sio2正四面体结构单元动画.ppt

sio2正四面体结构单元动画.ppt

使学生了解甲烷的结构式和甲烷的正四面体结构.

第 一 节 甲烷 1、 使学生了解甲烷的结构式和甲烷的正四面体结构。 2、 使学生掌握甲烷的化学性质,实验室制法和收集方法。 3、 使学生了解取代反应。 4、 培养学生观察、分析实验现象,形成规律性认识,并应用概念认识新事物的思维能力。 甲烷的实验室制法,甲烷的化学性质,取代反应。 甲烷的分子结构、甲烷的取代反应。 实验5——1、实验5——2用品 二课时 自学——辅导法 [引 言]1、什么是有机物?定义:含碳元素的化合物(碳氢化合物及其衍生 物)称为有机化合物。简称有机物(注意:CO 、CO 2、H 2CO 3及碳 盐例外,它们称为无机物)。 2、有机物与人类的关系。 3、人类早期、和现在取得有机物的手段。 [阅 读]P115页上 [提 问]1、有机物和无机物的种类比较(多少) 2、为什么有机物的种类繁多? 3、组成有机物的元素。 4、那类有机物叫烃?最简单的烃是什么? [简 述]有机物的特点: ①有机物种类繁多,结构复杂。 ②大多数有机物难溶于水而易溶于汽油、酒精、苯等有机溶剂。 ③绝大多数有机物受热易分解,而且容易燃烧。 ④绝大多数有机物是非电解质,不易导电,熔点低。 ⑤有机物所起的化学反应比较复杂,一般比较慢,并且还常伴随有副反应发 生。 [板 书] 第一节 甲 烷 一、甲烷的分子结构 [阅 读]P115页——116页上 要求掌握:⑴甲烷的分子式 ⑵甲烷的电子式 ⑶甲烷的结构式 ⑷甲烷的分子结构示意图

[展示甲烷的球辊模型和比例模型]加深对甲烷的正四面体结构的认识。 CH4分子中1个C与4个H形成一个四面体,C在正四面体中心,4个H在正四面体的4个顶点。 ①键角:109°28 ˊ正四面体 ②键长:C-H键键长:1.09×10-10m ③键能:413 KJ·mol-1 但由于有机物的立体结构式书写起来比较费事,为方便起见,一般采用平面的结构式。 [板书]甲烷的物理性质 ⑴无色、无味气体 ⑵在标准状况下,ρ=0.717g·L-1 ⑶极难溶于水 [板书]二、甲烷的实验室制法 1、原料:无水CH 3 COONa和干燥的碱石灰(NaOH和CaO)。 2、反应原理: CH 3-C0ONa + NaOH △ → Na 2 CO 3 + CH 4 ↑ CaO的作用 ①干燥剂(吸收反应中的水分产生) ②疏松剂(使生产的CH 4 易于外逸) ③防止试管破裂(防止NaOH在高温下与玻璃反应) [提问]讨论制取甲烷的装置与制取什么气体相同?为什么?[学生回答]与制氧气、氨气的装置相同(S+S g) [板书]三、甲烷的化学性质 1、甲烷的氧化反应 CxHy + (x+y/4) O 2点燃 → xCO 2 + y/2H 2 O *若在甲烷燃烧导管上方罩一个烧杯,烧杯内沾有石灰水能观察到什么现象? 火焰呈淡蓝色,烧杯内部有水蒸气凝结,石灰水变浑浊,同时放出大量的热。 证明:甲烷燃烧时有二氧化碳和水生成 用途:甲烷燃烧时要放出大量的热,故甲烷可用作燃料。 注意:如果点燃甲烷和氧气(或空气)的混和物,它立即发生爆炸,爆炸极限为:空气中含甲烷:5—15% 氧气中含甲烷:5.4—59.2%。所以点燃甲烷前必须检验纯度。 在煤矿矿井里要采取通风,严禁烟火等安全措施。 [实验5——4]演示 [讲述]高锰酸钾的酸性溶液是强的氧化剂。甲烷与之不反应说明甲烷很稳定,甲烷与强酸、强碱也不反应。 [板书]2、甲烷的取代反应 [实验5——2]演示 [学生讨论]由你观察到的现象,可以分析得到那些实验信息? [回答] 1、混合气体在光照下发生了化学反应。 2、生成了新的油状物质。

正四面体

正四面体 常用性质: 1、正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。 它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。 2、正四面体属于正三棱锥,但是正三棱锥只需要底面为正三角形,其他三个面是全等的等腰三角形就可以,不需要四个面全等且都是等边三角形。因此,正四面体是特殊的正三棱锥。 3、基本性质:正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体的对边相互垂直。正四面体的对棱相等。 正四面体内任意一点到四个面的距离之和为定值 3 。 4、相关数据当正四面体的棱长为a时,一些数据如下: (中心把高分为1:3两部分} 2体积: 3 12 对棱中点的连线段的长: 2,两邻面夹角满足 1 cos 3 α=。 若将正四面体放进一个正方体内,则该正方体棱长为 2,其实,正四面体的棱切球 即为次正方体的内切球。 5、建系方法1.设有一正四面体D-ABC棱长为a 以AB边为y轴A为顶点ABC所属平面为xOy面建系四个顶点的坐标依次为 其他性质: 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。 化学中CH4,CCl4,SiH4等物质也是正四面体结构。正四面体键角是109度28分,约为109.47°。

正四面体的结构与稳定性

正四面体的结构与稳定性 江苏省如皋市丁堰中学冒春建 226521 物质的组成、结构决定物质的性质。如果某物质具有稳定的空间构型,就有稳定的性质。那么怎么样的空间构型才是稳定的呢?按照价键理论,只要化学键的键角方向与其成键原子的价电子云在空间的伸展方向一致,则成键原子间的作用力最强烈,而成键电子与成键电子之间的排斥力最小(即通常所说的“键角张力”),非成键原子或原子团之间的空间距离最大,达到最大程度的舒展,使非成键原子或原子团间的空间位阻最小,具有这样的结构其内能最小,结构稳定。 正四面体结构是中学生所遇化学物质中最常见的空间构型之。例如,原子晶体中的金刚石、晶体硅、水晶等,它们的熔沸点高、硬度大,通常情况下很难跟一般的化学试剂反应,表现出较强的稳定性;分子晶体中的甲烷、四氯化碳等,它们在通常情况下与大多数化学试剂如强酸、强碱、强氧化剂、强还原剂等都不起反应,也表现出较强的稳定性。这是什么原因呢?因为在这些物质中,碳原子、硅原子都是以四个sp3杂化轨道与其相邻的四个原子形成典型的共价键基团“CC4”、“SiSi4”、“SiO4”或小分子“CH4”、“CCl4”,它们的键角方向与其中心原子的四个sp3杂化轨道的空间伸展方向一致,均为109°28′,不存在“键角张力”。并且它们的成键原子的电子云之间达到最大程度的重叠,键能大,内能低,结构稳定,所以它们的性质也稳定。 我们知道,浓硫酸中+6价的硫具有强氧化性,而稀硫酸中同样为+6价的硫却没有氧化性,这是为什么呢?在浓硫酸中,+6价的硫绝大多数是以H2SO4分子形式存在,而H2SO4分子的空间构型是不规则的四面体,在H2SO4分子中O—S—O键的键角与硫原子的四个sp3杂化轨道的空间伸展方向(夹角为109°28′)不一致,化学键之间存在较强的“键角张力”,内能较大。并且四个S—O键的键长不等,使位于中间的+6价硫原子的周围空间相对来说有一定的空隙,易受到具有还原性微粒的攻击,夺得电子,从而表现出氧化性。 在稀硫酸中,+6价的硫原子是以自由移动的SO42-离子形式存在,而SO42-离子的空间构型是正四面体,所有的S—O键都是沿着硫原子的四个sp3杂化轨道在空间的伸展方向成键,不存在化学键之间的“键角张力”,四个S—O键的键长、键能完全相同,四个氧原子均匀地、等距离地分布在硫原子周围,使位于正四面体中心的+6价硫原子难以被其它原子或原子团攻击,也就没有得电子的可能性,故稀硫酸中+6价的硫没有氧化性。 又如,氨气和硝酸中的氮元素分别处于最低价态-3价和最高价态+5价,按理说,前者具有较强的还原性,后者具有很强的氧化性,两者相遇应发生强烈的氧化还有反应,而事实上,它们之间发生的是非氧化还原反应(简单的化合反应),这又是什么原因呢?这是由于N H3分子中的氮原子在成键时的四个sp3杂化轨道有一个被自身的孤对电子占领,当它遇到H+后很快形成N→H配位键,变成N H4+离子。而N H4+离子的空间构型又是正四面体,四个N—H键的键长、键能均完全一样,键角均为109°28′,与N原子的四个sp3杂化轨道的夹角完全吻合,不存在“键角张力”;四个氢原子也均匀地分布在氮原子周围,使位于中心的-3价氮原子难以被其它原子或原子团进攻。故氨气在遇到硝酸、浓硫酸等酸性强氧化剂时,表现不出还原性。但是,当N H3在一定条件下,遇到CuO、Cl2等氧化剂时又表现出一定的氧化性。这是因为N H3分子中,N原子的四个sp3杂化轨道中有一个被孤对电子占用,根据价电子对互斥原理,N—H键间的夹角受孤对电子的排斥挤压,键角不再是109°28′,而是107°,故N H3分子中氮原子的周围空间不是被氢原子均匀包围,氮原子的价电子云有了一定程度的“裸露”,较易受到其它氧化性微粒的进攻,从而表现出一定的还原性。

判断分子的构型

二、判断分子构型——价层电子对互斥理论(VSEPR) 现代化学的重要基础之一是分子(包括带电荷的离子)的立体结构。实验测出,SO3分子是呈平面结构的,O—S—O的夹角等于120o,而SO32-离子却是呈三角锥体,硫是锥顶,三个氧原子是三个锥角,象一架撑开的照相用的三角架。又例如SO2的三个原子不在一条直线上,而CO2却是直线分子等等。价层电子对互斥理论用以预测简单分子或离子的立体结构,我们不难学会用这种理论来预测和理解分子或离子的立体结构,并用来进一步确定分子或离子的结构。 价层电子对互斥理论认为,在一个共价分子中,中心原子周围电子对排布的几何构型主要决定于中心原子的价电子层中电子对的数目。所谓价层电子对包括成键的σ电子对和孤电子对。价层电子对各自占据的位置倾向于彼此分离得尽可能地远些,这样电子对彼此之间的排斥力最小,整个分子最为稳定。这样也就决定了分子的空间结构。也正因此,我们才可以用价层电子对很方便地判断分子的空间结构。例如:甲烷分子(CH4),中心原子为碳原子,碳有4个价电子,4个氢原子各有一个电子,这样在中心原子周围有8个电子,4个电子对,所以这4个电子对互相排斥,为了使排斥力最小,分子最稳定,它们只能按正四面体的方式排布。这样就决定了CH4的正四面体结构。 利用VSEPR推断分子或离子的空间构型的具体步骤如下: ①确定中心原子A价层电子对数目。中心原子A的价电子数与配位体X提供共用的电子数之和的一半,就是中心原子A价层电子对的数目。例如BF3分子,B原子有3个价电子,三个F原子各提供一个电子,共6个电子,所以B 原子价层电子对数为3。计算时注意:(ⅰ)氧族元素(ⅥA族)原子作为配位原子时,可认为不提供电子(如氧原子有6个价电子,作为配位原子时,可认为它从中心原子接受一对电子达到8电子结构),但作为中心原子时,认为它提供所有的6个价电子。(ⅱ)如果讨论的是离子,则应加上或减去与离子电荷相应的电子数。如PO43-离子中P原子的价层电子数应加上3,而NH4+离子中N原子的价层电子数则应减去1。(ⅲ)如果价层电子数出现奇数电子,可把这个单电子当作电子对看待。如NO2分子中N原子有5个价电子,O原子不提供电子。因此中心原子N价层电子总数为5,当作3对电子看待。 ②确定价层电子对的空间构型。由于价层电子对之间的相互排斥作用,它们趋向于尽可能的相互远离。于是价层电子对的空间构型与价层电子对数目的关系如下表所示:

正四面体

正四面体是一种柏拉图多面体,正四面体与自身对偶。 正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。 正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。 正四面体有四条三重旋转对称轴,六个对称面。 正四面体可与正八面体填满空间,在一顶点周围有八个正四面体和六个正八面体。 化学中CH4,CCl4等分子也呈正四面体状。 相关数据 当正四面体的棱长为a时,一些数据如下: 高:√6a/3。中心把高分为1:3两部分。 表面积:√3a^2 体积:√2a^3/12 对棱中点的连线段的长:√2a/2 外接球半径:√6a/4,正四面体体积占外接球体积的2*3^0.5/9*π,约12.2517532%。 内切球半径:√6a/12,内切球体积占正四面体体积的π*3^0.5/18,约30.2299894%。 棱切球半径:√2a/4. 两条高夹角:2ArcSin(√6/3)=ArcCos(-1/3)=≈1.91063 32362 49(弧度)或109°28′16″39428 41664 889。这一数值与三维空间中求最小面有关,也是蜂巢底菱形的钝角的角度. 两邻面夹角:2ArcSin(√3/3)=ArcCos(1/3)≈1.23095 94173 4077(弧度)或70°31′43″60571 58335 111,与两条高夹角在数值上互补。 侧棱与底面的夹角:ArcCos(√3/3) 正四面体的对棱相等。具有该性质的四面体符合以下条件: 1.四面体为对棱相等的四面体当且仅当四面体每对对棱的中点的连线垂直于这两条棱。 2.四面体为对棱相等的四面体当且仅当四面体每对对棱中点的三条连线相互垂直。 3.四面体为对棱相等的四面体当且仅当四条中线相等。

典型的晶体结构

典型的晶体结构 1.铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问:1.体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能的半径比是多少? 2.在体心立方晶胞中,如果某空隙的坐标为(0,a/2,a/4),它的对称性如何?占据该空隙的外来粒子与宿主离子的最大半径比为多少? 3.假设在转化温度之下,这α-Fe和γ-F两种晶型的最相邻原子的距离是相等的,求γ铁与α铁在转化温度下的密度比。 4.为什么只有γ-Fe才能溶解少许的C? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h是空隙“X”的半径,a =2r+2r h=(4/3)r r h/r=0.115(2分) 面对角线(2a)比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。(1分) 2.已知体心上的两个原子(A和B)以及连接两个晶体底面的两个角上原子[图②中C和D]。连接顶部原子的线的中心到连接底部原子的线的中心的距离为a/2;在顶部原子下面的底部原子构成晶胞的一半。空隙“h”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分)r+r h=16 /5a=3/5r r h/r=0.291(2分) 3.密度比=42︰33=1.09(2分) 4.C原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中(r h/r=0.414)。(2分) 2.四氧化三铁 科学研究表明,Fe3O4是由Fe2+、Fe3+、O2-通过离子键而组成的复杂离子晶体。O2-的重复排列方式如图b所示,该排列方式中存在着两种类型的由O2-围成的空隙,如1、3、6、7的O2-围成的空隙和3、6、7、8、9、12的O2-围成的空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3O4中有一半的Fe3+填充在正四面体空隙中,另一半Fe3+和Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为2:1,其中有12.5%正四面体空隙填有Fe3+,有50%正八面体空隙没有被填充。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12.5%晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%的正八面体空隙没有被填充。

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

密堆积中正八面体空隙和正四面体空隙 晶体结构的密堆积原理密堆积结构是指在由无方向性的金属键,离子键和范德华力结合的晶体中,原子、分子或离子等微粒总是趋向于相互配位数高,能充分利用空间的堆积密度大的那些结构。密堆积方式由于充分利用了空间,从而可使体系的势能尽可能降低。结构稳定。最常见的密堆积型式有:面心立方最密堆积(A1),六方最密堆积(A3)和体心立方密堆积(A2)。 我们主要介绍面心立方密堆积和六方密堆积。 等径圆球紧密排列形成密置层, 如图所示。 在密置层内,每个圆球周围有六 个球与它相切。相切的每三个球又围 出一个三角形空隙。仔细观察这些三 角形空隙,一排尖向上,接着下面一 排尖向下,交替排列。而每个圆球与 它周围的六个球围出的六个三角形空 隙中,有三个尖向上,另外三个尖向下。如图所示,我们在这里将尖向上的三角形空隙记为 B,尖向下的三角形空隙记为C。 第二密置层的球放在B之上,第三 密置层的球投影在C中,三层完 成一个周期。这样的最密堆积方式 叫做立方最密堆积(ccp,记为 A1型),形成面心立方晶胞。

若第三密置层的球投影 与第一密置层的球重合,两 层完成一个周期。这样的最 密堆积方式叫做六方最密堆 积(hcp,记为A3型),形 成六方晶胞,如图所示。 在这两种堆积方式中, 任何四个相切的球围成一个 正四面体空隙;另外,相切 的三个球如果与另一密置层 相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角 形中心的连线垂直于正三角形所在的密置层,参 看下图,黑色代表的不是球而是正八面体的中 心。 在这两种最密堆积方式中,每个球与同一密置层 的六个球相切,同时与上一层的三个球和下一层 的三个球相切,即每个球与周围十二个球相切 (配位数为12)。中心这个球与周围的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数: 正八面体空隙数: 正四面体空隙数= 1:1:2 。等径球的两种最密堆积具有相同的堆积密度,都为%.

正方体和正四面体

第 1 页 共 4 页 高中化学竞赛辅导专题讲座——三维化学 近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-……它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取 CD 中点E ,截取面ABE (如图1-2所示),过A 、 B 做AF ⊥BE ,BG ⊥AE ,AF 交BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度 的。先把该题放下,来看一题初中化学竞赛题: 【例题2 】CH 4分子在空间呈四面体形状,1个C 原 子与4个H 原子各共用一对电子对形成4条共价键,如 图1-3所示为一个正方体,已画出1个C 原子(在正方体 中心)、1个H 原子(在正方体顶点)和1条共价键(实线表 示),请画出另3个H 原子的合适位置和3条共价键,任 意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因为碳氢键是等长的,那么另三个氢原子也应在正方 体的顶点上,正方体余下的七个顶点可分成三类,三个为 棱的对侧,三个为面对角线的对侧,一个为体对角线的对 侧。显然三个在面对角线对侧上的顶点为另三个氢原子的 位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不相邻的四个顶点(不共棱)可构成一个正四面体, 图1-1 图1-2 图1-3 图1-4

典型的晶体结构

典型得晶体结构 1、铁 铁原子可形成两种体心立方晶胞晶体:910℃以下为α-Fe,高于1400℃时为δ-Fe。在这两种温度之间可形成γ-面心立方晶。这三种晶体相中,只有γ-Fe能溶解少许C。问: 1.体心立方晶胞中得面得中心上得空隙就是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主离子最大可能得半径比就是多少? 2.在体心立方晶胞中,如果某空隙得坐标为(0,a/2,a/4),它得对称性如何?占据该空隙得外来粒子与宿主离子得最大半径比为多少? 3.假设在转化温度之下,这α-Fe与γ-F两种晶型得最相邻原子得距离就是相等得,求γ铁与α铁在转化温度下得密度比。 4.为什么只有γ-Fe才能溶解少许得C? 在体心立方晶胞中,处于中心得原子与处于角上得原子就是相接触得,角上得原子相互之间不接触。a=(4/3)r。 ①②③ 1.两个立方晶胞中心相距为a,也等于2r+2r h[如图①],这里r h就是空隙“X”得半径,a =2r+2r h=(4/3)r r h/r=0、115(2分) 面对角线(2a)比体心之间得距离要长,因此该空隙形状就是一个缩短得八面体,称扭曲八面体。(1分) 2.已知体心上得两个原子(A与B)以及连接两个晶体底面得两个角上原子[图②中C与D]。连接顶部原子得线得中心到连接底部原子得线得中心得距离为a/2;在顶部原子下面得底部原子构成晶胞得一半。空隙“h”位于连线得一半处,这也就是由对称性所要求得。所以我们要考虑得直角三角形一个边长为a/2,另一边长为a/4[图③],所以斜边为16 /5a。(1分) r+r h=16 /5a=3/5r r h/r=0、291(2分) 3.密度比=42︰33=1、09(2分) 4.C原子体积较大,不能填充在体心立方得任何空隙中,但可能填充在面心立方结构得八面体空隙中(r h/r=0、414)。(2分) 2、四氧化三铁 科学研究表明,Fe3O4就是由Fe2+、Fe3+、O2-通过离子键而组成得复杂离子晶体。O2-得重复排列方式如图b所示,该排列方式中存在着两种类型得由O2-围成得空隙,如1、3、6、7得O2-围成得空隙与3、6、7、8、9、12得O2-围成得空隙,前者为正四面体空隙,后者为正八面体空隙,Fe3 O4中有一半得Fe3+填充在正四面体空隙中,另一半Fe3+与Fe2+填充在正八面体空隙中,则Fe3O4晶体中正四面体空隙数与O2-数之比为 2:1,其中有12、5%正四面体空隙填有Fe3+,有 50%正八面体空隙没有被填充。ClMXxzK。zNa2qb4。 Fe3O4中三价铁离子:亚铁离子:O原子=2:1:4 晶胞拥有8个正四面体空隙,4个O2-离子;所以2:1 一半三价铁离子放入正四面体空隙,即一个三价铁离子,所以为1/8=12、5% 晶胞实际拥有4个正八面体空隙,其中已经有一个放Fe3+,另外一个Fe2+占据一个正八面体空隙,所以50%得正八面体空隙没有被填充。USLphY1。N1iF2Vt。

第一节 正方体与正四面体

近年来,无论是高考,还是全国竞赛,涉及空间结构的试题日趋增多,成为目前的热点之一。本文将从最简单的五种空间正多面体开始,与大家一同探讨中学化学竞赛中与空间结构有关的内容。 第一节 正方体与正四面体 在小学里,我们就已经系统地学习了正方体,正方体(立方体或正六面体)有六个完全相同的正方形面,八个顶点和十二条棱,每八个完全相同的正方体可构成一个大正方体。正四面体是我们在高中立体几何中学习的,它有四个完全相同的正三角形面,四个顶点和六条棱。那么正方体和正四面体间是否有内在的联系呢?请先让我们看下面一个例题吧: 【例题1】常见有机分子甲烷的结构是正四面体型的,请计算分子中碳氢键的键角(用反三角函数表示) 【分析】在化学中不少分子是正四面体型的,如CH 4、CCl 4、NH 4+、 SO 42-…… 它们的键角都是109o28’,那么这个值是否能计算出来呢? 如果从数学的角度来看,这是一个并不太难的立体几何题,首先我们把它抽象成一个立体几何图形(如图1-1所示),取CD 中点E ,截取面ABE (如图1-2所示),过A 、B 做AF ⊥BE ,BG ⊥AE ,AF 交 BG 于O ,那么 ∠AOB 就是所求的键角。我们只要找 出AO (=BO )与AB 的关系,再用余弦定理,就能圆满地解决例题1。当然找出AO 和AB 的关系还是有一定难度的。先把该题放下,来看一题初中化学竞赛题: 【例题 2】CH 4分子在空间呈四面体形状,1个C 原子与4 个H 原子各共用一对电子对形成4条共价键,如图 1-3所示为一 个正方体,已画出1个C 原子(在正方体中心)、1个H 原子(在正 方体顶点)和1条共价键(实线表示),请画出另3个H 原子的合适 位置和3条共价键,任意两条共价键夹角的余弦值为 ① 【分析】由于碳原子在正方体中心,一个氢原子在顶点,因 为碳氢键是等长的,那么另三个氢原子也应在正方体的顶点上, 正方体余下的七个顶点可分成三类,三个为棱的对侧,三个为面 对角线的对侧,一个为体对角线的对侧。显然三个在面对角线对 侧上的顶点为另三个氢原子的位置。 【解答】答案如图1-4所示。 【小结】从例题2中我们发现:在正四面体中八个顶点中不 相邻的四个顶点(不共棱)可构成一个正四面体,正四面体的棱 长即为正方体的棱长的2倍,它们的中心是互相重合的。 【分析】回到例题1,将正四面体ABCD 放入正方体中考虑,设正方体的边长为1,则AB 为面对角线长,即2,AO 为体对角线长的一半,即3/2, 图1-1 图1-2 图1-3 图1-4

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

六方最密堆积中正八面体空隙 和正四面体空隙中心的分数坐标 等径圆球紧密排列形成 密置层,如图所示。 在密置层内,每个圆球 周围有六个球与它相切。相 切的每三个球又围出一个三 角形空隙。仔细观察这些三 角形空隙,一排尖向上,接 着下面一排尖向下,交替排 列。而每个圆球与它周围的六个球围出的六个三角形空隙中,有三个 尖向上,另外三个 尖向下。如图所 示,我们在这里将 尖向上的三角形空 隙记为B,尖向下 的三角形空隙记为 C。第二密置层的 球放在B之上,第 三密置层的球投影 在C中,三层完成 一个周期。这样的

最密堆积方式叫做立方最密堆积(ccp ,记为 A1型),形成面心立方晶胞。 若第三密置层的球投影与第一密置层的球重合,两层完成一个周期。这样的最密堆积方式叫做六方最密堆积(hcp ,记为A3型),形成六方晶胞,如图所示。 在这两种堆积方式中,任何四个相切的球围成一个正四面体空隙;另外,相切的三个球如果与另一密置层相切的三个球空隙对应,它们六个球将围成一个正八面体空隙。也就是说,围成正八面体空隙的这六个球可以分为相邻的两层,每层的正三角形中心的连线垂直于正三角形所在的密置层,参看下图,黑色代表的不是球而是正八面体的中心。 在这两种最密堆积方式中,每个球与同一密置层的六个球相切,同时与上一层的三个球和下一层的三个球相切,即每个球与周围十二个球相切(配位数为12 )。中心这个球与周围

的球围出八个正四面体空隙,平均分摊到每个正四面体空隙的是八分之一个球。这样,每个正四面体空隙分摊到的球数是四个八分之一,即半个。中心这个球周围还围出六个八面体空隙,它平均分摊到每个正八面体空隙的是六分之一个球。这样,每个正八面体空隙分摊到的球数是六个六分之一,即一个。总之,这两种最密堆积中,球数: 正八面体空隙数: 正四面体空隙数= 1:1:2 。 立方最密堆积(ccp,A1型)中正八面体空隙和正四面体空隙的问题比较简单、直观。下面我们集中讨论六方最密堆积(hcp,A3型)中正八面体空隙和正四面体空隙中心的分数坐标。 在六方最密堆积中画出一个六方晶胞,如下面两幅图所示。 平均每个六方晶胞中有两个正八面体空隙,如下面两幅图所示。空隙中心的分数坐标分别为:(2/3,1/3,1/4),(2/3,1/3,3/4)。

六方最密堆积中正八面体空隙和正四面体空隙中心的分数坐标

六方最密堆积中正八面体空隙和正四面体空隙中心的分数 坐标 密堆积中正八面体空隙和正四面体空隙 晶体结构的密堆积原理密堆积结构是指在由无方向性的金属键,离子键和范德华力结合的晶体中,原子、分子或离子等微粒总是趋向于相互配位数高~能充分利用空间的堆积密度大的那些结构。密堆积方式由于充分利用了空间~从而可使体系的势能尽可能降低。结构稳定。最常见的密堆积型式有:面心立方最密堆积,A,~六方最密堆积,A,和体心立方密堆积13 ,A,。 2 我们主要介绍面心立方密堆积和六方密堆积。 等径圆球紧密排列形成密置层~ 如图所示。 在密置层内~每个圆球周围有六 个球与它相切。相切的每三个球又围 出一个三角形空隙。仔细观察这些三 角形空隙~一排尖向上~接着下面一

排尖向下~交替排列。而每个圆球与 它周围的六个球围出的六个三角形空 隙中~有三个尖向上~另外三个尖向 下。如图所示~我们在这里将尖向上 的三角形空隙记为B~尖向下的三角形空隙记为C。第二密置层的球放在B之上~第三密置层 的球投影在C中~三层完成一个周 期。这样的最密堆积方式叫做立方 最密堆积,ccp~记为 A1型,~ 形成面心立方晶胞。

若第三密置层的球投影 与第一密置层的球重合~两层完成一个周期。这样的最密堆积方式叫做六方最密堆积,hcp~记为A3型,~形成六方晶胞~如图所示。在这两种堆积方式中~ 任何四个相切的球围成一个正四面体空隙,另外~相切的三个球如果与另一密置层相切的三个球空隙对应~它们六个球将围成一个正八面体空隙。也就是说~围成正

八面体空隙的这六个球可以分为相邻的两层~每层的正三角形中心的连线垂直于正三角形所在的 密置层~参看下图~黑色代表的不是球而是正八 面体的中心。 在这两种最密堆积方式中~每个球与同一密置层 的六个球相切~同时与上一层的三个球和下一层 的三个球相切~即每个球与周围十二个球相切 ,配位数为12,。中心这个球与周围的球围出八 个正四面体空隙~平均分摊到每个正四面体空隙的是八分之一个球。这样~每个正四面体空隙 分摊到的球数是四个八分之一~即半个。中心这个球周围还围出六个八面体空隙~它平均分摊 到每个正八面体空隙的是六分之一个球。这样~每个正八面体空隙分摊到的球数是六个六分之 : 正八面体空隙数 : 正四面体空隙数 = 一~即一个。总之~这两种最密堆积中~球数 1:1:2 。等径球的两种最密堆积具有相同的堆积密度~都为74.05%. .下面计算四面体空隙和八面体空隙中所能容纳的球的半径的大小。

典型的晶体结构

4 ?为什么只有丫― Fe 才能溶解少许的 C ? 在体心立方晶胞中,处于中心的原子与处于角上的原子是相接触的,角上的原子相互之间不接触。1.铁 铁原子可形成两种体心立方晶胞晶体: 间可形成Y-面心立方晶。这三种晶体相中,只有 1 ?体心立方晶胞中的面的中心上的空隙是什么对称?如果外来粒子占用这个空隙,则外来粒子与宿主 离子最大可能的半径比是多少? 2 ?在体心立方晶胞中,如果某空隙的坐标为( 子与宿主离子的最大半径比为多少? 3 ?假设在转化温度之下,这a 化温度下的密度比。 910 C 以下为a — Fe ,高于1400 C 时为S — Fe 。在这两种温度之 丫― Fe 能溶解少许C 。问: 0, a/2, a/4),它的对称性如何?占据该空隙的外来粒 Fe 和丫- F 两种晶型的最相邻原子的距离是相等的,求丫 铁 与a 铁在转 a = 1 XI A 丿 i 0 \J 1 ?两个立方晶胞中心相距为 (4/ , 3)r r h /r = 0.115 ( 2 分) 面对角线(J 2 a )比体心之间的距离要长,因此该空隙形状是一个缩短的八面体,称扭曲八面体。( 分) 2?已知体心上的两个原子( A 和B )以及连接两个晶体底面的两个角上原子[图②中 C 和D ]。连接 顶部原子的线的中心到连接底部原子的线的中心的距离为 a/2;在顶部原子下面的底部原子构成晶胞的一半。 空隙“ h ”位于连线的一半处,这也是由对称性所要求的。所以我们要考虑的直角三角形一个边长为 a/2,另 一边长为a/4 [图③],所以斜边为 5/16 a o ( 1分) r + r h = ,5/16 a =、5/3 r r h /r = 0.291 (2 分) 3 .密度比=4 .2 : 3、3 = 1.09 (2 分) 4. C 原子体积较大,不能填充在体心立方的任何空隙中,但可能填充在面心立方结构的八面体空隙中 (r h /r = 0.414)。( 2 分) 2.四氧化三铁 a ,也等于2r + 2r h [如图①],这里 r h 是空隙“ X ”的半径, a = 2r + 2r h 科学研究表明,Fe 3O 4是由Fe 2+、Fe 3+、O 2—通过离子键而组成的复杂离子晶体。 O 2— 的重复排列方式如图b 所示,该排列方式中存在着两种类型的由 O 2— 围成的空隙,如1、3、 6 7的O 2—围成的空隙和3、6、7、& 9、12的O 2—围成的空隙,前者为正四面体空隙, 后者为正八 面体空隙,Fe 3O 4中有一半的卩63+填充在正四面体空隙中,另一半 Fe 3+和Fe 2+ 填充在正八面体空隙中,则 Fe 3O 4晶体中正四面体空隙数与 O 2—数之比为2: 1,其中有1 2.5%正四面体空隙填有Fe 3+ ,有50%正八面体空隙没有被填充。 Fe 3O 4中三价铁离子:亚铁离子: O 原子=2: 1: 4 晶胞拥有8个正四面体空隙,4个O 2— 离子;所以2: 一半三价铁离子放入正四面体空隙,即一个三价铁离子, 晶胞实际拥有4个正八面体空隙,其中已经有一个放 面体空隙,所以50%的正 八面体空隙没有被填充。 ?铁的原子核是最稳定的原子核组态,所以在可以孕育生命的大红星中,累积很多,这导致铁在宇宙的 含量很多, 地球也含有很多铁。 1 ?在制作青灰瓷中,Fe 2O 3被部分还原,产生 这些不同氧化铁化合物的存在,造成了青灰瓷的特殊色彩。 1 所以为 1/8=12.5% Fe 3+,另外一个Fe 2+ 占据一个正八 ① (4/ .. 3)r 。 小障中心 的混合物, (Fe 3O 4 )

正四面体二面角8种求法(教师版)

二面角求法 例题1:已知正方体ABCD-A 1B 1C 1D 1中,O 、O 1是上下底面正方形的中心,求二面角O 1-BC-O 的大小。 解:取BC 中点E ,连接OE 、O 1E , 易证⊿BOC 、⊿BO 1C 是等腰三角形。 ∴OE ⊥BC ,O 1E ⊥BC , ∴∠OEO 1是二面角O 1-BC-O 的平面角, 连OO 1,OO 1⊥平面ABCD , ∴OO 1⊥OE 在RT ⊿OEO 1中,OO 1=1,DE=2 1 ∴tan ∠OEO 1=22 1 1 1==OE OO ∴所求二面角θ=arctan2。 例题2:已知正方体ABCD-A 1B 1C 1D 1中,E 、F 为A 1D 1、C 1D 1的中点,求平面EFCA 与底面ABCD 所成的二面角。 解:连B 1D 1交EF 于G ,连BD 交AC 于O ,作GH ⊥BD ,H 是垂足,连GO ,易证GO ⊥AC ,又BD ⊥AC ∴∠GOH 是所求二面角的平面角, GH=1,OH=42 ∴tan ∠GOH=224 2 1 ==OH GH ∴所求二面角θ=arctan 22。 利用平面角定义法求二面角大小,在棱上取一点常常是取特殊点。例1中E 点,例2中O 点都是特殊位置的点,所作两垂线也是题中特殊位置的线段。 例题3:已知正方体ABCD-A 1B 1C 1D 1中,求二面角B-AC-B 1的大小。 解:连接BD 交于AC 为O 点,连OB 1, ∵BB 1⊥平面ABCD ,BO ⊥AC ∴B 1O ⊥AC , ∠BOB 1是二面角B-AC-B 1的平面角, tan ∠BOB 1= 22 2 1 1==BO BB ∴所求二面角θ=arctan 2. 例题4:已知正方体ABCD-A 1B 1C 1D 1中,求平面ACD 1与平面BDC 1所成的二面角。 解:设AC 与BD 交于E ,CD 1与C 1D 交于F ,连EF 是所求二面角B-EF-C 的棱,连A 1C ,易证A 1C ⊥平面BDC 1,垂足为H ,取AD 1中点O ,连OC 交EF 于G ∵EF ∥AD 1,OC ⊥AD 1 ∴OC ⊥EF 即CG ⊥EF 。 根据三垂线定理逆定理得GH ⊥EF ∴∠CGH 是所求二面角的平面角。 先求得: CG=2 1OC=46)22()2(2122=-

Zintl相的组成和结构

Zintl相的组成和结构 Components and Structures of Zintl Phase XXXX 摘要:Zintl相化合物是由碱金属或者碱土金属和p区的金属或者准金属、小能带半导体组成,由于阴离子具有极其复杂的结构,因而广受化学家关注。对于其 结构的预测由初期的Zintl-Klemm理论发展为现今的Wade规则,但是在以 13族为代表的Zintl相化合物中,仍有许多特例,这主要是由骨架的压缩或 拉伸和其他富电子金属的填充导致。 关键词:Zintl相;阴离子;Wade规则; 特例 Abstract: Zintl phases contain an alkali or alkaline-earth metal and a p-element(or elements) that is a metal, semimetal, or small-gap semiconductor, which have widely gained many chemists’ attention because of the extreme complex structures of anions. Wade’s ru le has been used in predicting their structures instead of original Zintl-Klemm theory, but there are numerous exceptions, especially in 13 group, which is mainly owing to the compression or stretch along axis or the addition of other metals capable to supply electrons. Key Words: Zintl phase, anions, Wade’s rule, exceptions 前言 早期的化学家们常常认为完全的电子转移必定发生在金属和非金属之间,但是实验表明,元素往往不是那么简单。[1]1891年M. Jonanis首先观察到钠和铅或和锑在液氨中分别形成绿色和深红色的溶液,后来被鉴定含有[Pb9]4-和[Sb7]3-,这是Zintl阴离子,即金属簇阴离子首次被发现。1932年Eduard Zintl对这些化合物进行了深入研究,并尝试对其结构进行解释,后来经过Klemm完善,最终形成了经典的Zintl-Klemm理论。1971年Wade规则诞生,其原本主要用于对硼烷结构进行预测,后来被引入Zintl相化合物,在其中大放异彩。对于Zintl相化合物的研究,主要集中于丰富而又复杂的化学结构,这大大促进了结构理论的发展。最近,随着研究的深入,Zintl相化合物的各种潜在应用不断被挖掘出来,如其热电性质、高温超导、储氢、磁阻等,因而广受关注。 一、Zintl相的组成 Zintl相化合物归属于金属间化合物[2],由于其结构和性质的复杂,故人们常常使用其共有的性质和特点来作为其定义[3]: 1)包含碱金属或者碱土金属和p区的金属、准金属或者小能带的半导体。 2)满足八电子规则或者有额外的电子或者空穴。 3)线型化合物。 4)半导体或者不良导体。 5)反磁性或者随温度变化不显著的弱顺磁性。 6)易碎。

分子立体结构知识点

化学分子立体结构知识点 (一)价电子互斥理论:分子的立体结构决定了分子许多重要的性质,例如分子中化学键的类型、分子的极性、分子之间的作用力大小、分子在晶体里的排列方式等等。分子的立体结构通常是指其σ键的分子骨架在空间的排布。 1、价层电子对互斥模型(VSEPR 模型):是一种可以用来预测分子立体结构的理论模型,总的原则是中心原子价电子层电子对(包括成键电子对和未成键的孤对电子对)的互相排斥作用,使分子的几何构型总是采取电子对相互排斥最小的那种构型,即分子尽可能采取对称的空间构型。 2、VSEPR 模型的内容:VSEPR 模型把分子分为两类: (1)中心原子上的价电子都用于形成共价键,即中心原子无孤对电子的,根据键的条数或者说AB n 型分子中n 的个数,判断分子构型。如CO 2、CH 2O 、CH 4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: (2)中心原子上有孤对电子(未用于形成共价键的电子对)的分子,则将孤对电子也算作键数,同上推出包括孤对电子的分子构型,然后去掉孤对电子后看分子新构型。如H 2O 和NH 3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H 2O 分子呈V 型,NH 3分子呈三角锥型。 【拓展】AB m 型分子或离子中的价电子对数(孤对电子+形成共价键的电子对)的计算方法: (1)对于主族元素,中心原子价电子数=最外层电子数,配位原子按提供的价电子数计算,如:PCl 5 中52515=?+= n (2)O 、S 作为配位原子时按不提供价电子计算,作中心原子时价电子数为6; (3)离子的价电子对数计算 如:NH 4+ : 421415=-?+=n ; SO 42- :42 206=++=n 3、VSEPR 模型的应用: (1)VSEPR 模型预测分子立体结构方法:首先确定中心原子的价层电子对数,然后确定中心原子有无孤对电子数,再结合实际例子分析。 (2)VSEPR 模型是模型化方法的具体体现,它把原子数相同、价电子数相同的一类化学粒子的结构加以概括,体现了等电子原理的思想,例如五原子八电子的CH 4、SiH 4、NH 4+,它们都是正四面体构型。 (二)杂化轨道理论:价层电子对互斥模型只能解释化合物分子的空间构形,却无法解释许多深层次的问题,如无法解释甲烷中四个 C ---H 的键长、键能相同及H -C -H 的键角为109 ? 28′。因为按照我们已经学过的价键理论,甲烷的4个C - H 单键都应该是σ键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p 轨道和1个球形的2s 轨道,用它们跟4个氢原子的1s 原子轨道重叠,不可能得到四面体构型的甲烷分子。为了解决这一矛盾,鲍林提出了杂化轨道理论。 1、杂化的概念:杂化是指原子在相互结合成键过程中,原来能量接近的原子轨道要重新混合,形成新的原子轨道。这种轨道重新组合的过程叫做杂化。所形成的新的轨道叫杂化轨道。 2、杂化轨道的类型: (1)sp 3 杂化:一个s 轨道与三个p 轨道杂化后,得四个sp 3杂化轨 道,每个杂化轨道的s 成分为1/4,p 成分为3/4,它们的空间取向 是四面体结构,相互的键角θ=109o28′。 (2)sp 2杂化:一个s 轨道与两个p 轨道杂化,得三个sp 2杂化轨道, 每个杂化轨道的s 成分为1/3,p 成分为2/3,三个杂化轨道在空间 分布是在同一平面上,互成120o 。 (3)sp 杂化:一个s 轨道与一个p 轨道杂化后,得两个sp 杂化轨 道,每个杂化轨道的s 成分为1/2,p 成分为1/2,杂化轨道之间的 夹角为180度。 【总结】sp 型的三种杂化(见右图) 【小结】杂化轨道的特点 (1)形成分子时,通常存在激发、杂化和轨道重叠等过程。

相关文档
最新文档