液压泵功率

液压泵功率
液压泵功率

功率=压力*排量*转数

功率=转矩*转数*2pi

注意单位:压力Pa 排量为每转排量,转数为每秒转数且都用国际单位

液压马达功率的计算公式

液压马达功率的计算公式:p

=pxq/

p

的单位KW,P的单位MPa,q的单位L/min

液压马达的计算公式不是p

=pxq/60吗

液压马达的功率=系统压差x马达排量x总效率/600。至于60,流量是每分钟,功率是每秒。

压力1MPa=10bar

60*10/不就是了吗。

请问液压功率计算公式为何有两种N=P*Q/(60η) KW,压力P单位MPa,流量Q单位L/min,η为油泵总效率

N=P*Q/612η KW,压力P单位kgf/cm2,流量Q单位L/min,η为油泵总效率。

为何一个除60η,一个除612η

60η和612η是如何而来

谢谢

请注意压力单位的不同,

1MPa=cm2

因为1分钟=60秒,1MPA=1MPa=cm2,其他的你自己换算就行

电机功率,液压泵压力及排量计算公式:

近似计算功率(w)=压力(Mp)*排量(ml)*1500(转速) /60??? (2级电机2800转,4级电机1500转,6级电机1000转)

液压泵的性能检测

液压泵的性能检测 实验内容: 测试一种液压泵(齿轮泵或叶片泵)的下列特性: 1、 液压泵的压力脉动值; 2、 液压泵的流量-压力特性; 3、 液压泵的容积效率-压力特性; 4、 液压泵的总效率-压力特性。 液压泵的主要性能包括:额定压力、额定流量、容积效率、总效率、压力脉动值、噪声、寿命、温升和振动等项。其中以前几项为最重要,泵的测试主要是检查这几项。 实验方法: 液压泵由原动机械输入机械能(M ,n )而将液压能(P ,Q )输出,送给液压系统的执行机构。由于泵内有摩擦损失(其值用机械效率η机表示),容积损失(泄漏)(其值用容积效率η容表示)和液压损失(其值用液压损失η液表示,此项损失较小,通常忽略),所以泵的输出功率必定小于输入功率,总效率为: 容机入出总ηηη?≈=N N 要直接测定η机比较困难,一般测出η容和η总,然后算出η机。 图1-1为QCS003B 型液压实验台测试液压泵的液压系统原理图。图中8为被试泵,它的进油口装有线隙式滤油器22,出油口并联有溢流阀9和压力表P 6。被试泵输出的油液经节流阀10和椭圆齿轮流量计20流回油箱。用节流阀10对被试泵加载。 图1-1 液压泵的特性实验液压系统原理图 5、 液压泵的压力脉动值: 把被试泵的压力调到额定压力,观察记录其脉动值,看是否超过规定值。测时压力表P 6不能加接阻尼器。 6、 液压泵的流量-压力特性(Q -P ): 通过测定被试泵在不同工作压力下的实际流量,得出它的流量-压力特性曲线Q =f(P)。调节节流阀10即得到被试泵的不同压力,可通过P 6观测。不同压力下的流量用椭圆齿轮流量计和秒表确定。压力调节范围从零开始(此时对应的流量为空载流量)到被试泵额定压力的1.1倍为宜。 7、 液压泵的容积效率-压力特性(ηPV -P ): 理论流量实际流量容积效率=, 在实际生产中,泵的理论流量一般不用液压泵设计时的几何参数和运动参数计算,通常以空载流量代替理论流量。本实验中应在节流阀10的通流截面积为最大的情况下测出泵的空载流量。

液压计算(原件选择)

液压元件的选择 一、液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 p B =p 1 +ΣΔp (9-15) ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。 阀名Δp n(×105Pa) 阀名Δp n(×105Pa)阀名Δp n(×105Pa)阀名Δp n(×105Pa)单向阀0.3~0.5 背压阀3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀2~3 顺序阀 1.5~3 调速阀3~5 B B max 的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即 q B≥K(Σq)max(m3/s) (9-16) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: q B≥K(A1-A2)v max(m3/s) (9-17) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);v max为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 q B=∑ = Z 1 i V i K/T i (9-18) 式中:V i为液压缸在工作周期中的总耗油量(m3);T i为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力p B和流量q B,查液压元件产品样本,选择与P B和q B相当的液压泵的规格型号。 上面所计算的最大压力p B是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力p B应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=p B q B/103ηB (kW) (9-19) 式中:p B为液压泵的最大工作压力(N/m2);q B为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。 液压泵类型齿轮泵螺杆泵叶片泵柱塞泵 总效率0.6~0.7 0.65~0.80 0.60~0.75 0.80~0.85 ②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所

液压油泵性能参数

液压油泵性能参数 液压泵是靠密封容腔容积的变化来工作的。如何为机械选择适合的液压油泵?首先我们要了解液压油泵的工作原理和性能参数中,下面由金中液压系统厂家设计部告诉大家液压油泵的性能参数: 工作压力指液压泵出口处的实际压力值。工作压力值取决于液压泵输出到液压系统中的液体在流动过程中所受的阻力。阻力(负载)增大,则工作压力升高;反之则工作压力降低。 额定压力指液压泵在连续工作过程中允许达到的最高压力。额定压力值的大小由液压泵零部件的结构强度和密封性来决定。超过这个压力值,液压油泵有可能发生机械或密封方面的损坏 排量V指在无泄漏情况下,液压泵转一转所能排出的油液体积。可见,排量的大小 只与液压泵中密封工作容腔的几何尺寸和个数有关。排量的常用单位是(ml/r)。 理论流量qt 指在无泄漏情况下,液压泵单位时间内输出的油液体积。其值等于泵的 排量V和泵轴转数n的乘积,即qt=Vn(m3/s) 实际流量q指单位时间内液压泵实际输出油液体积。由于工作过程中泵的出口压力 不等于零,因而存在内部泄漏量Δq(泵的工作压力越高,泄漏量越大),使得泵的实际流量小于泵的理论流量,即 q=qt-△q 显然,当液压泵处于卸荷(非工作)状态时,这时输出的实际流量近似为理论流量。 额定流量qn 泵在额定转数和额定压力下输出的实际流量。 输入功率Pi 驱动液压泵的机械功率,由电动机或柴油机给出,即pi=ωT 输出功率po液压泵输出的液压功率,即泵的实际流量q与泵的进、出口压差Δp的乘积po=△pq 当忽略能量转换及输送过程中的损失时,液压泵的输出功率应该等于输入功率,即泵的理论功率为pi=△pq=△pVn=ωTt 式中, ω—液压泵转动的角速度;Tt—液压泵的理论转矩 际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 实际上,液压泵在工作中是有能量损失的,这种损失分为容积损失和机械损失。 容积损失主要是液压泵内部泄漏造成的流量损失。容积损失的大小用容积效率表 征,即 式中取泄漏量Δq=klp。这是因为液压泵工作构件之间的间隙很小,泄漏液体的流动状态可以看作是层流,即泄漏量和泵的工作压力p成正比。kl是液压泵的泄漏系数。 机械损失指液压泵内流体粘性和机械摩擦造成的转矩损失。机械损失的大小用机械 效率表征,即 式中,ΔT是损失掉的转矩。 液压泵的总效率泵的总效率是泵的输出功率与输入功率之比,即 液压泵的总效率、容积效率和机械效率可以通过实验测得。图3.2给出了某液压泵的性能

液压泵液压马达功率计算

液压泵液压马达功率计算 This model paper was revised by the Standardization Office on December 10, 2020

应用:(1)已知液压泵的排量是为136毫升/ 120kgf/cm 2,计Q=qn=136(毫升/转)×970转/分 =131920(毫升/分) =131.92(升/分) 系统所需功率 考虑到泵的效率,电机功率一般为所需功率的1.05~1.25倍 N D =()N=28.5~32.4(kW ) 查有关电机手册,所选电机的功率为30kW 时比较适合。 (2)已知现有液压泵的排量是为136毫升/转,所配套的电机为22kW ,计算系统能达到 的最高工作压力。 解:已知Q=qn=131.92(升/分),N D =22kW 将公式变形 考虑到泵的效率,系统能达到的最高工作压力不能超过90kgf/cm 2。 液压泵全自动测试台 液压泵全自动测试台是根据各国对液压泵出厂试验的标准设计制造,可测 试液压叶片泵(单联泵、双联泵、多联泵)、齿轮泵、柱塞泵等的动静态性能。测试范围、测试项目、测试要求符合JB/T7039-2006、JB/T7041-2006、JB/T7043-2006等有关国家标准,试验测试和控制精度:B 或C 级。液压泵全自动测试台是液压泵生产和维修企业的最重要检测设备。 液压泵全自动测试台:主要由驱动电动机、控制和测试阀组、检测计量装 置、油箱冷却、数据处理和记录输出部分等组成,驱动电动机选用了先进的变频电机,转速可在0—3000rpm 内进行无级调速,满足各类不同转速的液压泵的试验条件,也可测试各类液压泵在不同转速下的性能指标。控制阀选用了目前先进的比例控制装置,同时配置手动控制装置,因此测试时可以采用计算机自动控制和检测,也可以切换为手动控制和检测。压力、流量、转速和扭矩的测量采用数字和模拟两种方法,数字便于用计算机采集、整理和记录,模拟便于现场观察控制。油箱的散热是由水冷却装置完成,可以满足液压泵的满功率运行要求。测试台还可根据客户要求进行设计和开发,满足不同用户的特殊的个性要求。 功率回收式液压泵全自动测试台:功率回收式液压泵性能测试台是目前最 先进的节能试验方式,它解决了被压加载方式使油温上升过快,不能做连续试验和疲劳寿命试验的缺点。这种新型测试台最高可节省70%的能耗,可直接为用户带来可观的经)(9.2561292.131120612kW Q P N =?=?=

液压功率计算公式

请问液压功率计算公式为何有两种N=P*Q/(60η)K W,压力P单位M P a,流量Q单位L/m i n,η为油泵总效率 和 N=P*Q/612η KW,压力P单位kgf/cm2,流量Q单位L/min,η为油泵总效率。 为何一个除60η,一个除612η60η和612η是如何而来 液压泵的常用计算公式 参数名称单位计算公式符号说明 流量L/min V —排量 n —转速 q —理论流量q —实际流量 输入功率kW P i —输入功率(kW) T—转矩(N·m) 输出功率kW P —输出功率(kW) p—输出压力(MPa) 容积效率%η —容积效率(%) 机械效率%η m —机械效率(%)总效率%η—总效率(%) 液压泵和液压马达的主要参数及计算公式 液压泵和液压马达的主要参数及计算公式参数名称单位液压泵液压马达 排量、流量排量q0m3/r 每转一转,由其密封腔内几何尺寸变化计算而得的 排出液体的体积 理论流 量Q0 m3/s 泵单位时间内由密 封腔内几何尺寸变化 计算而得的排出液体 的体积 Q0=q0n/60 在单位时间内为形成指 定转速,液压马达封闭腔 容积变化所需要的流量 Q0=q0n/60

实际流量Q 泵工作时出口处流量 Q=q0nηv/60 马达进口处流量 Q=q0n/60ηv 压力额定压 力 Pa 在正常工作条件下,按试验标准规定能连续运转的 最高压力 最高压 力p max 按试验标准规定允许短暂运行的最高压力 工作压 力p 泵工作时的压力 转速额定转 速n r/min 在额定压力下,能连续长时间正常运转的最高转速 最高转 速 在额定压力下,超过额定转速而允许短暂运行的最 大转速 最低转 速 正常运转所允许的最低 转速 同左(马达不出现爬行 现象) 功率输入功 率P t W 驱动泵轴的机械功率 P t=pQ/η 马达入口处输出的液压 功率 P t=pQ 输出功 率P0 泵输出的液压功率,其 值为泵实际输出的实际流 量和压力的乘积 P0=pQ 马达输出轴上输出的机 械功率 P0=pQη 机械功 率 P t=πTn/30P0=πTn/30 T–压力为p时泵的输入扭矩或马达的输出扭矩, N.m 扭矩理论扭 矩 N.m 液体压力作用下液压马 达转子形成的扭矩 实际扭 矩 液压泵输入扭矩T t T t=pq0/2πηm 液压马达轴输出的扭矩 T0 T0=pq0ηm/2π 效率容积效 率ηv 泵的实际输出流量与理 论流量的比值 ηv=Q/Q0 马达的理论流量与实际 流量的比值 ηv=Q0/Q 机械效 率ηm 泵理论扭矩由压力 作用于转子产生的液 马达的实际扭矩与理论 扭矩之比值 ηm=2πT0/pq0

液压常用计算公式-液压泵

液压常用计算公式 1、齿轮泵流量(L /min ): q 。 Vn Vn 。 1000,q 1000 说明:V 为泵排量(ml/r ) ; n 为转速(r/min ) ; q o 为理论流量 (L/min ); q 为实际流量(L/min ) 2、 齿轮泵输入功率(kW ): P 辽 i 60000 说明:T 为扭矩(N.m ); n 为转速(r/min ) 3、 齿轮泵输出功率(kW ): P o 说明:p 为输出压力(MP a ); pq _p_q 60 612 p '为输出压力(kgf/cm 2 ); q 为实际 流量(L/min ) 4、齿轮泵容积效率(% : 说明:q 为实际流量(L/min ); 2 100 q o q o 为理论流量(L / min ) 5、齿轮泵机械效率(%: 10 ^ 100 2 Tn 说 p 为输出压力(MP a ); q 为实际流量(L/min ); T 为扭矩 m (N.m ); n 为转速(r/min ) 6、齿轮泵总效率(% :

说明: V 为齿轮泵容积效率(% ; m 为齿轮泵机械效率(% 7、齿轮马达扭矩(N.m ): T P q T T 2 , t (ml/r );T t 为马达的理论扭矩(N.m ); T 为马达的实际输出扭矩(N.m ); m 为马达的机械效率(% 8齿轮马达的转速(r / min ): Q — V q 说明:Q 为马达的输入流量(ml/min ); q 为马达排量(ml/r ); V 为马达的容积效率(% 11、液压缸速度(m. min ): Q V 10A 说明:Q 为流量(L min );A 为液压缸面积(cm 2 ) 说明:P 为马达的输入压力与输出压力差( MP a ) ; q 为马达排量 9、齿轮马达的输出功率( kW ): 说明:n 为马达的实际转速 10、液压缸面积(cm 2 ): 2 nT P 60 103 (r / min ); T 为马达的实际输出扭矩(N.m ) D 2 A - 4 说明:D 为液压缸有效活塞直径 (cm )

液压泵性能实验实验报告

液压泵拆装实验 班级: 学号: 姓名: 一.实验目得 1、深入理解定量叶片泵得静态特性,着重测试液压泵静态特性。 2、分析液压泵得性能曲线,了解液压泵得工作特性。 3、通过实验,学会小功率液压泵性能得测试方法与测试用实验仪器与设备。 二.实验设备与器材 QCS014型液压教学实验台、定量叶片泵、椭圆齿轮流量计、秒表、节流阀、 溢流阀。 三.实验内容 1。本实验所采用得液压泵为定量叶片泵,其主要得测试性能包括:能否在 额定压力下输出额定流量、容积效率、总效率及泵得输出功率等。 2、测定液压泵在不同工作压力下得实际流量,得出流量-—压力特性曲线 q=f(p)。实验中,压力由压力表读出,流量由椭圆齿轮流量计与秒表确定。 3、实验中用到得物理量: (1)理论流量:在实际得液压系统中,通常就是以公称(额定)转速下得空载(零压)流量来代替。 (2)额定流量:就是指在额定压力与额定转速下液压泵得实际输出量。

(3)不同工作压力下得实际流量:通过某种方式给液压泵加载,可得对应压力下得对应流量。 4、计算数据用到得公式: (1)液压泵得容积效率 : (2)液压泵得输出功率 : (3)液压泵得总效率: 四.实验步骤 1、首先熟悉QCS014 液压教学实验台液压系统得工作原理及各元件得作 用,明确注意事项。 2、实验装置液压系统原理图: 图2—1 液压泵性能实验液压系统原理图 3、操作步骤 (1)将节流阀开至最大,测出泵得空载流量q 空,并测出其相应得转速 n 空 .

(2)调节节流阀得开度,作为泵得不同负载,使泵得工作压力分别为记录表中所示得数值,并分别测出与这些工作压力p相应得泵得流量q。 (3)调节节流阀得开度,使泵得出口压力为泵得额定压力,测出泵得额定流 量q 额,并测出相应得转速n 额 。 4、实验注意事项 (1)节流阀每次调节后,运转1~2分钟后再测有关数据。 (2)压力P,可由压力表P2-1(P6)读出; (3) 流量q,在t时间间隔内,计算通过椭圆齿轮流量计油液容积累计数之差Δv,可由流量计读出在t时间内(可取t=1 分钟)累积数差(L /min);由此得: q=Δv/t*60(升/分) [t得单位为秒,Δv得单位为升] (4)容积效率ηv: ηv=实际流量/理论流量=q/qt [q得单位为升 /分,qt得单位为升/分] 在生产实际中,q 理论 一般不用液压泵设计说得几何参数与运转参数计算得,而就是以空载流量代替理论流量。 (5)扭矩M,采用电动机平衡法测量。 (6)转速n,可由光电转速表直接读出。 5、记录数据并填于下表 实验条件:油温19°C。n空=1447转/分n额=1447转/分

实验一 液压泵性能实验报告

实验一液压泵的性能测试 一、实验目的 通过对液压泵的测试,进一步了解泵的性能,掌握液压泵工作特性测测试的原理和基本方法。 二、实验内容 1.液压泵的流量—压力特性 2.液压泵的容积效率—压力特性 3.液压泵的总效率—压力特性 三、实验装置与实验分析 1)实验回路 实验回路原理图如图: 注:1.被测叶片泵;2.溢流阀;3.压力传感器;4.节流阀;5.流量传感器2)数据处理 容积效率:η=V e Vi = Qe Qi × Ni Ne ×100% 输出液压功率: 式中:V e—试验压力时的有效排量,mL/r; Vi—空载压力时的有效排量,mL/r; Qe—试验压力时的输出流量,L/min; Qi—空载压力时的输出流量,L/min; Pe—输出试验压力,KPa; Ne—试验压力时的转速,r/min; Ni—空载压力时的转速,r/min;

3)实验步骤: 1、依照原理图的要求,选择所需的液压元件;同时检验性能是否完 好。 2、将检验好的液压元件安装在插件板的适当位置,通过快速接头和 软管按回路的要求连接。 3、待确认安装和连接无误; a 、先将节流阀4开得销大,溢流阀1完全放松,启动泵空载运行几分钟,排除系统内的空气; b 、将节流阀完全关闭,起动叶片泵,慢慢调节溢流阀2使系统压力P 上升至所需的压力值比如:6MPa,并用镇紧螺母将溢流阀锁住。 c 、全部打开节流阀4,使阀被试泵的压力为P =0,(或者接近零) 此时测出来的流量为空载流量。再逐渐关小节流流阀4,作为泵的不同负载,对应测出并记录不同负载时的压力P ,流量Q 和电机输入功率W 、转速n 。 4、依照回路中各表不同压力的读数,绘制曲线图(与后附曲线图相 比较)。诺有数据采集系统,则曲线由数据采集系统直接产生。 5、实验完备后,放松溢流阀,将电机关闭,待回路中压力为零时拆 卸元件,清理好元件并放入规定抽屉内。 4)特性曲线: η 特性曲 线 Q P(KW)

液压油缸设计计算公式

液压油缸的主要设计技术参数 一、液压油缸的主要技术参数: 1.油缸直径;油缸缸径,内径尺寸。 2. 进出口直径及螺纹参数 3.活塞杆直径; 4.油缸压力;油缸工作压力,计算的时候经常是用试验压力,低于16MPa乘以,高于16乘以 5.油缸行程; 6.是否有缓冲;根据工况情况定,活塞杆伸出收缩如果冲击大一般都要缓冲的。 7.油缸的安装方式; 达到要求性能的油缸即为好,频繁出现故障的油缸即为坏。应该说是合格与不合格吧好和合格还是有区别的。 二、液压油缸结构性能参数包括:1.液压缸的直径;2.活塞杆的直径;3.速度及速比;4.工作压力等。 液压缸产品种类很多,衡量一个油缸的性能好坏主要出厂前做的各项试验指标,油缸的工作性能主要表现在以下几个方面: 1.最低启动压力:是指液压缸在无负载状态下的

最低工作压力,它是反映液压缸零件制造和装配 精度以及密封摩擦力大小的综合指标; 2.最低稳定速度:是指液压缸在满负荷运动时没 有爬行现象的最低运动速度,它没有统一指标, 承担不同工作的液压缸,对最低稳定速度要求也 不相同。 3.内部泄漏:液压缸内部泄漏会降低容积效率, 加剧油液的温升,影响液压缸的定位精度,使液 压缸不能准确地、稳定地停在缸的某一位置,也 因此它是液压缸的主要指标之。 液压油缸常用计算公式 液压油缸常用计算公式 项目公式符号意义 液压油缸面积 (cm 2 ) A =πD 2 /4 D :液压缸有效活塞直径 (cm) 液压油缸速度 (m/min) V = Q / A Q :流量 (l / min) 液压油缸需要的流量(l/min) Q=V×A/10=A×S/10t V :速度 (m/min) S :液压缸行程 (m) t :时间 (min) 液压油缸出力 (kgf) F = p × A F = (p × A) -(p×A) ( 有背压存在时 ) p :压力 (kgf /cm 2 )

泵与发动机的功率匹配原理

泵与发动机的功率匹配原理 发动机的输出功率: ne=me·ne/9 549 (1) 式中:ne——发动机输出功率(kw) me——发动机转矩(n·m) ne——发动机转速(r/min) 泵的输出功率为: nb=pbqb/60=pbqbnb/60 000 (2)式中:nb——泵的输出功率(kw) pb——泵出口压力(mpa) qb——泵出口流量(l/min) qb——泵的排量(ml/r) nb——泵的转速(r/min) 泵与发动机直接连接,有nb=ne。 由传动关系知,nb与ne又满足: nb=neη 1η 2(3) 式中η 1——泵与发动机之间的传动效率,泵与发动机直接连接时取为1,泵与发动机通过分动箱相连时取为0.97 η 2——泵自身的效率,由于泵一般为变量柱塞泵,当泵的排量、转速、压力变化时,效率也随之变化,因此,泵的效 率值由供应商提供。 当发动机期望工作在某一最佳工作点时,其输出转矩为一常

值,所以泵与发动机功率匹配,有关系式: mb=pbqb/2π=常值(4) 式中:mb——泵的吸收转矩n·m 因此,当负载pb变化时,通过调节泵的排量qb使得泵的输出转矩不变,就实现了泵与发动机之间的功率匹配,发动机的转速为设定的最佳工作点处的转速。从而得出结论:当发动机在设定的最佳工作点运行时,欲实现泵与发动机匹配,则要求泵具有恒功率特性,图1所示。 此主题相关图片如下: [disablelbcode] 恒功率泵可采用机械控制或微控器控制,机械控制的恒功率变量是靠不同的弹簧组合来近似实现恒功率的,在其恒功率区段能实现泵与发动机的匹配,但是有调节不方便、存在误差等不足。而当采取微控器(如MC控制器)控制时,能实现泵与发动机的精确匹配,而且调节方便。 2柴油机最佳工作点的选取 图2是发动机的外特性转矩曲线图,曲线ABCD是发动机的全负荷速度特性,斜线AH、BI、CJ、DK为不同油

浅谈液压泵的主要性能参数

浅谈液压泵的主要性能参数 液压泵的主要参数有压力、排量、流量、功率和效率等。 1.压力 液压泵压力有工作压力、额定压力、最高允许压力和吸人压力等。用P表示,单位为Mpa 1)工作压力p 工作压力是指液压泵实际工作时的输出压力。工作压力的大小取决于负载和管路的压力损失,随着外负的变化而变化,和液压泵的流量无关。 2)液压泵的额定压力Pn 液压泵的额定压力指液压泵在正常工作条件下,按试验标淮规定的连续运转最高巧-力。液压泵的实际工作压力要小于额定压力,如果工作压力大于额定压力时,液压泵就过载。3)最高允许压力Pmax 最高允许压力是指液压泵按试验标准规定的,允许短时间超过额定压力运行的最大压力值。 4)吸人压力 吸人压力是指液压泵进口处的压力。为了保证液压泵正常工作而不产生气穴,应限制液压泵的吸油髙度,即最低吸人压力必须大于相应的空气分离压力。 2,排量和流量 1)排量 排量是指液压泵每转一周,由其密封容积几何尺寸变化计算而得排出的液体体积。排量用V 表示,其单位为L/r排量可啁节的液压泵为变量泵,徘量不可调节的液压泵为定量泵。 流量 液压泵的流量是指在单位时间内排出的液体体积,有理论流量、实际流量和额定流量之分。用q表示,单位为L/min。 (1)理论流量q1。理论流量是指在不考虑液压泵的泄漏流量的情况下,在单位时间内所徘出的液体的体积。裉然,如果液压泵的排量为V,其主轴转速为",则该液压泵的理论流量为q1=Vn (2)实际流量qp。实际流量是指液压泵在工作时,考虑液压泵泄漏而输出的流量。它等于理论流量减去泄漏流量△q即 qp=q1-△q (3)额定流量qn额定流量是指液压泵在正常工作条件下,试验标准规定(如在额定压力和额定转速下)必须保证的流量。实际流量和额定流量都小于理论流量。 3)功率 液压泵的功率有输人功率、理论输出功率和实际输出功率。用P表示.单位是W 或KW。(1)输入功率P1。液压泵是通过电动机带动,输人的是转矩T和转速n;即输人能量为机械能。输人功率p1,指作用在液压泵主轴上的机械功率。

液压泵性能测试1

实验一 液压泵静态性能实验 一、实验目的 1、了解定量泵的主要静态性能,分析泵的性能参数之间的关系; 2、通过实验,学会小功率液压泵的测试方法和熟悉本实验所用的仪器和设备,掌握液压泵的工作特性。 二、实验所需设备 YZ-01型液压传动综合教学实验台。 三、实验内容及要求 1. 液压泵的流量——压力特性 测定液压泵在不同工作压力下的实际输出流量,得出流量——压力特性曲线()p f q q =。 实验原理见图。 实验中,压力由压力表8直接读出,各种压力时的流量由流量计4直接读出。实验中可使溢流阀2作为安全阀使用,调节其压力值为7.0~7.5MPa ,用节流阀3调节泵出口工作压力的大小,由流量计测得液压泵在不同压力下的实际输出流量,直到节流阀调小使液压泵出口压力达到额定压力6.0MPa 为止。给定不同的出口压力,测出对应的输出流量,即可得出该泵的()p f q q =。 2. 液压泵的容积效率——压力特性 测定液压泵在不同工作压力下,它的容积效率——压力的变化特 性()p f V V =η。 因为:() 0) ()()(q q q q V 空载流量输出流量理论流量输出流量理= = η

所以:理q q V = η 由于:)(p f q q = 则:)()(p f q p f V q V ==理 η 式中:理论流量理q :液压系统中,通常是以泵的空载流量来代 替理论流量(或者nv =理q ,n 为空载转速,v 为泵的排量)。 实际流量q :不同工作压力下泵的实际输出流量。 3. 液压泵的输出功率——压力特性 测定液压泵在不同工作压力下,它的实际输出功率和输出压力的变化关系()p f N N O =。 输出功率:()p f p pf pq N N q O (=== 4. 液压泵的总效率——压力特性 测定液压泵在不同工作压力下,它的总效率和输出压力之间的变化关系()p f ηη=总 )(p f N pq N N i i o ηη=== 总 式中:i N 为泵的输入功率,实际上i N 为泵的输入扭矩()T 与角速度()ω的乘积,由于扭矩T 不易测量,这里用电动机D 的输入电流功率近似表示,该值可以从实验台功率表上针对不同的输出压力时直接读出。

液压泵性能实验

液压泵性能实验 一、实验目的: 1、了解液压泵的工作特性。 2、通过实验对液压泵工作产生感性认识,如液压泵工作时振动,噪声,油压的脉动,油温的升温等。 3、掌握测试液压泵工作性能的方法,为今后设计、选择和使用液压泵打下初步基础。 二、实验装置液压系统原理图: 三、实验内容及实验原理 液压泵的主要性能包括:是否能达到泵的额定压力,额定流量容积效率,总效率, 压力脉动值(振摆值),噪音,寿命,升温和振动等。前三项是最主要的性能,本实验主要是测试这几项, 液压泵有电动机输入机械能转化成液压能输出,送给液压系统的执行机构。由于泵内有摩擦损失(其值用机械效率ηm 表示)和泵存在泄漏损失(其值用容积效率v η表示)。所以泵的输出功率必定小于输入功率。总效率为 η总=(O P /i P )=ηm v η 1、测试液压泵的输出流量,压力特性,计算容积效率。 液压泵本身泄漏而造成能量损失。油液黏度越低,压力越大,其漏损越大。本实验是测定液压泵在不同工作压力下的实际流量。 液压泵的容积效率v η为 v η=q/q t 理论流量q t 泵的理论流量q t 是指额定转速下空载(零压)的流量。为了测定理论流量q t ,应将节流阀的通流截面积调至最大,此时测出的流量为q t 。 2、液压系统的总效率

液压泵的输入功率 P:由功率表直接读出。 i P: 液压泵的输出功率 o P=pq(kW) O 式中:p——泵的输出压力(MPa) q——泵的输出流量L/min 3、根据实验所得的数据绘制特性曲线效率,即液压泵的流量----压力特性: 测定液压泵在不同压力下的实验流量,得出流量----压力特性曲线Q=f 1 (P)。液压泵因内泄漏将造成流量的损失,油液粘度越低,压力越高,其泄漏就越大,本实验中,压力由压力表读出,流量分别由量程为10l/min、100ml/min的椭圆齿轮流量计确定。 1、空载(零压)流量:在实验生产中,泵的理论流量Q理并不是按液压泵设计时的几何参数和运动参数计算,通常在公称转速下以空载(零压)时的流量Q空代Q理。本实验中应在节流阀10的通流截面积为最大的情况下测出泵的空载流量Q 空。 2、额定流量:指泵在额定压力和公称转速的工作情况下,测出的流量Q额,本装置中由节流阀10进行加载。 3、不同工作压力下的实际流量Q:不同的工作压力由节流阀10确定。读出相应压力下的流量Q。 四、实验步骤 4.1 本实验在秦川Qcs003型教学实验台进行。 启动液压泵18。使用磁阀17处于中位,电磁阀13处于常态。(参看图4-3)关闭节流阀10。将溢流阀11的压力调至高于泵(YB-6型)的额定压力-安全伐阀压力70Kgf/cm 2 。 然后调节节流阀10的开度,作为泵的不同负载,对应测出压力P、流量Q、扭矩M和转速n或电动机的输入功率N 表,注意:节流阀每次调节后,运转1-2分钟后再测有关数据。 压力P:由压力表P测量。 流量Q:用椭圆齿轮流量计测量每分钟流量累积数之差△V。 Q=△V/t*60(l/min) 式中t:对应容积变化量△V(1)所需的时间(S)。 扭矩M:采用电动机平衡法测量扭矩,如图3-2所示,M=G*1(kgf*m)。 转速n:用机械式转速表测量。

液压常用计算公式-液压泵

液压常用计算公式 1、齿轮泵流量(min /L ): 1000Vn q o =,1000 o Vn q η= 说明:V 为泵排量(r ml /);n 为转速(min /r );o q 为理论流量(min /L );q 为实际流量(min /L ) 2、齿轮泵输入功率(kW ): 60000 2Tn P i π= 说明:T 为扭矩(m N .);n 为转速(min /r ) 3、齿轮泵输出功率(kW ): 612 60'q p pq P o = = 说明:p 为输出压力(a MP );' p 为输出压力(2 /cm kgf );q 为实际流量(min /L ) 4、齿轮泵容积效率(%): 100V ?= o q q η 说明:q 为实际流量(min /L );o q 为理论流量(min /L ) 5、齿轮泵机械效率(%): 10021000?=Tn pq m πη 说明:p 为输出压力(a MP ); q 为实际流量(min /L );T 为扭矩(m N .);n 为转速(min /r ) 6、齿轮泵总效率(%):

m ηηη?=V 说明:V η为齿轮泵容积效率(%);m η为齿轮泵机械效率(%) 7、齿轮马达扭矩(m N .): π 2q P T t ??= ,m t T T η?= 说明:P ?为马达的输入压力与输出压力差(a MP ) ; q 为马达排量(r ml /);t T 为马达的理论扭矩(m N .);T 为马达的实际输出扭矩(m N .); m η为马达的机械效率(%) 8、齿轮马达的转速(min /r ): V q Q n η?= 说明:Q 为马达的输入流量(min /ml ); q 为马达排量(r ml /); V η为马达的容积效率(%) 9、齿轮马达的输出功率(kW ): 3 10 602?= nT P π 说明:n 为马达的实际转速(min /r ); T 为马达的实际输出扭矩(m N .) 10、液压缸面积(2cm ): 4 2 D A π= 说明:D 为液压缸有效活塞直径(cm ) 11、液压缸速度(min m ): A Q V 10= 说明:Q 为流量(min L );A 为液压缸面积(2 cm ) 12、液压缸需要的流量(min L ):

液压泵性能实验

液压泵性能实验 一、实验目的 了解液压泵的主要性能,并学会小功率液压泵的测试方法。 二、实验内容及方案 液压泵的主要性能包括:能否达到额定压力、额定压力下的流量(稳定流量),容积效率,总效率,压力脉动(振摆)值,噪声,寿命,温升,振动等项。前三项是重要的性能,泵的测试主要是检查这几项。 关于单级定量叶片液压泵各项技术指标(摘自JB2146—77),见表3—1。表3-1 项目名称额定压力 kgf/cm2 公称排量 ml/r 容积效率 % 总效率 % 压力振摆 kgf/cm2 单级定量叶片 泵63 ≤10≥80≥65 2 16 ≥88≥78 25~32 ≥90≥80 40~125 ≥92≥81 ≥160≥93≥82 液压泵由原动机输入机械能(M,n)而将液压能(P,Q)输出,送给液压系统的执行机构。由于泵内有摩擦损失(其值用机械效率η机表示),容积损失(泄漏)(其值用容积η容柞表示)和液压损失(其值用液压效率η液表示,该损失较小,通常忽略)。所以泵的输出功率必定小于输入功率,总效率为: η总=N出/N入=η机. η容.η液=η机. η容 直接测定η机比较困难,一般是测出η容和η总,然后算山η机。 (一)液压泵的流量一压力特性 测定液压泵在不同工作压力下的实际流量,得出流量一压力特性曲线Q=f1(P)。液压泵因内泄漏将造成流量的损失。油液粘度愈低,压力愈高,其漏损就愈大。本实验中,压力由压力表读出,流量由椭圆齿轮流量计和秒表(或采用量油箱和秒表)确定。 1、空载(零压)流量:在实际生产中,泵的理论流量Q理并不是按液压泵设计时的几何参数和运动参数计算,通常在额定转速下以空载时的流量Q空代替Q理。本实验中应在节流阀10的通流截面积为最大的情况下测出泵的空载流量Q空(见图3—1)。 2、额定流量:指泵在额定压力和额定转速的工作情况下,测出的流量Q。本装置中由节流阀10进行加载。 3、不同工作压力下的实际流量Q:不同的工作压力由节流阀10确定,读出相应压力下的流量Q。 (二) 液压泵的容积效率η容 η容=额定排量(额定转速下)/空载排量(额定转速下)=额定流量×空载转速/(空载流量×额定转速),即 η容=Q额×n空/(Q空×n额) 若电动机的转速在液压泵处于额定工作压力及空载(零压)时基本上相等(n空≈n辗),则 η容=Q额/Q空 (三)液压泵的总效率η总 η总=N出/N入或N出=N入.η总=N入.η机. η容

液压泵的技术性能分析及选用原则

液压泵的技术性能分析及选用原则液压泵是液压系统的动力能源装置,其功能是将原动机的机械能转换为油液的压力能,向系统提供具有一定压力的流量。液压泵都是容积式的,依靠泵内密封容积的变化原理实现吸油和压(排)油。 一、液压泵的种类及性能特征 液压泵根据结构形式的不同分为:柱塞泵、叶片泵、齿轮泵、螺杆泵。根据输出流量的不同分为:定量泵、变量泵。液压泵的种类及性能特征见下表1-1: 通过性能的对比,齿轮泵(外啮合、内啮合)都是定量泵,浮动轴传动,转速较高,存在压力(流量)脉动。叶片泵、柱塞泵有定量泵也有变量泵。转速不高。 2、定量泵与变量泵的适用场合总结如表1-2

作为定量泵的齿轮泵一般应用于机床、工程机械、农业机械、航空、船舶、一般机械。叶片泵一般应用于机床、注塑机、液压机、起重运输机械、工程机械、飞机。柱塞泵一般应用于工程机械、锻压机械、运输机械、矿山机械、冶金机械、船舶、飞机等。 二、液压泵的选用原则 液压泵是液压系统的动力源,应选用能适应执行器所要求的压力发生回路的泵,同时要充分考虑其可靠性、寿命、维护性等以便所选的泵能够长期运行。选择液压泵时要考虑的因素有结构形式、工作压力、流量、转速、效率(容积效率和总效率)、变量或定量、变量方式、寿命、噪声、压力脉动率、自吸能力、原动机种类及连接方式、工况环境(温升)、与液压油的相容性、尺寸、重量、经济性、维修性等。 1.1、齿轮泵的工作压力仅次于柱塞泵,但在固定液压设备领域因外啮合齿轮泵的流量脉动较大、噪声大等缺陷,作为主泵已不受欢迎,仅局限于用在低压下的辅助泵及预压泵。内啮合齿轮泵综合性能较好,在固定和行走设备中应用领域不断扩大。

计算题——液压传动

计 算 题 液 压 传 动 一、液压泵和液压马达的性能参数 1、液压泵的压力 (1)工作压力P 0:液压泵在实际工作时的输出压力,亦即液压泵出口的压力,泵的输出压力由负载决定。 (2)额定压力P n :在正常工作条件下,按试验标准规定连续运转所允许的最高压力。 2、液压泵的排量和流量 (1)排量V :在不考虑泄漏的情况下,液压泵主轴每转一周,所排出的液体的体积,称为排量,又称为理论排量、几何排量。常用单位为mL /r (2)理论流量q vt :在不考虑泄漏的情况下,液压泵在单位时间内所排出的液体的体积, 称为理论流量;工程上又称空载流量。 即:Vn q vt = (n 为转速) (3)实际流量q :实际运行时,在不同压力下液压泵所排出的流量。 (4)额定流量q vn :在额定压力、额定转速下,按试验标准规定必须保证的输出流量 由于泵存在泄漏,所以泵的实际流量和额定流量都小于理论流量。 3、液压泵的功率 (1)输出功率P 0: 在液压传动系统中,泵的输入是转矩和角速度,输出表现为液体的压力和流量。 因此,输出功率等于液体压力和流量的乘积。 即v pq P =0 (P ——液体压力,v q ——流量) (2)输入功率P i 液体泵的输入功率为驱动泵轴的机械功率。 即:i i nT P π2= (i P ——输入功率,n ——泵轴的转速,i T ——液压泵的输入转矩) 液压泵在工作中,由于有泄漏和机械摩擦,就有能量损失,故其输出功率小于输入功率,即i P P <0) 4、液压泵的效率 (1)容积效率v η:液压泵的实际流量与理论流量的比值称为泵的容积效率。 即:vt vt vt vt v v q q q q q q q ?-=?-==1η (v q ——实际流量、vt q ——理论流量) q ?——液压泵的泄漏量,它是理论流量与实际流量的差值,其值大小与泵的压力P 有关,随P 的增大而增大

液压泵液压缸液压马达的型号及参数以及

液压、气动 一、液压传动 1、理解:液压传动是以流体为工作介质进行能量传递的传动方式。 2、组成原件 1、把机械能变换为液体(主要是油)能量(主要是压力能)的液压泵 2 、调节、控制压力能的液压控制阀 3、把压力能转换为机械能的液压执行器(液压马达、液压缸、液压摆动马达) 4 、传递压力能和液体本身调整所必需的液压辅件 液压系统的形式 3、部分元件规格及参数 (1)液压泵 液压泵是的动力元件,是靠发动机或电动机驱动,从中吸入油液,形成压力油排出,送到的一种元件。 分类:齿轮泵:体积较小,结构较简单,对油的清洁度要求不严,价格较便宜;但泵轴受不平衡力,磨损严重,泄漏较大。 叶片泵:分为双作用叶片泵和单作用叶片泵。这种泵流量均匀、运转平稳、噪音小、作压力和容积效率比齿轮泵高、结构比齿轮泵复杂。 柱塞泵:容积效率高、泄漏小、可在高压下工作、大多用於大功率液压系统;但结构复杂,材料和加工精度要求高、价格贵、对油的清洁度要求高。 一般在齿轮泵和叶片泵不能满足要求时才用柱塞泵。还有一些其他形式的液压泵,如螺杆泵等,但应用不如上述3种普遍。

适用工况和应用举例 【KCB/2CY型齿轮油泵】工作原理: 2CY、KCB齿轮式输油泵在泵体中装有一对回转齿轮,一个主动,一个被动,依靠两齿轮的相互啮合,把泵内的整个工作腔分两个独立的部分。A为入吸腔,B为排出腔。泵运转时主动齿轮带动被动齿轮旋转,当齿化从啮合到脱开时在吸入侧(A)就形成局部真空,液体被吸入。被吸入的液体充满齿轮的各个齿谷而带到排出侧(B),齿轮进入啮合时液体被挤出,形成高压液体并经泵的排出口排出泵外。 KCB/2Y型齿轮油泵型号参数和安装尺寸如下: 【KCB/2CY型齿轮油泵】性能参数:

液压传动系统设计计算.

液压系统的设计步骤与设计要求 液压传动系统是液压机械的一个组成部分,液压传动系统的设计要同主机的总体设计同时进行。着手设计时,必须从实际情况出发,有机地结合各种传动形式,充分发挥液压传动的优点,力求设计出结构简单、工作可靠、成本低、效率高、操作简单、维修方便的液压传动系统。 一、设计步骤 液压系统的设计步骤并无严格的顺序,各步骤间往往要相互穿插进行。一般来说,在明确设计要求之后,大致按如下步骤进行。 1)确定液压执行元件的形式; 2)进行工况分析,确定系统的主要参数; 3)制定基本方案,拟定液压系统原理图; 4)选择液压元件; 5)液压系统的性能验算; 6)绘制工作图,编制技术文件。 1.1 明确设计要求 设计要求是进行每项工程设计的依据。在制定基本方案并进一步着手液压系统各部分设计之前,必须把设计要求以及与该设计内容有关的其他方面了解清楚。 1)主机的概况:用途、性能、工艺流程、作业环境、总体布局等; 2)液压系统要完成哪些动作,动作顺序及彼此联锁关系如何; 3)液压驱动机构的运动形式,运动速度; 4)各动作机构的载荷大小及其性质; 5)对调速范围、运动平稳性、转换精度等性能方面的要求; 6)自动化程序、操作控制方式的要求; 7)对防尘、防爆、防寒、噪声、安全可靠性的要求; 8)对效率、成本等方面的要求。 1.2进行工况分析、确定液压系统的主要参数 通过工况分析,可以看出液压执行元件在工作过程中速度和载荷变化情况,为确定系统及各执行元件的参数提供依据。 液压系统的主要参数是压力和流量,它们是设计液压系统,选择液压元件的主要依据。压力决定于外载荷。流量取决于液压执行元件的运动速度和结构尺寸。 1.3制定基本方案和绘制液压系统图 3.1制定基本方案 (1)制定调速方案 液压执行元件确定之后,其运动方向和运动速度的控制是拟定液压回路的核心问题。 方向控制用换向阀或逻辑控制单元来实现。对于一般中小流量的液压系统,大多通过换向

相关文档
最新文档