= quadprog(…)

说明:输入参数中,x0为初始点;若无等式约束或无不等式约束,就将相应的矩阵和向量设置为空;options 为指定优化参数。输出参数中,x 是返回最优解;fval 是返回解所对应的目标函数值;exitflag 是描述搜索是否收敛;output 是返回包含优化信息的结构。Lambda 是返回解x 入包含拉格朗日乘子的参数。

例1:求解:二次规划问题

min f(x)= x 1-3x 2+3x 12+4x 22

-2x 1x 2

s.t 2x1+x2≤2

-x1+4x2≤3

程序:f=[1;-3]

H=[6 -2;-2 8]

A=[2 1;-1 4]

b=[2;3]

[X,fval,exitflag]=quadprog(H,f,A,b)

结果:X =

-0.0455

0.3636

fval =

-0.5682

exitflag =

1

例2:求解:二次规划问题

min +x12+2x22-2x1x2-4x1-12x2

s.t x1+x2≤2

-x1+2x2≤2

2x1+x2≤3

0≤x1, 0≤x2

程序:H=[2 -2;-2 4];

f=[-4;-12];

A=[1 1;-1 2;2 1];

b=[2;2;3];

lb=zeros(2,1);

[x,fval,exitflag]=quadprog(H,f,A,b,[],[],lb)结果:x =

0.6667

1.3333

fval =

-16.4444

exitflag =

1

二次规划问题

序列二次规划法 求解一般线性优化问题: 12min (x) h (x)0,i E {1,...,m }s.t.(x)0,i {1,...,m } i i f g I =∈=?? ≥∈=? (1.1) 基本思想:在每次迭代中通过求解一个二次规划子问题来确定一个下降方向,通过减少价值函数来获取当前迭代点的移动步长,重复这些步骤直到得到原问题的解。 1.1等式约束优化问题的Lagrange-Newton 法 考虑等式约束优化问题 min (x) s.t.h (x)0,E {1,...,m} j f j =∈= (1.2) 其中:,n f R R →:()n i h R R i E →∈都为二阶连续可微的实函数. 记1()((),...,())T m h x h x h x =. 则(1.3)的Lagrange 函数为: 1(,)()*()()*()m T i i i L x u f x u h x f x u h x ==-=-∑ (1.3) 其中12(,,...,)T m u u u u =为拉格朗日乘子向量。 约束函数()h x 的Jacobi 矩阵为:1()()((),...,())T T m A x h x h x h x =?=??. 对(1.3)求导数,可以得到下列方程组: (,)()A()*(,)0(,)()T x u L x u f x x u L x u L x u h x ??? ???-?===?????-???? (1.4) 现在考虑用牛顿法求解非线性方程(1.4). (,)L x u ?的Jacobi 矩阵为: (,)()(,)() 0T W x u A x N x u A x ?? -= ?-??

求解二次规划问题

实验2 求解二次规划问题 LINDO 可以求解二次规划(QP )问题。例如: ?? ? ??<=+>++-+=7.011.19.02.1..4.03min 22y y x y x t s y xy y x f 由LAGRANGE 乘子法,得 ()()()7.011.19.02.14.0322-+-++-+-+-+y C y x B y x A y xy y x , 分别对x 、y 求偏导,得到两个约束条件: 4 .09.020 2.16->++-->+--C B A x y B A y x 在LINDO 中输入下列命令: MIN X+Y+A+B+C ST 6X-Y-1.2A+B>0 2Y-X-0.9A+B+C>-0.4 1.2X+0.9Y>1.1 X+Y=1 Y<0.7 END QCP 4 注释:MIN X+Y+A+B+C 一句只代表变量的出场顺序; QCP 4 一句代表前4行不是原问题真正的约束,原问题真正的约束从第5行开始。 LINDO 运行后输出以下结果:STATUS OPTIMAL QP OPTIMUM FOUND AT STEP 7 OBJECTIVE FUNCTION V ALUE 1) 1.355556 V ARIABLE V ALUE REDUCED COST X 0.666667 0.000000 Y 0.333333 0.000000

A 10.888889 0.000000 B 9.400000 0.000000 C 0.000000 0.366667 ROW SLACK OR SURPLUS DUAL PRICES 2) 0.000000 -0.666667 3) 0.000000 -0.333333 4) 0.000000 -10.888889 5) 0.000000 9.400000 6) 0.366667 0.000000 NO. ITERATIONS= 7 这个结果说明:LINDO求解此二次规划问题(QP)共用7步迭代得到最优解fmin = 1.355556,X = 0.666667,Y = 0.333333。第5个松弛变量取值0.366667,其它松弛变量都取0值,即,这个最优解使得前4个约束条件都取等号;其对偶问题的最优解(影子价格)DUAL PRICES为Y1 = -0.666667,Y2 = -0.333333,Y3 = -10.888889,Y4 = 9.4,Y5 = 0。 农户生产的优化模型 本文内容取自生产实践,豫东一个普通农户,该农户所在地区的农业生产条件、气候状况属于中等。下列各变量的假设均建立在农村一般农业生产条件、气候状况之上。 假设(面积单位:亩): X1 = 用于完成上缴国家任务的小麦一年总种植面积 X2 = 用于生产、生活的小麦一年总种植面积 X3 =用于生产、生活的油菜一年总种植面积 X4 =用于生产、生活的红薯一年总种植面积 X5 =用于完成上缴国家任务的棉花一年总种植面积 X6 =用于生产、生活的棉花一年总种植面积 X7 =用于完成上缴国家任务的玉米一年总种植面积 X8 =用于生产、生活的玉米一年总种植面积 X9 =用于生产、生活的芝麻一年总种植面积 X10 =用于生产、生活的花生一年总种植面积 X11 =用于生产、生活的大豆一年总种植面积 X12 =用于生产、生活的西瓜一年总种植面积 X13 =用于生产、生活的番茄一年总种植面积 X14 =用于生产、生活的白菜一年总种植面积 X15 =用于生产、生活的辣椒一年总种植面积 X16 =用于生产、生活的茄子一年总种植面积

二次规划问题

9.2.4 二次规划问题 9.2.4.1 基本数学原理 如果某非线性规划的目标函数为自变量的二次函数,约束条件全是线性函数,就称这种规划为二次规划。其数学模型为: 其中,H, A,和Aeq为矩阵,f, b, beq, lb, ub,和x为向量。 9.2.4.2 相关函数介绍 quadprog函数 功能:求解二次规划问题。 语法: x = quadprog(H,f,A,b) x = quadprog(H,f,A,b,Aeq,beq,lb,ub) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) x = quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval] = quadprog(...) [x,fval,exitflag] = quadprog(...) [x,fval,exitflag,output] = quadprog(...) [x,fval,exitflag,output,lambda] = quadprog(...) 描述: x = quadprog(H,f,A,b) 返回向量x,最小化函数1/2*x'*H*x + f'*x , 其约束条件为A*x <= b。 x = quadprog(H,f,A,b,Aeq,beq)仍然求解上面的问题,但添加了等式约束条件 Aeq*x = beq。 x = quadprog(H,f,A,b,lb,ub)定义设计变量的下界lb和上界ub,使得lb <= x <= ub。 x = quadprog(H,f,A,b,lb,ub,x0)同上,并设置初值x0。 x = quadprog(H,f,A,b,lb,ub,x0,options)根据options参数指定的优化参数进行最小 化。 [x,fval] = quadprog(...)返回解x处的目标函数值fval = 0.5*x'*H*x + f'*x。 [x,fval,exitflag] = quadprog(...)返回exitflag参数,描述计算的退出条件。 [x,fval,exitflag,output] = quadprog(...)返回包含优化信息的结构输出output。 [x,fval,exitflag,output,lambda] = quadprog(...)返回解x处包含拉格朗日乘子的 lambda参数。 变量: 各变量的意义同前。

线性规划的对偶原理

线性规划的对偶原理 3.1 线性规划的对偶问题 一、 对偶问题的提出 换位思考 家具厂的线性规划问题,该问题站在家具厂管理者的角度追求销售收入最大 213050max x x z += ?? ? ??≥≤+≤+0 ,50212034212121x x x x x x 某企业家有一批待加工的订单,有意利用该家具厂的木工和油漆工资源来加工他的产品。他 需要与家具厂谈判付给该厂每个工时的价格。如果该企业家已对家具厂的经营情况有详细了 解,他可以构造一个数学模型来研究如何才能既让家具厂觉得有利可图,肯把资源出租给他, 又使自己付的租金最少。 目标:租金最少;1y -付给木工工时的租金;2y -付给油漆工工时的租金 2150120min y y w += 所付租金应不低于家具厂利用这些资源所能得到的利益 1)支付相当于生产一个桌子的木工、油漆工的租金应不低于生产一个桌子的收 入 502421≥+y y 2)支付相当于生产一个椅子的木工、油漆工的租金应不低于生产一个椅子的收 入 30321≥+y y 3)付给每种工时的租金应不小于零 0,021≥≥y y 二、 原问题与对偶问题的数学模型 1. 对称形式的对偶

原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。 原问题: ?? ? ??≥≥=0min X b AX CX z 对偶问题: ?? ? ??≥≤=0max Y C YA Yb w 2. 非对称形式的对偶 若原问题的约束条件全部是等式约束(即线性规划的标准型),即 ?? ? ??≥==0min X b AX CX z 则其对偶问题的数学模型为 ?? ? ??≤=是自由变量Y C YA Yb w max 可把原问题写成其等价的对称形式: min z =CX AX ≥b AX ≤b X ≥0 即 min z =CX ? ? ????-A A X ≥??????-b b X ≥0 设Y 1=(y 1,y 2,…,y m ), Y 2=(y m+1,y m+2,…,y 2m )。根据对称形式的对偶模型,写出上述问题的对偶问题:

求解二次规划问题的拉格朗日及有效集方法

求解二次规划问题的拉格朗日及有效集方法 ——最优化方法课程实验报告 学院:数学与统计学院 班级:硕2041班 姓名:王彭 学号:3112054028 指导教师:阮小娥 同组人:钱东东

求解二次规划问题的拉格朗日及有效集方法 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形,它的目标函数是二次实函数,约束函数都是线性函数。由于二次规划比较简单,便于求解(仅次于线性规划),并且一些非线性优化问题可以转化为求解一些列的二次规划问题,因此二次规划的求解方法较早引起人们的重视,称为求解非线性优化的一个重要途径。二次规划的算法较多,本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字:二次规划,拉格朗日方法,有效集方法。 - 1 -

《最优化方法》课程实验报告 - 2 - 【目录】 摘要........................................................................................................................... - 1 -1 等式约束凸二次规划的解法............................................................................... - 3 - 1.1 问题描述.................................................................................................... - 3 - 1.2 拉格朗日方法求解等式约束二次规划问题............................................ - 3 - 1.2.1 拉格朗日方法的推导...................................................................... - 3 - 1.2.2 拉格朗日方法的应用...................................................................... - 4 - 2 一般凸二次规划问题的解法............................................................................... - 5 - 2.1 问题描述.................................................................................................... - 5 - 2.2 有效集法求解一般凸二次规划问题........................................................ - 6 - 2.2.1 有效集方法的理论推导.................................................................. - 6 - 2.2.2 有效集方法的算法步骤.................................................................. - 9 - 2.2.3 有效集方法的应用........................................................................ - 10 - 3 总结与体会......................................................................................................... - 11 - 4 附录..................................................................................................................... - 11 - 4.1 拉格朗日方法的matlab程序................................................................. - 11 - 4.2 有效集方法的Matlab程序 .................................................................... - 11 -

二次规划解法

2、对于二次规划模型求解: 问题1: 先求出ij c ,结果如下表: 330.7 320.3 300.2 258.6 198 180.5 163.1 181.2 224.2 252 256 266 281.2 288 302 370.7 360.3 345.2 326.6 266 250.5 241 226.2 269.2 297 301 311 326.2 333 347 385.7 375.3 355.2 336.6 276 260.5 251 241.2 203.2 237 241 251 266.2 273 287 420.7 410.3 395.2 376.6 316 300.5 291 276.2 244.2 222 211 221 236.2 243 257 410.7 400.3 380.2 361.6 301 285.5 276 266.2 234.2 212 188 206 226.2 228 242 415.7 405.3 385.2 366.6 306 290.5 281 271.2 234.2 212 201 195 176.2 161 178 435.7 425.3 405.2 386.6 326 310.5 301 291.2 259.2 237 226 216 198.2 185 162 由于二次规划模型中约束条件151 {0}[500,],1,2,7,ij i j X s i =∈=∑的存 在,必须加以处理。引进0-1变量15,...2,1,=i n i ,则 151{0}[500,],1,2,7,ij i j X s i =∈=∑可以等价转换为下面的三个约束条件: i j ij s X ≤∑=151 i j ij Mn X ≤∑=151 i j ij n X *500151≥∑= 其中M 为一个很大数。 这样就可以得到下面的lingo 程序: sets : s/1..7/:sx; a/1..15/:z,y,n,t; links(s,a):c,x; endsets

线性规划的对偶问题

第二章 线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 ⑴ max z = 10x i + X 2 + 2x 3 st. x i + X 2 + 2 X 3W 10 4x i + X 2 + X 3 W 20 X > 0 (j = 1,2,3) (3) min z = 3x i + 2 X 2 — 3x 3 + 4x 4 st. x i -2x 2+ 3x 3+ 4x 4W 3 X 2 + 3X 3 + 4X 4》一5 2x i — 3x 2 — 7x 3 — 4x 4= 2 = x i >0, X 4W 0, X 2,, X 3 无约束 (2) max z = 2x i + x 2+ 3x 3+ x 4 st. x i + x 2+ x 3 + x 4 W 5 2x i - x 2+ 3x 3 =- 4 X i — X 3 + X 4> i X i , X 3 > 0, X 2, X 4 无约束 (4) min z =— 5 x i — 6x 2— 7x 3 st. — X i + 5X 2— 3X 3 > i5 — 5X i — 6X 2+ i0X 3 W 20 X i — X 2 — X 3=— 5 X i W 0, X 2>0 , X 3 无约束 2.2已知线性规划问题 max z = CX , AX=b , X >0。分别说明发生下列情况时,其对偶问题的解的 变化: (1 )问题的第k 个约束条件乘上常数 入(炉0); (2) 将第k 个约束条件乘上常数 入(苗0)后加到第r 个约束条件上; (3) 目标函数改变为 max z = 2CX (入工0); 4)模型中全部 X i 用 3 X'i 代换。 2.3 已知线性规划问题 min z = 8X i + 6X 2+ 3X 3+ 6X 4 st. x i + 2X 2 + X 4》3 3x i + X 2 + X 3+ X 4 A 6 X 3 + X 4= 2 X i + X 3 A 2 X j A 0(j =i,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为 X*=(i ,i ,2,0) ,试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题 min z = 2X i + X 2+ 5X 3+ 6X 4 对偶变量 st. 2X i + X 3+ X 4W 8 y i 2X i + 2X 2+ X 3+ 2X 4W i2 y 2 X j A 0(j =i,2,3,4) 其对偶问题的最优解 y i *=4; y 2*=i ,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题 maX z = 2X i + 4X 2+ 3X 3 st. 3X i +4 X 2+ 2X 3W 60 2X i + X 2+ 2X 3W 40 X i + 3X 2+ 2X 3W 80 X j A 0 (j = i,2,3) ( i )写出其对偶问题 ( 2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; ( 3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶 问题的解; ( 4)比较( 2)和( 3)计算结果。 2.6已知线性规划问题 max z = 10x i + 5x 2

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶问题的转化及其应用 摘要 线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解. 关键词:线性规划;原问题;对偶问题;转化

Linear Programming is the Original Problem and the Transformation of the Dual Problem and Applications Abstract: Linear programming in operational research is research earlier, rapid development and wide application, the method is an important branch of mature, it is one of the scientific management of auxiliary people mathematical method. Can from different angles to linear programming dual problem for policy makers to provide more scientific theory basis. This article mainly probes into the linear programming problem and the relationship between the dual problem, linear programming problem and the transformation of the dual problem, the application of linear programming dual problem. This article is the complex of the original problem into its dual problem to be solved, simplifies the linear programming problem, enables us to rapidly find the optimal solution of linear programming problem. Keywords: linear programming; the original problem; the dual problem; conversion

改进求解凸二次规划中的Lemke算法.

改进求解凸二次规划中的Lemke 算法 张璐 辽宁工程技术大学理学院,辽宁阜新(123000 E-mail:zhanglu85517@https://www.360docs.net/doc/993175444.html, 摘要:通过对经典的Lemke 互补转轴算法求解凸二次规划问题的分析,找到了Lemke 算法的局限性。本文在Lemke 算法求解线性互补问题的基础上修正了经典的Lemke 算法的迭代过程,提出了一种改进的Lemke 算法,通过算例证明了算法能有效克服解的局限性,减少了凸二次规划问题的迭代过程,提高了算法的效率。 关键词:非线性规划;凸二次规划;线性互补问题;Lemke 算法 1.引言 二次规划问题是最简单而又最基本的非线性规划问题,其目标函数是二次函数,约束是线性等式或不等式。对于二次规划问题,可行域是凸集,所以当目标函数是凸函数时,任何K-T 点都是二次规划问题的极小点。研究二次规划问题的算法不仅仅是为了解决二次规划问题本身,同时也是为了更好的求解其他非线性规划问题。因为大多数最优化方法是从二次函数模型导出的,这种类型的方法在实际中常常是有效的,其主要是因为一般函数的极小点附近常可用二次函数很好地进行近似。由于二次规划是特殊的非线性规划,因此求解非线性规划问题的方法均可用于二次规划问题的求解。同时,由于二次规划本身的特殊性,对它的求解可以采用一些更有效的方法[1]。因此,不论从数学角度还是应用角度来看,二次规划问题的研究都具有重要意义。到目前为止,已经出现了很多求解二次规划问题的算法,并且现在仍有很多学者在从事这方面的研究工作。所以,需要我们对现存的有效的求解二次规划问题的算法进行改进,得到新的求解算法来克服某些算法的缺点,并且给出具体的实例显示该算法的有效性。本文主要研究凸二次规划的求解算法,以及线性互补问题的性质等相关问题。对Lemke 算法进行进一步研究,对它可能出现退化的原因和迭代过程以及局限性进一步分析。本文通过分析经典的Lemke 互补转轴算法求解含有等式

求解二次规划问题的拉格朗日及有效集方法样本

求解二次规划问题的拉格朗 日及有效集方法——最优化方法课程实验报告 学院: 数学与统计学院 班级: 硕2041班 姓名: 王彭 学号: 指导教师: 阮小娥 同组人: 钱东东

资料内容仅供您学习参考,如有不当或者侵权,请联系改正或者删除。 求解二次规划问题的拉格朗日 及有效集方法 摘要 二次规划师非线性优化中的一种特殊情形, 它的目标函数是二次实函数, 约束函数都是线性函数。由于二次规划比较简单, 便于求解( 仅次于线性规划) , 而且一些非线性优化问题能够转化为求解一些列的二次规划问题, 因此二次规划的求解方法较早引起人们的重视, 称为求解非线性优化的一个重要途径。二次规划的算法较多, 本文仅介绍求解等式约束凸二尺规划的拉格朗日方法以及求解一般约束凸二次规划的有效集方法。 关键字: 二次规划, 拉格朗日方法, 有效集方法。

【目录】 摘要................................................ 错误!未定义书签。 1 等式约束凸二次规划的解法.......................... 错误!未定义书签。 1.1 问题描述.................................... 错误!未定义书签。 1.2 拉格朗日方法求解等式约束二次规划问题........ 错误!未定义书签。 1.2.1 拉格朗日方法的推导.................... 错误!未定义书签。 1.2.2 拉格朗日方法的应用.................... 错误!未定义书签。 2 一般凸二次规划问题的解法.......................... 错误!未定义书签。 2.1 问题描述.................................... 错误!未定义书签。 2.2 有效集法求解一般凸二次规划问题.............. 错误!未定义书签。 2.2.1 有效集方法的理论推导.................. 错误!未定义书签。 2.2.2 有效集方法的算法步骤.................. 错误!未定义书签。 2.2.3 有效集方法的应用...................... 错误!未定义书签。 3 总结与体会........................................ 错误!未定义书签。 4 附录.............................................. 错误!未定义书签。 4.1 拉格朗日方法的matlab程序................... 错误!未定义书签。 4.2 有效集方法的Matlab程序..................... 错误!未定义书签。

二次规划实验举例

最优化算法实验指导书 2.二次规划求解 例1 求解下面二次规划问题 21212221x 6x 2x x x x 2 1)x (f min ---+= sub.to 2x x 21≤+ 2x 2x 21≤+- 3x x 221≤+ 21x 0,x 0≤≤ 解:x f x H x 2 1)x (f '+'= 则??????--=2111H ,?? ????--=62f ,??????=21x x x 在MA TLAB 中实现如下: >> H = [1 -1; -1 2] ; >> f = [-2,-6]; >> A = [1 1; -1 2; 2 1]; >> b = [2; 2; 3]; >> lb = zeros(2,1); >> [x,fval,exitflag,output,lambda] = quadprog(H,f,A,b,[ ],[ ],lb) Warning: Large-scale method does not currently solve this problem formulation, switching to medium-scale method. > In C:\MATLAB6p5\toolbox\optim\quadprog.m at line 213 Optimization terminated successfully. x = 0.6667 1.3333 fval = -8.2222 exitflag = 1

output = iterations: 3 algorithm: 'medium-scale: active-set' firstorderopt: [] cgiterations: [] lambda = lower: [2x1 double] upper: [2x1 double] eqlin: [0x1 double] ineqlin: [3x1 double] 例 1123 2212123min 246y x x x x x =+--- ..s t 1232131232 3 4 ,,0x x x x x x x x x +≤+≤+≤≥ (1)标准形式: 由 2212123246y x x x x x =+--- 22121231(22)2462 x x x x x =+--- 知 200020000H ?? ?= ? ??? 为半正定矩阵,约束不必改动。 (2)在编辑窗口建立一个存放各种信息的M 文件, 在MA TLAB 中实现如下: >> H = [2 0 0;0 2 0;0 0 0]; >> f = [-2 -4 -6]; >> A = [1 1 0; 0 1 1; 1 0 1]; >> b = [2; 3; 4]; >> C =[]; >> d=[]; >> xm=[0; 0; 0];

线性规划的对偶问题

线性规划的对偶问题文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+ x2+2x3 (2) max z =2x1+ x2+3x3+ x4 st. x1+ x2+2 x3≤10 st. x1+ x2+ x3 + x4≤5 4x1+ x2+ x3≤20 2x1- x2+3x3=-4 x j≥0 (j=1,2,3) x1- x3+ x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4 (4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2= x1- x2- x3=-5 x1≥0,x4≤0,x2,,x3无约束 x1≤0, x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上;(3)目标函数改变为max z=λCX(λ≠0); (4)模型中全部x1用3 'x代换。 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+ x4≥3 3x1+ x2+ x3+ x4≥6

x3 + x4=2 x1 + x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+ x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+ x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; (3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解; (4)比较(2)和(3)计算结果。

线性规划原问题与对偶问题的转化及其应用

线性规划原问题与对偶 问题的转化及其应用 Document number:WTWYT-WYWY-BTGTT-YTTYU-2018GT

线性规划原问题与对偶问题的转化及其应用 摘要 线性规划对偶问题是运筹学中应用较广泛的一个重要分支,它是辅助人们进行科学管理的一种数学方法.线性规划对偶问题能从不同角度为管理者提供更多的科学理论依据,使管理者的决定更加合理准确.本文主要探讨了线性规划原问题与对偶问题之间的关系、线性规划原问题与对偶问题的转化以及对偶理论的应用.本文的研究主要是将复杂的线性规划原问题转化成对偶问题进行解决,简化了线性规划问题,使人们能够快速的找出线性规划问题的最优解. 关键词:线性规划;原问题;对偶问题;转化LinearProgrammingistheOriginalProblemandtheTransformationoftheDu alProblemandApplications Abstract:Linearprogramminginoperationalresearchisresearchearlier,rapiddevelopmentandw ideapplication,themethodisanimportantbranchofmature,目录

1引言 线性规划问题是运筹学里的一个重要的分支,它的应用比较广泛,因而是辅助人们进行现代科学管理的一种数学方法.随着线性规划理论的逐步深入,人们发现线性规划问题具有对偶性,即每一个线性问题都伴有另外一个线性问题的产生,两者相互配对,密切联系,反之亦然.我们把线性规划的这个特性称为对偶性.于是,我们将其中的一个问题称为原问题,另一个问题则称为它的对偶问题.对偶性不仅仅是数学上的理论问题,而且也是线性规划中实际问题的内在经济联系的必然反映.我们通过对对偶问题的深入研究,发现对偶问题能从不同角度对生产计划进行分析,从而使管理者能够间接地获得更多比较有用的信息. 2文献综述 国内外研究现状 在所查阅到的国内外参考文献[1-15]中,有不少文章是探讨了原问题转化为对偶问题的方法以及对偶性质的证明,并在对偶理论的应用方面有所研究.如郝英奇,胡运权在[1]、[10]中主要介绍了线性规划中原问题与对偶问题中的一些基本概念,探究了实际问题中的数学模型以及解.孙君曼,冯巧玲,孙慧君,李淑君等在[2]中探讨了对偶理论中互补松弛定理在各种情况下的使用方法,使学生更好地掌握互补松弛定理的含义和应用方法.胡运权,郭耀煌,殷志祥等在[3]、[5]中系统的介绍了线性规划中原始问题与对偶问题的两种形式.郭鹏,徐玖平等在[6]、[8]中用不同例子来说明了原问题转化为对偶问题的必要性.崔永新等在[9]、[15]中探讨了对偶问题的相关定理以及对偶问题的可行解和最优解之间的若干性质.李师正,王德胜在[11]中探讨了如何用计算机计算对偶问题的最优解.岳宏志,蔺小林,孙文喻等在[12]、[14]中

线性规划的对偶问题

第二章线性规划的对偶问题 习题 2.1 写出下列线性规划问题的对偶问题 (1) max z =10x1+x2+2x3(2) max z =2x1+x2+3x3+x4 st. x1+x2+2 x3≤10 st. x1+x2+x3 +x4≤5 4x1+x2+x3≤20 2x1-x2+3x3=-4 x j≥0 (j=1,2,3)x1-x3+x4≥1 x1,x3≥0,x2,x4无约束 (3) min z =3x1+2 x2-3x3+4x4(4) min z =-5 x1-6x2-7x3 st. x1-2x2+3x3+4x4≤3 st. -x1+5x2-3x3≥15 x2+3x3+4x4≥-5 -5x1-6x2+10x3≤20 2x1-3x2-7x3 -4x4=2=x1-x2-x3=-5 x1≥0,x4≤0,x2,,x3无约束x1≤0,x2≥0,x3无约束 2.2 已知线性规划问题max z=CX,AX=b,X≥0。分别说明发生下列情况时,其对偶问题的解的变化: (1)问题的第k个约束条件乘上常数λ(λ≠0); (2)将第k个约束条件乘上常数λ(λ≠0)后加到第r个约束条件上; (3)目标函数改变为max z=λCX(λ≠0); 'x代换。 (4)模型中全部x1用3 1 2.3 已知线性规划问题min z=8x1+6x2+3x3+6x4 st. x1+2x2+x4≥3 3x1+x2+x3+x4≥6 x3 +x4=2 x1 +x3 ≥2 x j≥0(j=1,2,3,4) (1) 写出其对偶问题; (2) 已知原问题最优解为x*=(1,1,2,0),试根据对偶理论,直接求出对偶问题的最优解。 2.4 已知线性规划问题min z=2x1+x2+5x3+6x4 对偶变量 st. 2x1 +x3+x4≤8 y1 2x1+2x2+x3+2x4≤12 y2 x j≥0(j=1,2,3,4) 其对偶问题的最优解y1*=4;y2*=1,试根据对偶问题的性质,求出原问题的最优解。 2.5 考虑线性规划问题max z=2x1+4x2+3x3 st. 3x1+4 x2+2x3≤60 2x1+x2+2x3≤40 x1+3x2+2x3≤80 x j≥0 (j=1,2,3) (1)写出其对偶问题 (2)用单纯形法求解原问题,列出每步迭代计算得到的原问题的解与互补的对偶问题的解; (3)用对偶单纯形法求解其对偶问题,并列出每步迭代计算得到的对偶问题解及与其互补的对偶问题的解; (4)比较(2)和(3)计算结果。

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题 1.对偶问题和对偶变量的经济意义是什么? 2.简述对偶单纯形法的计算步骤。它与单纯形法的异同之处是什么? 3.什么是资源的影子价格?它和相应的市场价格之间有什么区别? 4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系? 5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解? 6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么? 7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+k n σ(标准形为 求最小值),其经济意义是什么? 8.将i j j i b c a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确 1.任何线性规划问题都存在且有唯一的对偶问题。 2.对偶问题的对偶问题一定是原问题。 3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。 4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。 5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。 6.已知在线性规划的对偶问题的最优解中,对偶变量0>* i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。 7.已知在线性规划的对偶问题的最优解中,对偶变量0=* i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。 8.对于i j j i b c a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。 9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。 10.应用对偶单纯形法计算时,若单纯形表中某一基变量0

线性规划的对偶问题及其经济含义

线性规划的对偶问题及其经济含义 信息工程学院 数学121 12421001 崔旭

在线性规划早期发展中最重要的发现就是对偶问题,即每一个线性规划问题(称为原始问题)都有一个与它对应的对偶线性规划问题(称为对偶问题)。对偶理论主要研究经济学中的相互确定关系,涉及到经济学的诸多方面。产出与成本的对偶、效用与支出的对偶,是经济学中典型的对偶关系。当然,经济系统中还有许多其他这样的对偶关系。 对偶理论有许多重要应用:在原始的和对偶的两个线性规划中求解任何一个规划时,会自动地给出另一个规划的最优解;当对偶问题比原始问题有较少约束时,求解对偶规划比求解原始规划要方便得多;对偶规划中的变量就是影子价格。 对偶定理:有一对对偶的线性规划问题,若其一有一个有限的最优解,则另一个也有最优解,且相应的目标函数值相等。若任一个问题具有无界解,则另一个问题无可行解。对称形式的对偶:原问题和对偶问题只含有不等式约束时,一对对偶问题的模型是对称的,称为对称形式的对偶。例如: 原问题:minz=CX AX>=b X>=0 对偶问题:max=Yb YA<=C X>=0 对称性定理:对偶问题的对偶是原问题。 弱对偶性定理:若()0 Y分别是原问题和对偶问题的可行解,则有 X和()0 C()()0 0b ≥ X Y 最优性定理:若()0 Y分别是原问题和对偶问题的可行解,且有 X和()0 ()0 CX=()0 bY,则()0 Y分别是原问题和对偶问题的最优解。 X和()0

最优对偶变量(影子价格)的经济解释:由对偶定理可知,当达到最优解时,原问题和对偶问题的目标函数值相等。如果在得到最优解时,某种资源并未完全利用,其剩余量就是该约束中剩余变量的取值,那么该约束相对应的影子价格一定为零。因为在得到最优解时,这种资源并不紧缺,故此时再增加这种资源不会带来任何效益。反之,如果某种资源的影子价格大于零,就说明再增加这种资源的可获量,还回带来一定的经济效益,即在原问题的最优解中,这种资源必定已被全部利用,相应的约束条件必然保持等式。 用线性规则方法计算出来的反映资源最优使用效果的价格。用微积分描述资源的影子价格,即当资源增加一个数量而得到目标函数新的最大值时,目标函数最大值的增量与资源的增量的比值,就是目标函数对约束条件(即资源)的一阶偏导数。用线性规划方法求解资源最优利用时,即在解决如何使有限资源的总产出最大的过程中,得出相应的极小值,其解就是对偶解,极小值作为对资源的经济评价,表现为影子价格。影子价格是在其它条件不变的情况下,单位资源变化所引起的目标函数的最优值的变化。这个定义是基于线性规划中的合理利用有限资源以求得最好的经济效果的规划问题。影子价格正是这种假设条件中单位资源对目标极值的贡献,是资源的单位价格,反映资源在企业内部运用的贡献情况,称之为资源的影子价格。 如果目标函数是利润,这里的就是影子利润(意义不大);如果目标函数是销售金额,这里的才是影子价格。人们通常讨论的是后一种,目标函数是销售金额,是影子价格。从对公式的解读中,人们看