最优化理论与方法1(2014-简版)

最优化理论与方法1(2014-简版)
最优化理论与方法1(2014-简版)

《最优化理论与方法》讲义

(上)

第一章绪论

1.1 学科简介

最优化这一数学分支,为这些问题的解决提供了理论基础和求解方法。最优化就是在一切可能的方案中选择一个最好的方案以达到最优目标的学科。

1.1.1 优化的含义

优化是从处理各种事物的一切可能的方案中,寻求最优的方案。

(1)来源:优化一语来自英文Optimization,其本意是寻优的过程;

(2)优化过程:是寻找约束空间下给定函数取极大值(以max 表示)或极小(以min表示)的过程。

1.2 发展概况

第一阶段—人类智能优化

第二阶段—数学规划方法优化

第三阶段—工程优化

第四阶段—现代优化方法

1.3研究意义

研究意义:最优化在本质上是一门交叉学科,它对许多学科产生了重大影响,并已成为不同领域中很多工作都不可或缺的工具。

应用范围:信息工程及设计、经济规划、生产管理、交通运输、

国防工业以及科学研究等诸多领域。

总之,它是一门应用性相当广泛的学科,讨论决策的问题具有最佳选择之特性。它寻找最佳的计算方法,研究这些计算方法的理论性质及其实际计算表现。 1.4 示例

例1 资源分配问题

某工厂生产A 和B 两种产品,A 产品单位价格为A P 万元,B 产品单位价格为B P 万元。每生产一个单位A 产品需消耗煤C a 吨,电E a 度,人工L a 个人日;每生产一个单位B 产品需消耗煤C b 吨,电E b 度,人工L b 个人日。现有可利用生产资源煤C 吨,电E 度,劳动力L 个人日,欲找出其最优分配方案,使产值最大。分析:(1)产值的表达式;(2)优化变量确定:A 产品A x ,B 产品B x ;(3)优化约束条件: ①生产资源煤约束; ②生产资源电约束; ③生产资源劳动力约束。

例2 指派问题

设有四项任务1B 、2B 、3B 、4B 派四个人1A 、2A 、3A 、4A 去完成。每个人都可以承担四项任务中的任何一项,但所消耗的资金不同。设

i A 完成j B 所需资金为ij c 。如何分配任务,使总支出最少?

分析:设变量?????=任务完成不指派,

任务完成指派j j i ij B A B A x 0,1

则总支出可表示为:ij i j ij x c S ∑∑===414

1

数学模型:ij i j ij x c S ∑∑===414

1

min

∑===4

14,3,2,1,1.

.j ij

i x

t s

∑===4

1

4,3,2,1,1i ij

j x

{}4,3,2,1,,1,0=∈j i x ij

1.5 最优化的数学模型

最优化的数学模型是描述实际优化问题目标函数、变量关系、有关约束条件和意图的数学表达式,并能反映物理现象各主要因素的内在联系,是进行最优化的基础。 1.5.1 基本概念

1、决策变量(Decision variables)—问题中要确定的未知量,表明规划中的用数量表示的方案、措施,可由决策者决定和控制,也称优化变量。

决策变量或优化变量的全体实际上是一组变量,可用一个列向量表示。优化变量的数目称为优化问题的维数,如n 个优化变量,则称为n 维优化问题。

[]T

n n x x x x x x X ,,2121=????

?

?

??????=

优化问题的维数表征优化的自由度。优化变量愈多,则问题的自由度愈大、可供选择的方案愈多,但难度亦愈大、求解亦愈复杂。

通常,小型优化问题:一般含有2—10个优化变量;

中型优化问题:10—50个优化变量;

大型优化问题:50个以上的优化变量。

如何选定优化变量?确定优化变量时应注意以下几点:

(1)抓主要,舍次要。

(2)根据要解决问题的特殊性来选择优化变量。

2、约束条件(Constraint conditions)—指决策变量取值时受到的各种资源条件的限制。约束又可按其数学表达形式分成等式约束和不等式约束两种类型:

(1)等式约束:()0=

h

x

(2)不等式约束:()0≤

g

x

根据约束的性质可以把它们区分成:

性能约束—针对性能要求而提出的限制条件称作性能约束。

边界约束—只是对设计变量的取值范围加以限制的约束称作边界约束。

图1-2 优化问题中的约束面(或约束线)

(a)、二变量问题的约束线(b)三变量问题的约束面

可行域:在优化问题中,满足所有约束条件的点所构成的集合。

如约束条件()0162

2211≤-+=x x X g 和()0222≤-=x X g 的二维设计问

题的可行域D 。

图 约束条件规定的可行域D

一般情况下,可行域可表示为:

()()??

?===≤=m

j x h l

u x g D j u ,,2,1,0,,2,1,0 →不可行域:D

→可行点和不可行点:约束边界上的可行点为边界点,其余可行点为内点。

→起作用的约束与不起作用的约束:满足()0*=X g u 的约束为起作用约束,否则为不起作用的约束。(等式约束一定是起作用约束) 3、目标函数(Objective function)—它是决策变量的函数。

为了对优化进行定量评价,必须构造包含优化变量的评价函数,它是优化的目标,称为目标函数,以()X f 表示。

()()n x x x f X f ,,,21 =

在优化过程中,通过优化变量的不断向()X f 值改善的方向自动调整,最后求得()X f 值最好或最满意的X 值。在构造目标函数时,目标函数的最优值可能是最大值,也可能是最小值。

在优化问题中,可以只有一个目标函数,称为单目标函数。当在同一

设计中要提出多个目标函数时,这种问题称为多目标函数的最优化问题。

3.1 目标函数等值(线)面

? 定义:在高维空间()3≥n 中,使目标函数值取同一常数的点集

(){}为常数c c X f X ,/=,称为()X f 的等值线(或等值面)。

(或定义:对于具有相等目标函数值的自变量构成的平面曲线或曲面称为等值线或等值面。)

? 数学表达式

()c X f =

c 为一系列常数,代表一族n 维超曲面。

对于具有相等目标函数值的自变量构成的平面曲线或曲面称为等值线或等值面。

? 性质

在通常情况下,若目标函数()X f 是连续的单值函数,则其等值线具有以下性质:

(1) 不同值的等值线不相交;

(2) 除极值点所在的等值线外,等值线不会中断;

(3) 等值线稠密的地方,目标函数值变化较快,而稀疏的地方,

目标函数值变化较慢;

(4) 在极值点附近,等值线近似地呈现为同心椭球面族(椭圆族)。 4、可行域(Feasible region)—满足约束条件的决策变量的取值范围。 5、最优解(Optimal solution)—可行域中使目标函数达到最优的决策变量的值。

1.5.4 优化问题一般数学形式

设优化变量向量 []T n x x x X ,,,21 = 求目标函数 ()min →X f 满足约束条件 : ()m j X g j ,,2,1,0 =≤ ()l k X h k ,,2,1,0 == 即 ()()n n R X x x x f X f ∈=,,,min 21 s.t. ()m j X g j ,,2,1,0 =≤ ()l k X h k ,,2,1,0 == 1.5.5 建模实例

建立优化问题的数学模型一般步骤:

(1)根据问题要求,应用专业范围内的现行理论和经验等,对优化对象进行分析。

(2)对诸参数进行分析,以确定问题的原始参数、优化常数和优化变量。

(3)根据问题要求,确定并构造目标函数和相应的约束条件,有时要构造多目标函数。

(4)必要时对数学模型进行规范化,以消除诸组成项间由于量纲

不同等原因导致的数量悬殊的影响。 例 混合饲料配合

以最低成本确定满足动物所需营养的最优混合饲料。设每天需要混合饲料的批量为100磅,这份饲料必须含:至少0.8%而不超过1.2%的钙;至少22%的蛋白质;至多5%的粗纤维。假定主要配料包括石灰石、谷物、大豆粉。这些配料的主要营养成分为:

解:设321,,x x x 是生产100磅混合饲料所须的石灰石、谷物、大豆粉的量(磅)。

?

??

???

??

???

≥≥≥?≤+?≥+?≥++?≤++=++++=0

,0,010005.008.002.0100

22.050.009.0100008.0002.0001.0380.0100012.0002.0001.0380.0100

..1250.00463.00164.0min 321323

2321321321321x x x x x x x x x x x x x x x x t s x x x Z 1.5.6 优化设计的分类

1.6 优化问题的几何解释和基本解法

1.6.1 几何解释

√无约束优化问题就是在没有限制的条件下,对优化变量求目标函数的极小点。在优化空间内,目标函数是以等值面的形式反映出来的,则无约束优化问题的极小点即为等值面的中心。

√约束优化问题是在可行域内对设计变量求目标函数的极小点,此极小点在可行域内或在可行域边界上。

求目标函数()21,x x f z =在可行域D 上的极小点,是在与可行域D 有交集的等值线中找出具有最小值的等值线。

例1:二维非线性规划问题

()44min 12221+-+=x x x X F

()()()()0

0010

2..24132212211≤-=≤-=≤+-=≤-+-=x X g x X g x x X g x x X g t s

目标函数等值线是以点(2,0)为圆心的一组同心圆。如不考虑约束,其无约束最优解是: []()

00,2**==X F X T

约束方程所围成的可行域是D ,此时[]()812.334.158.0**==X F X T

,,

例2:非线性规划问题:

()()()2

22112min -+-=x x X F

05..21=-+x x t s

由图易见约束直线与等值线的切点

就是最优点,利用解析几何的方法得到该切点和最优值为:

()()

2,2,3**==X F X T

例3:非线性规划问题:

()()()2

22112min -+-=x x X F

,050

5.

.212122

21≥≥-+=-+x x x x x x x t s

解:①画出等式约束曲线0522

21=-+x x x 的图形。这是一条抛物线;

②画出不等式约束区域:0521≥-+x x 和0,21≥x x ; ③画出目标函数等值线,以及等值线与可行集的切点。 可见可行域为曲线段ABCD 。D 点是使目标函数值最小的可行点,其坐标可通过解方程组:

??

?=-+=-+0

50

52122

21x x x x x 得出: ()()

41,4**==X F X T

1.6.2 优化问题的基本解法

求解优化问题的基本解法有:解析法和数值解法。

1.6.

2.1 解析法

利用数学分析(微分、变分等)的方法,根据函数(泛函)极值的必要条件和充分条件求出其最优解析解的求解方法。

局限性:工程优化问题的目标函数和约束条件往往比较复杂,有时甚至还无法用数学方程描述,在这种情况下应用数学分析方法就会带来麻烦。 1.6.2.2 数值解法

这是一种数值近似计算方法,又称为数值迭代方法。它是根据目标函数的变化规律,以适当的步长沿着能使目标函数值下降的方向,逐步向目标函数值的最优点进行探索,逐步逼近到目标函数的最优点或直至达到最优点。

数值解法(迭代法)是优化设计问题的基本解法。其中也可能用到解析法,如最速下降方向的选取、最优步长的确定等。

数值计算的迭代方法具有以下特点: (1)是数值计算而不是数学分析方法;

(2)具有简单的逻辑结构并能反复进行同样的数值计算; (3)最后得出的是逼近精确解的近似解。

这些特点正与计算机的工作特点相一致。在数学规划中,采用

k k k k d X X α+=+1进行迭代运算时,求n 维函数()()n x x x f X f ,,,21 =的极

值点的具体算法如下图所示。

一、求解步骤:

数值迭代法的基本思路:是进行反复的数值计算,寻求目标函数值不断下降的可行计算点,直到最后获得足够精度的最优点。这种方法的求优过程大致可归纳为以下步骤:

(1)首先初选一个尽可能靠近最小点的初始点()0X ,从()0X 出发按照一定的原则寻找可行方向和初始步长,向前跨出一步达到()1X 点;

(2)得到新点()1X 后再选择一个新的使函数值迅速下降的方向及适当的步长,从()1X 点出发再跨出一步,达到()2X 点,并依此类推,一步一步地向前探索并重复数值计算,最终达到目标函数的最优点。 在中间过程中每一步的迭代形式为:

())()()1(k k k k s x x α+=+

()()

,,,210,)()1(=<+k x f x f k k

上式中:()k x —第k 步迭代计算所得到的点, 称第k 步迭代点,亦为第k 步设计方案;

()k α—第k 步迭代计算的步长; 图 迭代计算机逐步逼近最优点过程示意图

()k s —第k 步迭代计算的探索方向。

用迭代法逐步逼近最优点的探索过程如右图所示。 运用迭代法,每次迭代所得新的点的目标函数都应满足函数值下降的要求:

()()

,,,210,)()1(=<+k x f x f k k

迭代法要解决的问题:

())()()1(k k k k s x x α+=+

即(1)选择搜索方向;(2)确定步长因子;(3)给定收敛准则。 (一) 柯西收敛准则

点列{}k x 收敛的充要条件是:对于任意指定的实数0>ε,都存在一个只与ε有关而与χ无关的自然数N ,使得当两自然数m ,p > N 时,满足

εχχ≤-p m

()

εχχ

≤-∑=n

i p

i m

i 1

2

或 n

i p i m i ε

εχχ=≤-

(二) 迭代终止准则 (1)点距准则

11ε≤-+k k X X 或

21ε<-+k

k

k X

X X

其中21εε、是事先给定的要求精度。 (2)函数值下降量准则

31ε<-+k k f f 或

41ε<-+k

k

k f

f f

(3)目标函数梯度准则

()

5ε≤?k x f

至于采用哪种收敛准则,可视具体问题而定。可以取:

5210~10--≤ε

第二章 线性规划

2.1 线性规划问题及其数学模型 2.1.1 问题的提出

例1:(下料问题)某车间有长度为180cm 的钢管(数量足够多),今要将其截为三种不同长度的管料,长度分别为70cm 、52cm 和35cm 。生产任务规定,70cm 的管料只需100根,而52cm 、35cm 的管料分别不少于150根、120根,问应采取怎样的截法才能完成任务,同时使剩下的余料最少?

解:所用可能的截法共有8种,见下表:

上述下料问题的数学模型为:

()8765432152362452365min x x x x x x x x X f +++++++=

s.t. 10024321=+++x x x x

150********≥++++x x x x x 1205323876431≥+++++x x x x x x

()8,,2,10 =≥i x i

2.1.2 基本特点

线性规划问题的共同特征:

● 一组决策变量X 表示一个方案,一般X 大于等于零。 ● 约束条件是线性等式或不等式。

● 目标函数是线性的,且求目标函数最大化或最小化。

线性规划模型的一般形式:

n n x c x c x c f ++=2211min ()()()()??????

?????≤≥≥≥=+++≥=≤+++≥=≤++++0

,,0,,,,,,.

.1212

211222

2212111212111n q q m n mn m m n n n n x x x x x b x a x a x a b

x a x a x a b x a x a x a t s

线性规划问题的标准形式

(1)标准形式为—目标函数最小、约束条件等式、决策变量非负。

n n x c x c x c f ++=2211min

()()()?????

???

?≥≥=+++≥=≤+++≥=≤+++0

,,,,,,.

.2122112222212111212111n m

n mn m m n n n n x x x b

x a x a x a b x a x a x a b x a x a x a t s (2)简写形式

()j n

j j x c X f ∑==1min

?????=≥==∑=n j x m

i b x a j

n

j i j ij ,,2,1,0,,2,1,1

(3) 向量形式

()CX X f =min

s.t. ?????=≥=∑=n j x b X A j

n

j j j ,,2,1,01

其中()n c c c C ,,,21 =,()T n x x x X ,,,21 =,()T mj j j j a a a A ,,,21 =,

()T

m b b b b ,,,21 =

(4) 矩阵形式

()O

X b AX t s CX X f ≥==.

.min

其中 ()n mn m n A A A a a a a A ,,,211111 =????

??????= ??

???

?????=00 O

一般线性规划问题的标准化 ? ()CX X f =max 等价于()

X f =*min ? “≤” 约束:加入非负松驰变量 例1:目标函数 2132m a x x x f += 约束条件 8221≤+x x

1641≤x 改为 1242≤x 021≥x x 、 ? “≥” 约束: 减去非负剩余变量,即k x 可正可负(即无约束)。 例2: ?

其中543x x x -=

??????

?≥=+=+=++-----=0

,,,,12 4

16 48

200032min 543215241

3215

4321*x x x x x x x x x x x x x x x x x f 无约束

3213

2

1

321321321,0,7

232

7 32min x x x x x x x x x x x x x x x f ≥=++-≥+-≤++-+-=0

,,,,,7 )(232 )( 7

)( 00)(32min

765421542175421654217

65421≥=-++-=--+-=+-++++--+-=x x x x x x x x x x x x x x x x x x x x x x x x x x f

2.2 线性规划的图解法 2.2.1 图解法

如上述例1的数学模型

目标函数 2132m a x x x f +=

约束条件 0

,1241648

2212121≥≤≤≤+x x x x x x

2.2.2 图解法求解步骤

● 由全部约束条件作图求出可行域;

● 作目标函数等值线,确定使目标函数最优的移动方向; ● 平移目标函数的等值线,找出最优点,算出最优值。 2.2.3 线性规划问题求解的几种可能结果

(A) 唯一最优解;(B) 无穷多最优解;

(A) (B)

(C) 无界解;

(D)无可行解。

其可行域为空集

2.2.4 由图解法得到的启示

●可行域是有界或无界的凸多边形。

●若线性规划问题存在最优解,它一定可以在可行域的顶点得到。

●若两个顶点同时得到最优解,则其连线上的所有点都是最优解。

●解题思路:找出凸集的顶点,计算其目标函数值,比较即得。

2.3 线性规划解的性质

2.3.1 线性规划解的概念 ◆ 标准型

()0

.

.min ≥I ==X b AX t s X C f T

其中[]n m ij a A ?=,设()m A R =,即约束方程组b AX =中没有多余的方程,则应有m n ≥。如果用j P 表示矩阵A 的第j 列,则b AX =也可记为

b P

x j

n

j j =∑=1

◆ 基:若()m P P P B ,,,21 =可逆,则

B 称为线性规划式()I 的基。()m j P j ,,2,1 =称为基向量。有时也称向量组m P P P ,,,21 为()I 的基,

而将B 称为基矩阵(或称基阵)

基(描述二):若B 是矩阵A 中m ×m 阶非奇异子矩阵(|B|≠0,即可逆),则B 是线性规划问题的一个基矩阵(或称基阵)。不妨设:

其中 非基变量

基变量

基向量

---+=---=---=n j j x m j x m j P j j j ,,1,,,2,1,,,2,1,

求解 b AX =,则

基变量()T m B x x x X ,,,21 =,令021====++n m m x x x

可求出:()0,,0,0,,,,'

'2'1 m b b b X =

n

mn n m mm m m m mm m m x a a x a

a b b x a a x a a ????

? ??--?????

??-????? ??=????

? ??++?

??

??

??+++ (11111111)

111)

,...,(,...,..............,...,11

111m mm m m P P a a a a B =?

????

??=

特别地,若()()n m m P P N P P P B ,,,,,121 +==,则()N B A ,=,相应地将X 分解为??

?

???=N B X X X 。这样b AX =变为

()b NX BX X X N B N B N B =+=??

?

???,

令 ??

?

???=??????=-001b B X X B

则 ()b b B N B AX =??

?

???=-0,1

若令()T m x x x b B ,,,211 =-,则

()T

m x x x X 0,,0,,,21 =

是上述标准型线性规划问题的一个基本解。

◆ 基本解:对于基B ,令非基变量为零,求得满足b AX =的解,称为

B 对应的基本解(或称基解)。

◆ 基本可行解:非负的基本解X 称为基本可行解。 ◆ 可行基:对应基本可行解的基称为 可行基。 ◆ 最优解:使CX f =达到最小值的可行解称为最优解。 ◆ 线性规划解的关系图

由于A 是n m ?矩阵,故线性规划问题的不同的基最多有m n C

个。

《最优化方法》复习题(含答案)

《最优化方法》复习题(含答案)

附录5 《最优化方法》复习题 1、设n n A R ?∈是对称矩阵,,n b R c R ∈∈,求1()2 T T f x x Ax b x c =++在任意点x 处的梯度和Hesse 矩阵. 解 2(),()f x Ax b f x A ?=+?=. 2、设()()t f x td ?=+,其中:n f R R →二阶可导,,,n n x R d R t R ∈∈∈,试求()t ?''. 解 2()(),()()T T t f x td d t d f x td d ??'''=?+=?+. 3、设方向n d R ∈是函数()f x 在点x 处的下降方向,令 ()()()()() T T T T dd f x f x H I d f x f x f x ??=--???, 其中I 为单位矩阵,证明方向()p H f x =-?也是函数()f x 在点x 处的下降方向. 证明 由于方向d 是函数()f x 在点x 处的下降方向,因此()0T f x d ?<,从而 ()()()T T f x p f x H f x ?=-?? ()()()()()()()() T T T T T dd f x f x f x I f x d f x f x f x ??=-?--???? ()()()0T T f x f x f x d =-??+?<, 所以,方向p 是函数()f x 在点x 处的下降方向. 4、n S R ?是凸集的充分必要条件是12122,,,,,,,,m m m x x x S x x x ?≥?∈L L 的一切凸组合都属于S . 证明 充分性显然.下证必要性.设S 是凸集,对m 用归纳法证明.当2m =时,由凸集的定义知结论成立,下面考虑1m k =+时的情形.令1 1k i i i x x λ+==∑, 其中,0,1,2,,1i i x S i k λ∈≥=+L ,且1 1 1k i i λ+==∑.不妨设11k λ+≠(不然1k x x S +=∈, 结论成立),记11 1k i i i k y x λλ=+=-∑ ,有111(1)k k k x y x λλ+++=-+,

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

最优化方法试题

《最优化方法》试题 一、 填空题 1.设()f x 是凸集n S R ?上的一阶可微函数,则()f x 是S 上的凸函数的一阶充要条件是( ),当n=2时,该充要条件的几何意义是( ); 2.设()f x 是凸集n R 上的二阶可微函数,则()f x 是n R 上的严格凸函数( )(填‘当’或‘当且仅当’)对任意n x R ∈,2()f x ?是 ( )矩阵; 3.已知规划问题22211212121212min 23..255,0z x x x x x x s t x x x x x x ?=+---?--≥-??--≥-≥?,则在点55(,)66T x =处的可行方向集为( ),下降方向集为( )。 二、选择题 1.给定问题222121212min (2)..00f x x s t x x x x ?=-+??-+≤??-≤?? ,则下列各点属于K-T 点的是( ) A) (0,0)T B) (1,1)T C) 1(,22 T D) 11(,)22T 2.下列函数中属于严格凸函数的是( ) A) 211212()2105f x x x x x x =+-+ B) 23122()(0)f x x x x =-< C) 2 222112313()226f x x x x x x x x =+++- D) 123()346f x x x x =+- 三、求下列问题

()22121212121211min 51022 ..2330420 ,0 f x x x x x s t x x x x x x =+---≤+≤≥ 取初始点()0,5T 。 四、考虑约束优化问题 ()221212min 4..3413f x x x s t x x =++≥ 用两种惩罚函数法求解。 五.用牛顿法求解二次函数 222123123123()()()()f x x x x x x x x x x =-++-++++- 的极小值。初始点011,1,22T x ??= ???。 六、证明题 1.对无约束凸规划问题1min ()2 T T f x x Qx c x =+,设从点n x R ∈出发,沿方向n d R ∈ 作最优一维搜索,得到步长t 和新的点y x td =+ ,试证当1T d Q d = 时, 22[() ()]t f x f y =-。 2.设12*** *3(,,)0T x x x x =>是非线性规划问题()112344423min 23..10f x x x x s t x x x =++++=的最优解,试证*x 也 是非线性规划问题 144423* 123min ..23x x x s t x x x f ++++=的最优解,其中****12323f x x x =++。

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

天津大学《最优化方法》复习题(含答案)

天津大学《最优化方法》复习题(含答案) 第一章 概述(包括凸规划) 一、 判断与填空题 1 )].([arg )(arg min max x f x f n n R x R x -=∈∈ √ 2 {}{} .:)(m in :)(m ax n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题)(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的 严格局部最优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍

属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法 A 为下降算法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ . 13 算法迭代时的终止准则(写出三种):_____________________________________。 14 凸规划的全体极小点组成的集合是凸集。 √ 15 函数R R D f n →?:在点k x 沿着迭代方向}0{\n k R d ∈进行精确一维线搜索的步长k α,则其搜索公式

第九章 最优化方法

第九章 最优化方法 本章主要介绍线性规划、0-1规划、非线性规划等问题的MATLAB 求解。 9.1 线性规划(Linear Programming ,简写为LP )问题 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的集合称为可行域,满足目标式的可行解称为最优解。 MATLAB 解决的线性规划问题的标准形式为: min z f x ¢ =? .. A x b s t Aeq x beq lb x ub ì祝??? ?í??#??? 其中,,,,,f x b beq lb ub 为列向量,,A Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。 在MATLAB 中求解线性规划问题函数为linprog ,其使用格式为: [x, fval, exitflag, output, lambda] = linprog(f, A, b, Aeq, beq, lb, ub) 输入部分:其中各符号对应线性规划问题标准形式中的向量和矩阵,如果约束条件中有缺少,则其相应位置用空矩阵[]代替。 输出部分:其中x 为最优解,用列向量表示;fval 为最优值;exitflag 为退出标志,若exitflag=1表示函数有最优解,若exitflag=0表示超过设定的迭代最大次数,若exitflag=-2,表示约束区域不可行,若exitflag=-3,表示问题无解,若exitflag=-4,表示执行迭代算法时遇到NaN ,若exitflag=-5,表示原问题和对偶问题均不可行,若exitflag=-7,表示搜索方向太小,不能继续前进;output 表明算法和迭代情况;lambda 表示存储情况。 例1 用linprog 函数求下面的线性规划问题

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

最优化原理与方法复习

最优化原理与方法复习 第1章最优化问题的基本概念§最优化的概念最优化就是依据最优化原理和方法,在满足相关要求的前提下,以尽可能高的效率求得工程问题最优解决方案的过程。§最优化问题的数学模型 1.最优化问题的一般形式?findx1,x2,?,xn?minf(x,x,?,x)?12 n? (x,x,?,x)?0u?1,2,?,pu12n??hv(x1,x2,?,xn)? 0v?1,2,?,q? 2.最优化问题的向量表达式?findX?minf(X)?? (X)?0??H(X)?0?式中:X?[x1,x2,?,xn]T G(X)?[g1(X),g2(X),?,gp(X)]T H(X)?[h1(X),h2(X),?,hp(X)]T 3.优化模型的三要素设计变量、约束条件、目标函数称为优化设计的三要素!设计空间:设计变量所确定的空间。设计空间中的每一个点都代表一个设计方

案。§优化问题的分类按照优化模型中三要素的不同表现形式,优化问题有多种分类方法:1按照模型中是否存在约束条件,分为约束优化和无约束优化问题2按照目标函数和约束条件的性质分为线性优化和非线性优化问题3按照目标函数个数分为单目标优化和多目标优化问题4按照设计变量的性质不同分为连续变量优化和离散变量优化问题第2章最优化问题的数学基础§n元函数的可微性与梯度一、可微与梯度的定义1.可微的定义设f(X)是定义在n维空间Rn的子集D上的n元实值函数,且X0?D。若存在n维向量L,对于任意n维向量P,都有f(X0?P)?f(X0)?LTPlim?0 P?0P则称f(X)在X0处可微。 2.梯度设有函数F(X),X?[x1,x2,?,xn]T,在其定义域内连续可导。我们把F(X)在定义域内某点X处的所有一阶偏导数构成的列向量,定义为F(X)在点X处的梯度。记

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

第九章 试验设计与方差分析

第九章试验设计与方差分析 在科学试验中我们常常要研究参加试验的各种条件的改变对试验结果的影响,从中选出最好的试验组合,以达到最佳试验结果。试验结果也称试验指标,试验中变化的条件称为因素( facter ) , 因素在试验中所取的每一个状态称为因素的一个水平(level )。如在考察不同温度对收率有无显著影响的药物生产中,药物收率为试验指标,温度为一个因素,生产中所取的不同温度为水平。“方差分析”是研究各个因素各个水平对试验结果影响大小的一种常用方法。本章将简要介绍试验设计的原则和方法,着重讨论单因素试验,双因素试验,多因素正交试验及其方差分析。 第一节试验设计 一、试验设计原则 任何试验都包含三个基本要素:因素,对象和效应。例如在研究用有机溶液提取中药有效成分的试验中,溶液的种类和浓度,催化剂,温度等可视为因素;所选择的中药样品为对象;而浸出率则可视为效应。根据试验的目的选择参加试验的因素,并从质量或数量上对每个因素确定不同的水平,因素及其水平在试验全过程中应保持不变。试验中选择多一些因素和水平可以提高试验效率,但并不是愈多愈好;试验对象需要具有同质性,如以小白鼠为对象做某种药理试验,小白鼠的年龄,体重及其某些生理条件必须大体相同。效应即试验指标,有数量和非数量的两种,指标要求必须是客观的和精确的。为了准确地考查因素的不同水平所产生的效应,在试验设计中应注意以下基本原则。 1.对照(control )为了更好地说明试验因素的影响和作用,常在试验中设立对照组。对照的目的在于抵消或减少非试验因素的干扰,以避免对试验效应作出错误的判断。 2.均衡( balance) 通过对照抵消非试验因素干扰的关键是试验设计的均衡性,即在试验中应使试验组和对照组在非试验因素上大致相同。如在考察某种药物疗效的试验中,试验组和对照组的对象(病人)的性别,年龄,病情等应尽量一致,而观察指标,方法,仪器,人员等应相同,以保持试验对象和试验条件的均衡。 3.随机化(randomization )利用均衡原则还不能使所有非试验因素达到真正均衡。随机化是均衡的一种补救方法,使各对象或试验条件享有均等的机会。以利于非试验因素对结果的影响。随机化的常用工具是随机数字表。 4.重复( replication ) 重复是指在相同条件下对每个个体独立进行多次的试验,它可以避免由于试验次数太少而导致非试验因素的个别极端影响而产

修订过的最优化方法复习题

《最优化方法》复习题 第一章 引论 一、 判断与填空题 1 )].([arg )(arg m in m ax x f x f n n R x R x -=∈∈ √ 2 {}{}.:)(min :)(max n n R D x x f R D x x f ?∈-=?∈ ? 3 设.:R R D f n →? 若n R x ∈*,对于一切n R x ∈恒有)()(x f x f ≤*,则称*x 为最优化问题 )(min x f D x ∈的全局最优解. ? 4 设.:R R D f n →? 若D x ∈*,存在*x 的某邻域)(*x N ε,使得对一切)(*∈x N x ε恒有)()(x f x f <*,则称*x 为最优化问题)(min x f D x ∈的严格局部最 优解. ? 5 给定一个最优化问题,那么它的最优值是一个定值. √ 6 非空集合n R D ?为凸集当且仅当D 中任意两点连线段上任一点属于D . √ 7 非空集合n R D ?为凸集当且仅当D 中任意有限个点的凸组合仍属于D . √ 8 任意两个凸集的并集为凸集. ? 9 函数R R D f n →?:为凸集D 上的凸函数当且仅当f -为D 上的凹函数. √ 10 设R R D f n →?:为凸集D 上的可微凸函数,D x ∈*. 则对D x ∈?,有).()()()(***-?≤-x x x f x f x f T ? 11 若)(x c 是凹函数,则}0)( {≥∈=x c R x D n 是凸集。 √ 12 设{}k x 为由求解)(min x f D x ∈的算法A 产生的迭代序列,假设算法A 为单调下降算 法,则对{} ,2,1,0∈?k ,恒有 )()(1k k x f x f ≤+ .

优化原理与方法_作业答案

《优化原理与方法》作业解答要点 5.1 建造一容积为V (m 3)的长方形蓄水池(无盖),要求选择其长、宽、高,使表面积最小,从而建筑用料最省。试写出此问题的数学模型。 [解] 选择设计变量x 1、x 2、x 3分别代表蓄水池的长、宽、高,优化数学模型为: 5.2 某公司有资金a 万元,可供选择购置的设备有n 种,已知相应于第i 种设备所需资金为 b i 万元,可得收益为 c i 万元,要求收益最大的投资安排。试写出其数学模型。 [解] 选择设计变量x 1、x 2、…、x n 分别代表n 种可选购设备的购买数量,优化数学模型为: 5.3 某城市要建造一供应服务中心,向该市m 个用户提供服务,设第i 个用户的位置为(a i , b i ),需要货物量为w i 吨,试寻求这个中心最经济的位置,使运输量(吨公里数)最小。 [解] 选择设计变量x 1、x 2代表中心的位置坐标,优化数学模型为: ?? ?? ? ?? ? ? ≥≥≥=??++= t..s 22 .min ],,[ 3min 32min 21min 1321313221321x x x x x x V x x x x x x x x x x x x T 使得寻求x ????? ? ???? ?? ? ?=?=≥≤?=∑∑==n i x n i x a x b x c x x x i i n i i i n i i i T n ,1,2, , ,1,2, ,0 t..s .max ] , ,,[ 1 1 21为整数使得寻求x ?? ??? -+-=∑=m i i i i T b x a x w x x 1222121)()( .min ],[ 使得寻求x

预测与决策试卷及答案解析

经济预测与决策 考试形式:闭卷考试时量:150分钟总分:100分 一.单选题1*15=15分 1.经济预测的第一步是()A A.确定预测目的,制定计划 B.搜集审核资料 C.建立预测模型 D.评价预测成果 2.对一年以上五年以下的经济发展前景的预测称为()B A.长期经济预测 B.中期经济预测 C.短期经济预测 D.近期经济预测 3.()回归模型中,因变量与自变量的关系是呈直线型的。C A.多元 B.非线性 C.线性 D.虚拟变量

4.以下哪种检验方法的零假设为:B1=B2=…=Bm=0?B A.r检验 B.F检验 C.t检验 D.DW检验 5.以数年为周期,涨落相间的波浪式起伏变动称为()D A.长期趋势 B.季节变动 C.不规则变动 D.循环变动 6. 一组数据中出现次数最多的变量值,称为()A A.众数 B.中位数 C.算术平均数 D.调和平均数 7. 通过一组专家共同开会讨论,进行信息交流和相互启发,从而诱发专家们发挥其创造性思维,促进他们产生“思维共振”,达到相互补充并产生“组合效应”的预测方法为()A A.头脑风暴法 B.德尔菲法

C.PERT预测法 D.趋势判断预测法 8.()起源于英国生物学家高尔登对人类身高的研究。B A.定性预测法 B.回归分析法 C.马尔科夫预测法 D.判别分析预测法 9.抽样调查的特点不包括()D A.经济性 B.时效性 C.适应性 D.全面性 10.下图是哪种多项式增长曲线()B A.常数多项式 B.一次多项式 C.二次多项式

D.三次多项式 11.根据历年各月的历史资料,逐期计算环比加以平均,求出季节指数进行预测的方法称为()C A.平均数趋势整理法 B.趋势比率法 C.环比法 D.温特斯法 12.经济决策按照目标的性质和行动时间的不同,分为()D A.宏观经济决策和微观经济决策 B.高层、中层和基层决策 C.定性决策和定量决策 D.战术决策和战略决策 13.()是从最好情况出发,带有一定冒险性质,反映了决策者冒进乐观的态度。B A.最大最小决策准则 B.最大最大决策准则 C.最小最小后悔值决策准则 D.等概率决策准则 14.如果某企业规模小,技术装备不良,担负不起较大的经济风险,则该企业应采用()A

2011年下学期最优化理论与方法考试试卷(A)

中南大学考试试卷 2011--2012学年 1 学期 时间100分钟 最优化理论与方法 课程 48 学时 学分 考试形式: 闭 卷 专业年级: 信科08、应数08 总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上,可用中英文作答。 1.(15 points ) For an unconstrained optimization problem: ),(min x f Let )0(x be a given point, )0(d be a descent search direction at )0(x . (1) With the exact line search, show that there is a steplength 0α satisfying .0)()0()0(0)0(=+?d d x f T α (2)Show that when applied to a quadratic objective function, the Newton method with the exact line search terminates in at most one iteration. 2. (15 points )For an unconstrained optimization problem: .2)(min 2 221x x x f += (1) Find a descent direction )0(d of f at .)1,1() 0(T x = (2) By the Armijo line search, find a steplength 0α along )0(d at .)0(x 3.(15 points ) (1)Let .2113???? ??=A Find two directions 1d and 2d such that 1d and 2d are conjugate with respect to the matrix A . (2)Show that when applied to a quadratic objective function, with the exact line search, the PRP conjugate gradient method is equivalent to the FR conjugate gradient method.

最优化试题及答案

最优化理论、方法及应用试题 一、 (30分) 1、针对二次函数1()2 T T f x x Q x b x c =++,其中 Q 是正定矩阵,试写出最速下降 算法的详细步骤,并简要说明其优缺点? 答:求解目标函数的梯度为()g x Qx b =+,()k k k g g x Q x b ==+,搜索方向:从k x 出发,沿k g -作直线搜索以确定1k x +。 Step1: 选定0x ,计算00,f g Step2: 做一维搜索, ()1min k k k t f f x t g +=-,1k k k x x tg +=-. Step3:判别,若满足精度要求,则停止;否则,置k=k+1,转步2。 优缺点:最速下降法在初始点收敛快,算法简单,在最优点附近有锯齿现象,收敛速度慢。 2、有约束优化问题 m in ()()0,1,2,,.. ()0,1,2,,i j f x g x i m s t h x j l ≥=???==?? 最优解的必要条件是什么? 答:假设*x 是极小值点。必要条件是f ,g ,h 函数连续可微,而且极小值点的所有起作用约束的梯度(*)(1,2,,)i h x i l ?= 和(*)(1,2,,)j g x j m ?= 线性无关,则 存在****** 12 12,,,,,,,,l m αααβββ 使得 ()1 1* * * * * * 1 212* * (*)*(*)*(*)0 *(*)0,1,2,,,,,,,,,0 0,0 l m i i j j i i j j l m i j f x h x g x g x j m α β βα ααβββαβ==?- ?- ?===≠>≥∑∑ 3、什么是起作用约束?什么是可行方向?什么是下降方向?什么是可行下降方向?针对上述有约束优化问题,如果应用可行方向法,其可行的下降方向怎样确定? 答:起作用约束:若0()0j g x =,这时点0x 处于该约束条件形成的可行域边界上,它对0x 的摄动起到某种限制作用。 可行方向:0x 是可行点,某方向p ,若存在实数00λ>,使得它对任意

最优化理论与算法(第九章)

第九章 二次规划 §9.1 二次规划问题 称形如 1m in ()2 T T Q x x H x g x = + 1,,. 1,,T i i e T i i e a x b i m s t a x b i m m ?==??≥=+?? (9.1) 的非线性规划问题为二次规划问题。对二次规划问题,有如下的最优性条件。 定理9.1 设x *是(9.1)的局部极小点,则必存在乘子(1,,)i i m λ*= ,使得 1 0 1,, 0 1,,m i i i T i i i e i e g H x a a x b i m m i m m λλλ**=*** ?+=? ?? ??-==+????≥=+??? ∑ (9.2) 且对于一切满足于: 0, ()T i d a i E I x * =∈ 的n d R ∈,都有0T d Hd ≥。 注:1)上述定理的前后两部分分别对应于一、二阶的必要条件; 2)满足上述条件的d ,都有(,)d S x λ* * ∈; 3)当约束条件均为线性函数时,容易证明: (,)(,) (,F D x X S F D x X L F D x X * * *= =及(,)(,)S x G x λλ**** = 上面给出的是二次规划的必要性条件,下面给出充分性条件。 定理9.2 设x * 是K-T 点,λ* 是相应的Lagrange 乘子,如果对满足 0 0 () 0 () 0 T i T i T i i d a i E d a i I x d a i I x λ* **?=∈?≥∈??=∈>? 且 (9.3) 的一切非零向量n d R ∈,都有0T d Hd >,则x * 是(9.1)的局部严格极小点。

最优化方法(试题+答案)

一、 填空题 1 . 若 ()()??? ? ??+???? ?????? ??=212121 312112)(x x x x x x x f ,则 =?)(x f ,=?)(2x f . 2.设f 连续可微且0)(≠?x f ,若向量d 满足 ,则它是f 在x 处的一个下降方向。 3.向量T ) 3,2,1(关于3阶单位方阵的所有线性无关的共轭向量 有 . 4. 设R R f n →:二次可微,则f 在x 处的牛顿方向为 . 5.举出一个具有二次终止性的无约束二次规划算 法: . 6.以下约束优化问题: )(01)(..)(min 212121 ≥-==+-==x x x g x x x h t s x x f 的K-K-T 条件为: . 7.以下约束优化问题: 1 ..)(min 212 2 21=++=x x t s x x x f 的外点罚函数为(取罚参数为μ) . 二、证明题(7分+8分) 1.设1,2,1,:m i R R g n i =→和m m i R R h n i ,1,:1+=→都是线性函数,证明下 面的约束问题: } ,,1{, 0)(},1{, 0)(..)(min 1112 m m E j x h m I i x g t s x x f j i n k k +=∈==∈≥=∑= 是凸规划问题。

2.设R R f →2 :连续可微,n i R a ∈,R h i ∈,m i ,2,1=,考察如下的约束条件问题: } ,1{,0} 2,1{,0..) (min 11m m E i b x a m I i b x a t s x f i T i i T i +=∈=-=∈≥- 设d 是问题 1 ||||,0,0..)(min ≤∈=∈≥?d E i d a I i d a t s d x f T i T i T 的解,求证:d 是f 在x 处的一个可行方向。 三、计算题(每小题12分) 1.取初始点T x )1,1() 0(=.采用精确线性搜索的最速下降法求解下面的无约束优化问题 (迭代2步): 2 2212)(m in x x x f += 2.采用精确搜索的BFGS 算法求解下面的无约束问题: 212 2212 1)(min x x x x x f -+= 3.用有效集法求解下面的二次规划问题: . 0,001..42)(min 21212 12 221≥≥≥+----+=x x x x t s x x x x x f 4.用可行方向算法(Zoutend ij k算法或Frank Wol fe算法)求解下面的问题(初值设为)0,0() 0(=x ,计算到)2(x 即可): . 0,033..22 1)(min 212112 22121≥≥≤+-+-= x x x x t s x x x x x x f

相关文档
最新文档