最优化理论与方法论文(DOC)

最优化理论与方法论文(DOC)
最优化理论与方法论文(DOC)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法

摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。

关键字:web服务组合可信评价;全局个性化;动态规划;

0.引言

随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分:

1)基于领域本体的web服务可信度量模型。

2)基于偏好推荐的原子web服务可信评估方法。

3)基于全局的个性化web服务组合可信评估方法。

研究思路:

本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

何从全局角度动态地调整评估模型;同时引入用户业务关注度来表达原子web 服务对服务组合可信性的影响程度(从用户角度);应用动态规划的方法构建一个全局的个性化web服务组合可信评估模型,最后给出一个代表性的数值算例。

文章结构布局:

1节将主要介绍几种不同的服务组合模式,并对进行分析,引入基于全局的问题,并给出一种解决方法;2节将主要介绍如何构建一个全局的个性化服务组合评估模型,并根据用户的业务关注度,获得各原子web服务对服务组合的可信性影响权重,进而获得可信评估值。3节将主要介绍如何应用此模型,并给出了一个最优服务组合选择方法(动态规划模型)。

1.基于组合全局的调整策略

基于全局的评估策略,是指从全局角度计算服务组合的可信评估值。目前已有的全局评估模型,基本都是采用原子服务属性值汇总,再加权评估的方式,没有考虑到组合服务的业务逻辑关系(服务组合模式)。在本节的全局策略中,将充分考虑服务组合方式对服务组合可信性的影响,为可信web服务组合评估提供一种更可信的全局策略。首先,介绍基本的服务组合模式;接着,分析不同模式的影响;最后,给出考虑全局的调整方法。服务组合流程可以被定义为一组相互关系的任务(或业务),这些任务具有各种不同的功能,并通过原子服务完成。在常见的服务组合应用中,原子web服务通过一定的组合模式构成服务组合。研究者提供了多种原子web服务组合模式,提WS4BPEL支持多种组合模式。但实质上都可以分解为顺序模式、分支模式、并行模式和循环模式的有限递归嵌套,因此本文仅讨论这4中模式。

1)顺序模式相当于程序结构中的顺序结构,服务组合中的服务根据业务被分解为多个阶段。每个服务按顺序依次完成其业务功能。

2)分支结构相当于程序结构中的分支结构,多个分支中根据一定的判断条件选择一条分支执行。在计算该模式下的属性值时,由于无法判断具体运行那条,一般采用统计方式估算,即根据可能执行的概率计算平均值。

3)并行模式相当于程序结构中的并行结构,多条分支同时进行。一般用于为下一阶段的业务准备多个初始条件。这些任务之间相互独立,全部完成后,才能进入下一阶段。

4)循环模式相当于程序结构中的循环结构,一条路径被重复循环地执行次。可以看作顺序模式的一个复合结构,即把这条路径展开Z次执行。在进行可信评估时,需要考虑执行的次数。

由上面四种结构组合出来的服务组合网络有多种形式,如何从中识别出关键的路线成了研究的关键步骤;关键路径:服务组合业务流程中执行时间最长的那一条路径。关键路径上的业务称为关键任务,其他任务称为非关键任务。其中关键路径的识别问题类似求解最短路径问题(目标函数转化为最大),可采用E.W. Dijkstra提出的T、P标号算法或L.R.Ford提出的Ford算法。

2.基于全局的个性化web服务组合可信评估模型

2.1构建评价模型步骤

目前大部分关于服务组合评估的研究中,基本都是采用的全局一致化的评

估模型。即在服务组合中,每个原子服务釆用相同的评估属性项及权重,然后根据每个原子服务的属性评估值计算出服务组合全局的各属性评估值,最后结合权重得到服务组合的综合评估值。虽然这种评估方法取得了一定的成果,但是每个原子服务的类型存在差异,其处在的领域不同,根据前面分析,显然,其评估属性及其权重是不一致的。所以,这种全局一致化的评估模型很难得到可信的评估值本文提出全局个性化的可信评估模型在原子服务个性化的评估模型基础上合成服务组合的评估模型。其构建步骤如下:

步骤1:构建服务组合中原子web 服务的个性化评估模型:

步骤1.1:识别服务组合中各原子web 服务的类型;

步骤1.2:根据类型构建基于领域的评估模型(算法2。1 WSTAM )。

步骤2:构建好个性化的评估模型后,需根据原子web 服务在服务组合中的位置(关键路径、非关键路径),动态地调整其评估模型:

步骤2.1:识别非关键任务;

步骤2.2:对并行路径非关键任务上的web 服务评估模型进行调整。

2.2确定原子web 服务权重

不同的用户对服务组合中不同的原子服务的关注程度是不同的。如,在网上购物流程中,用户对选择商品、网上支付、提交评价信息这三个原子服务,更多地关注前两个原子服务的可信性,对提交评价信息这个服务的关注较少。虑到用户对每个原子服务的关注度是定性的,采用先排序后比较相邻关注度的方法,将用户的定性关注度转化为定量的权重值。具体步骤如下:

步骤1:将服务组合中所有的原子服务组成集合…,

步骤2:用户根据个人对服务组合中原子服务关注程度的高低进行降序排序,

获得降序序列(1)(2)(3)()n s s s s >>>其中,可以通过不断地从剩余的原子服务中选择出最重要的一个原子服务来完成排序。

步骤3:用户设定序列(1)(2)(3)()n s s s s >>>

中,相邻两个原子服务()i s 与(+1)i s 的相对关注度。

步骤4:根据用户给出的相对关注度等级,获得相对权重(1)(2)(1)[,,

]n r r r - 其中()i r 是两个原子服务的绝对权重之比。

又因为:()(1)()(1)(2)()1()()()(1)i i i i i n n a a a k i i n a a a k i r r r r +++--==??=??=∏其中:()i 11n i a ==∑,()()()1

11111()()()()111(1)i n n n n n n a k i n a n a a i i i k i r a a ----=======-∑

∑∑则有: 11()11

()(1)n n k i k i

n r a --==+=∑

(4.1)

1()()()n i n k k i a a r -==?∏ (4.2) 按公式4-1和4-2计算得到用户对每个原子服务的用户关注度权重,即每个原

子服务对整个服务组合可信评估重要程度权重。

121[,,],1n n i i A a a a a ===∑

(4.3)

计算服务组合可信评估值,需要的信息包括各原子web 服务的可信属性及属性权重值,各原子web 服务相对服务组合的权重,各属性的评估值。在计算web 服务组合评估值时还需考虑其执行的概率i p ,和次数i l ,因此服务组合评估值

的计算公式如下: 11n

i i i i

i n i i i

i p L a D p L a D ==?????∑=∑ (4.4)

其中,i a ,i D 分别表示第i 个原子web 服务的权重和可信评估值,D 是整个服务组合的可信评估值

3.动态规划在服务组合可信评价方案中的应用

对web 服务进行可信评估的目的是为了在大量满足功能需求的web 服务中选择出最可信的web 服务组合。根据web 服务组合的状态,其应用可分为两类:

1)对已有的web 服务组合进行评估,选择最优的web 服务组合;2)选择最优的原子web 服务组合成可信的web 服务组合。下面将从这两方面分析其应用。

3.1 web 服务组合的选择

对多个已经组合好的web 服务组合,我们只需按其组合模式分解成多个原子web 服务,再釆用第2节中的方法,获得每个web 服务组合的可信评估值。排序选择评估值最大的web 服务组合即可,选择出的服务组合可信性最好。具体的操作,上文中已详述,此处不再重复。

3.2原子web 服务的最优组合

根据本文提出的评估方法,原子web 服务最优组合问题,可转化为了一个动态规划问题。即将最优组合问题转化为多阶段决策问题,随着时间的推移,在每一阶段上做出最恰当的决策,以实现web 服务组合的可信性全局最优。同时每阶段需根据服务组合的模式及客观执行时间动态调整原子web 服务的评估模型。选择出的最优组合满足功能需求,且可信性最优。

动态规划包括以下几个基本概念:

1)阶段:把所给的问题恰当地分为若干个相互联系的阶段,阶段的划分一般是根据时间和空间的自然特征来划分。描述阶段的变量称为阶段变量,可用k 表示。如,在本文的最优组合中可按执行先后的顺序将每个原子web 服务分成一个阶段。

2)状态:状态表示每个阶段 始所处自然状态或客观条件,它描述了研究问题过程中的状况,又称不可控因素。描述过程状态的变量称为状态变量,可用k Z 表示第k 阶段的状态变量。状态变量应具有无后效性,即如果某阶段的状

态给定后,则以后过程的发展仅仅取决于这一时刻的状态,而与这一时刻以前的状态和决策无关。如,在本文中非并行路径上的每个原子web 服务的服务实例可作为状态变量。

3)决策:决策表示当过程处于某一阶段的某一状态时,所做出的不同的决定或选择。描述决策的变量称为决策变量,可用()k k c z 表示决策变量, ()k k c z 表示每个阶段的允许决策集合。如,在本文中,每个阶段选择一个原子web 服务实例为一个决策。

4)策略:从起点到终点的全过程中,每个阶段都有一个决策,由这一系列决策所构成的行为方案称为全过程的一个策略。可记为:11122{(),(),(),}n n P c z c z c z =,n 在本文中,每一种web 服务组合作为做一个策略。

5)状态转移方程:状态转移方程是确定过程由一个状态转移到另一个状态的演变过程。即1k Z +的值随着在,k k z c 的变化而变化,这种确定的对应关系,记为1=(,)k k k k Z T z c +,它描述了由k 阶段到k+1阶段的状态转移规律,称为状态转移方程式,k T 称为状态转移函数。如,在本文中状态转移方程为1=c ()k k k Z z +。

6)指标函数和最优指标函数:用来衡量所实现过程优劣的一种数量指标,称为指标函数。它是定义在全过程和所有后部子过程上的数值函数,可用Vk+1表示:

,,11(,,,,,,)k n k n k k k k n n V V Z c Z c Z c ++=

某一阶段到下一阶段的效益,可用阶段函数(,)k k k j z c 表示,指在第k 阶段由状态k z 釆用决策k k

c z ()时的效益。如,本文中每个原子web 服务实例的可信评估值可作为阶段函数值。最优指标函数即指标函数的最优值,记为()k k f z ,表示从第k 阶段由状态k z 到第n 阶段终点状态过程中,采用最优策略所得到的指标函数值。即:

,11{,}()=(){(,,,,

,,)}k n k k k n k k k k n n c c f z Max Min V Z c Z c Z c ++

建立动态规划模型,一般包括以下步骤:

步骤1:划分阶段,绘出状态转移图;

步骤2:列出每阶段所有可能的状态;

步骤3:列出每阶段所有可能的决策;

步骤4:导出状态转移方程;

步骤5:找出阶段指标函数;

步骤6:列出动态规划方程;

步骤7:计算出最优策略及其指标值。

在本文所提出的四种组合交互结构中,并行结构是最复杂同时也是最具有

代表性的,故本文主要选取并行结构来进行动态规划的实例计算过程如下:

此服务组合由5个原子web服务组成,其组合模式如下图1所示:

图1 服务组合关系图

每个原子web服务的服务实例及可信评估值如下表1所示:

表1 可信评价值表

根据本文的可信评估方法获得的评估值是属于1到5之间的实数,表中的数据是随机给出的。调整后的评估值也是随机给出的,但并不影响此处的分析。

根据web服务组合模式下图所示为了表示清楚图2中只给出部分数字,动态规划分为6个阶段。每个节点表示一个原子web服务实例(状态、决策),每条线表示节点服务实例的可信评估值(阶段指标函数)。虚线框内的为并行模

式上的原子web 服务实例,其评估值为(可信评估值,调整后的可信评估值)。在框内的各阶段需加入执行时间判断条件,进行决策。节点上的数值为客观执行时间。

图2:动态规划状态转移图

接下来我们采用顺推法来计算此过程:

1)当k=1时,11,1() 4.5f s =;11,2() 3.5f s =

2)当k=2时,处于并行阶段,我们需要分情况讨论:

a :节点:2,1s 初始:21,12,111,122,121,22,111,2(,)() 3.5 4.5()max max 8(,)() 3.5 3.5j s s f s f s j s s f s +??+????===????++??????

; 路径:1,12,1s s →

调整:21,12,111,122,121,22,111,2(,)()4 4.5()max max 8.5(,)()4 3.5j s s f s f s j s s f s '+??+????'===????'++??????

; 路径:1,12,1

s s '→

b :节点2,2s 初始:21,12,211,122,221,22,211,2(,)() 4.5 4.5()max max 9(,)() 4.5 3.5j s s f s f s j s s f s +??+????===????++??????

; 路径:1,12,2s s →

调整:21,12,211,122,221,22,211,2(,)() 3.5 4.5()max max 8(,)() 3.5 3.5j s s f s f s j s s f s '+??+????'===????'++?????

?; 路径:1,12,2

s s '→ 3)当k=3时,因此阶段处于并行模式上,需分情况处处理,且第3阶段与第2阶段的原子服务是局部顺序结构模式,其调整策略是一致的。

a :节点:3,1s

初始:32,13,112,133,132,23,112,2(,)() 2.58()max max 11.5(,)() 2.59j s s f s f s j s s f s +??+????===????++??????

; 路径:1,12,13,1s s s →→

调整:32,13,122,133,132,23,122,2(,)()38.5()max max 11.538(,)()j s s f s f s j s s f s ''+??+????'===????'+'+?????

?; 路径:1,12,1

3,1s s s ''→→

b :节点3,2s 初始:32,13,222,133,232,23,222,2(,)()4+8()max max 13(,)()4+9j s s f s f s j s s f s +??????===????+?????

? 路径:1,12,23,2s s s →→

这里不在一一列出每步的计算过程,依据上面给出的动态规划计算步骤和计算演示:我们最终可以得到:

当k=6时,S 为结束点,

65,155,1365,255,2(,)()0+21.3()max max 21.3(,)()0+19.8j s s f s f s j s s f s +??????===????'+??????

最优路径为:1,12,1

3,24,25,1s s s s s s ''→→→→→; 因此采用本文提出的优化方法获得的最优服务组合为1,12,13,24,25,1s s s s s s ,,,,,,其可信评估值 21.3 最大。

4.结论

本文主要提出了一种基于全局的个性化web 服务组合评估方法,综合考虑的原子web 服务的领域相关的个性化特征、web 服务组合的全局特征及用户评估的偏好特征。首先,分析了不同的服务组合模式,给出了一种全局调整的策略;接着,构建一个全局的个性化服务组合评估模型,并给出了一种基于用户的业务关注度的各原子web 服务权重确定方法及web 服务组合的计算方法。最后,分析了服务组合评估方法的应用,并给出了一个基于动态规划模型最优服务组合选择方法。实际上本文提出的方法,能提供个性化的评估模型,并能对模型进行动态的调整,相对于局部或一致化的评估方法,能更可信地评估web 服务组合,进而选择出更能满足用户可信需求的最优web 服务组合。然而,还存在一些不足之处有待改进和提高。如,对由于本文没有考虑可信属性之间的相关性,在评估模型动态调整时,给出的调整方法相对简单。

参考文献:

[1]肖文,张自力,李伟华. 基于QoS的可信Web服务组合研究[J]. 计算机科

学,2011,06:173-176.

[2]唐佳俊. Web服务组合可信属性建模与分析[D].南京航空航天大学,2012.

[3]唐佳俊,黄志球,王进. 一种Web服务组合的可信评估方法[J]. 计算机科

学,2013,02:163-166+171.

[4]朱锐. 可信服务组合若干关键技术研究[D].国防科学技术大学,2009.

[5]马建威,舒振,郭得科,陈洪辉. QoS可信的服务组合技术研究[J]. 计算机应用研

究,2010,05:1840-1844.

[6]朱锐,王怀民. 可信服务组合研究综述[J]. 计算机工程与科学,2010,12:107-112+144.

[7]朱小勇. Web服务环境下的信任评估模型研究[D].重庆大学,2010.

[8]汤景凡. 动态Web服务组合的关键技术研究[D].浙江大学,2005.

[9]赵昆仑. 基于信任和QoS的Web服务选择与组合研究[J]. 电子技术与软件工

程,2015,05:32-33.

[10]吴新星. 基于语言的软件可信性度量理论及其应用[D].华东师范大学,2011.

[11]王尚广. 基于QoS度量的Web服务选择关键技术研究[D].北京邮电大学,2011.

[12]祝希路. 基于QoS的可信Web服务关键技术研究[D].北京邮电大学,2011.

[13]张杨. 语义Web服务组合的可信性度量研究[D].重庆大学,2011.

[14]孙昌爱,赵敏,何啸. 一种面向Web服务的综合可信性度量模型[J]. 北京科技大学学

报,2014,04:543-550.

[15]王卫芳. web服务组合的可信评估方法研究[D].中南大学,2012.

[16]高楊. 基于Web服务可信性的用户反馈度量研究[D].北京邮电大学,2014

硕士-最优化理论与方法试题-2013

E2012-2013学年硕士《最优化理论与方法》课程试题 姓名 学号 成绩 第一部分 理论基础(每题10分,共50分) 要求:(1)请自备计算器以及excel 、lingo 、matlab 等计算软件进行计算; (2)请自行准备A4纸张答题纸,可用蓝色或黑色钢笔(或签字笔)书写解题过程、小论文,写明题目番号,但不能使用铅笔(画图除外)、红笔、圆珠笔答题;答案也可用A4纸张打印提交。提交时包含本试卷原题病写明姓名、学号。 (3)开卷考试。但请考生独立完成,严禁互相抄袭答案。一旦发现题目解答过程雷同,这些学生将统统记零分。 一、问:点 x * =(2,1)是否为以下非线性规划问题的K —T 点,为什么? ???? ?????≥=+≤+-+-0,,425})2()3min{(212122212221x x x x x x x x 二、试用共轭梯度法求二次函数2212()4f x x x =+的极小值点。 三、试用步长加速法(模矢法)求下述函数2212112min ()242f x x x x x x =+-- 的极 小点。初始点X (0)=(3,1)T ,步长△1=(0.5,0)T ,△2=(0,0.5)T ,并绘图表示整个迭代过程。 四、试用Zoutendijk 可行方向法求解下列线性约束的非线性目标函数的最优解: 其中ε1=ε2=0.1,初始点X (0)=(0,0)T ,迭代到得出X (2)和f(X (2))即可。(计算过程中尽量保持分数计算,如果以小数计算尽量保持五位以上,最终结算结果保留四位小数。 222 121212121212min ()222462..55 ,0 f x x x x x x x x R x x s t x x x x =+---∈+≤??+≤??≥? 五、用外点法(罚函数法)求解以下非线性规划的最优解。并给出罚因子M 为1、

最优化论文

厂址选择问题最优化论文 目录 摘要 (3) 1 问题重述 (4) 2 模型假设 (4) 3 模型的分析与建立 (4) 3.1模型分析与建立 (4) 4 模型的求解及结果分析 (6) 4.1问题的求解 (6) 4.2求解结果的分析 (7) 5模型优缺点分析 (7) 参考文献 (8) 附录 (8)

厂址选择问题 摘要 优化理论是一门实践性很强的学科,广泛应用于生产管理、军事指挥和科学试验等各种领域,Matlab优化工具箱提供了对各种优化问题的一个完整的解决方案。在应用于生产管理中时,为了使总的消费费用最小,常常需要解决一些厂址的选择问题。 对于该问题的厂址建设及规模分配,根据题意给出的一系列数据,可以建立数学模型,运用线性规划问题给出目标函数及约束条件,然后根据模型中的约束条件知,其中有等式约束和不等式约束,所以选用常用约束最优化方法中的外点罚函数来求解,因为外点罚函数是通过一系列惩罚因子{M k ,k=0,1,2, }, 求F(X,M k )的极小点来逼近原约束问题的最优点,当M k 趋于无穷大时,F(X,M k ) 的极小值点就是原问题的最优点X*。其中目标函数为F(X,M K )=f(X)+M K a(X),其 中 )) ( ( )] ( [ )] ( [ 1 2 1 2x g u x g x h i l i i m j j∑ ∑ = = + 给定终止限ε。根据外点罚的步骤及流 程图,编写出源程序,然后根据任意选取的初始点,并且罚因子及递增系数应取适当较大的值,从D外迭代点逼近D内最优解。 最后,根据外点罚函数的流程图,运用Matlab软件编写程序,求出最优解,即最优方案,使费用最小,并且也在规定的规模中。 关键字:Matlab 外点罚函数罚因子

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

最优化论文

理学院 最优化理论与应用 课程设计 学号:XXXXXXX 专业:应用数学 学生姓名:XXXXXX 任课教师:XXXXXX教授 2015年10月

第一部分 在最优化理论与应用这门课中,我对求指派问题及指派问题的一个很好的解法匈牙利算法的应用比较感应趣。下面做出来讨论。 国内外的研究情况:“匈牙利算法”最早是由匈牙利数学家尼格(D.Koning )用来求矩阵中0元素个数的一种方法 ] 3[,由此他证明了“矩阵中独立0元素的最 多个数等于能覆盖所有0元素的最小直线数”。1955年由库恩(W.W.Kuhn )在求解著名的指派问题时引用了这一结论 ] 4[,并对具体算法做了改进,任然称为“匈 牙利算法”。解指派问题的匈牙利算法是从这样一个明显事实出发的:如果效率矩阵的所有元素 ≥ij a ,而其中存在一组位于不同行不同列的零元素,而只要令 对应于这些零元素位置的1 =ij x ,其余的 =ij x ,则z= ∑∑n i n j ij ij x a 就是问题的最 优解。 第二部分 结合我的基础知识对匈牙利算法的分析与展望 一.基础知识运用 企业员工指派问题的模型建立与求解 1.标准指派问题(当m=n 时,即为每个人都被指派一项任务) 假定某企业有甲乙丙丁戊五个员工,需要在一定的生产技术组织条件下,A ,B,C,D,E 五项任务,每个员工完成每项工作所需要耗费的工作时间如下: 求出:员工与任务之间应如何分配,才能保证完成工作任务的时间最短?最短时间为多少? 模型建立 设用C>0表示指派第i 个人去完成第j 项任务所用费时间,定义决策变量 , {j i ,1j i ,0项任务 个人去完成第当指派第项任务个人去完成第当不指派第=ij χ则指派问题的数学模型为:

最优化方法及其应用 - 更多gbj149 相关pdf电子书下载

最优化方法及其应用 作者:郭科 出版社:高等教育出版社 类别:不限 出版日期:20070701 最优化方法及其应用 的图书简介 系统地介绍了最优化的理论和计算方法,由浅入深,突出方法的原则,对最优化技术的理论作丁适当深度的讨论,着重强调方法与应用的有机结合,包括最优化问题总论,线性规划及其对偶问题,常用无约束最优化方法,动态规划,现代优化算法简介,其中前八章为传统优化算法,最后一章还给出了部分优化问题的设计实例,也可供一般工科研究生以及数学建模竞赛参赛人员和工程技术人员参考, 最优化方法及其应用 的pdf电子书下载 最优化方法及其应用 的电子版预览 第一章 最优化问题总论1.1 最优化问题数学模型1.2 最优化问题的算法1.3 最优化算法分类1.4

组合优化问題简卉习题一第二章 最优化问题的数学基础2.1 二次型与正定矩阵2.2 方向导数与梯度2.3 Hesse矩阵及泰勒展式2.4 极小点的判定条件2.5 锥、凸集、凸锥2.6 凸函数2.7 约束问题的最优性条件习题二第三章 线性规划及其对偶问题3.1线性规划数学模型基本原理3.2 线性规划迭代算法3.3 对偶问题的基本原理3.4 线性规划问题的灵敏度习题三第四章 一维搜索法4.1 搜索区间及其确定方法4.2 对分法4.3 Newton切线法4.4 黄金分割法4.5 抛物线插值法习题四第五章 常用无约束最优化方法5.1 最速下降法5.2 Newton法5.3 修正Newton法5.4 共轭方向法5.5 共轭梯度法5.6 变尺度法5.7 坐标轮换法5.8 单纯形法习題五第六章 常用约束最优化方法6.1外点罚函数法6.2 內点罚函数法6.3 混合罚函数法6.4 约束坐标轮换法6.5 复合形法习题六第七章 动态规划7.1 动态规划基本原理7.2 动态规划迭代算法7.3 动态规划有关说明习题七第八章 多目标优化8.1 多目标最优化问题的基本原理8.2 评价函数法8.3 分层求解法8.4目标规划法习题八第九章 现代优化算法简介9.1 模拟退火算法9.2遗传算法9.3 禁忌搜索算法9.4 人工神经网络第十章 最优化问题程序设计方法10.1 最优化问题建模的一般步骤10.2 常用最优化方法的特点及选用标准10.3 最优化问题编程的一般过程10.4 优化问题设计实例参考文献 更多 最优化方法及其应用 相关pdf电子书下载

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法的Matlab实现(公式(完整版))

第九章最优化方法的MatIab实现 在生活和工作中,人们对于同一个问题往往会提出多个解决方案,并通过各方面的论证从中提取最佳方案。最优化方法就是专门研究如何从多个方案中科学合理地提取出最佳方案的科学。由于优化问题无所不在,目前最优化方法的应用和研究已经深入到了生产和科研的各个领域,如土木工程、机械工程、化学工程、运输调度、生产控制、经济规划、经济管理等,并取得了显著的经济效益和社会效益。 用最优化方法解决最优化问题的技术称为最优化技术,它包含两个方面的内容: 1)建立数学模型即用数学语言来描述最优化问题。模型中的数学关系式反映了最优化问题所要达到的目标和各种约束条件。 2)数学求解数学模型建好以后,选择合理的最优化方法进行求解。 最优化方法的发展很快,现在已经包含有多个分支,如线性规划、整数规划、非线性规划、动态规划、多目标规划等。 9.1 概述 利用Matlab的优化工具箱,可以求解线性规划、非线性规划和多目标规划问题。 具体而言,包括线性、非线性最小化,最大最小化,二次规划,半无限问题,线性、非线性方程(组)的求解,线性、非线性的最小二乘问题。另外,该工具箱还提供了线性、非线性最小化,方程求解,曲线拟合,二次规划等问题中大型课题的求解方法,为优化方法在工程中的实际应用提供了更方便快捷的途径。 9.1.1优化工具箱中的函数 优化工具箱中的函数包括下面几类: 1 ?最小化函数

2.方程求解函数 3.最小—乘(曲线拟合)函数

4?实用函数 5 ?大型方法的演示函数 6.中型方法的演示函数 9.1.3参数设置 利用OPtimSet函数,可以创建和编辑参数结构;利用OPtimget函数,可以获得o PtiOns优化参数。 ? OPtimget 函数 功能:获得OPtiOns优化参数。 语法:

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

第九章 最优化方法

第九章 最优化方法 本章主要介绍线性规划、0-1规划、非线性规划等问题的MATLAB 求解。 9.1 线性规划(Linear Programming ,简写为LP )问题 线性规划问题就是求多变量线性函数在线性约束条件下的最优值。满足约束条件的解称为可行解,所有可行解构成的集合称为可行域,满足目标式的可行解称为最优解。 MATLAB 解决的线性规划问题的标准形式为: min z f x ¢ =? .. A x b s t Aeq x beq lb x ub ì祝??? ?í??#??? 其中,,,,,f x b beq lb ub 为列向量,,A Aeq 为矩阵。 其它形式的线性规划问题都可经过适当变换化为此标准形式。 在MATLAB 中求解线性规划问题函数为linprog ,其使用格式为: [x, fval, exitflag, output, lambda] = linprog(f, A, b, Aeq, beq, lb, ub) 输入部分:其中各符号对应线性规划问题标准形式中的向量和矩阵,如果约束条件中有缺少,则其相应位置用空矩阵[]代替。 输出部分:其中x 为最优解,用列向量表示;fval 为最优值;exitflag 为退出标志,若exitflag=1表示函数有最优解,若exitflag=0表示超过设定的迭代最大次数,若exitflag=-2,表示约束区域不可行,若exitflag=-3,表示问题无解,若exitflag=-4,表示执行迭代算法时遇到NaN ,若exitflag=-5,表示原问题和对偶问题均不可行,若exitflag=-7,表示搜索方向太小,不能继续前进;output 表明算法和迭代情况;lambda 表示存储情况。 例1 用linprog 函数求下面的线性规划问题

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

最优化论文

题目:非线性最小二乘法问题的一种解法--高斯-牛顿法 学生姓名:聂倩云 学号:113113001039 学院:理学院 专业名称:应用数学

非线性最小二乘法问题的一种解法--高斯-牛顿法 目录 前言 (1) 1. 拟牛顿法及相关讨论 (1) 2.牛顿法 (1) 3.拟牛顿法 (2) 3.1DFP公式 (2) 3.2BFGS公式 (4) 3.3限域拟牛顿法 (6) 4.针对二次非凸性函数的若干变形 (6) 参考文献: (7)

非线性最小二乘法问题一种解法--高斯-牛顿法 学生:聂倩云 学号:113113001039 摘 要:非线性最小二乘法问题在工程技术、测绘等各个领域有着非常广泛的应用,我们考虑无约束非线性最小二乘问题的一种常见的解法:高斯-牛顿法。求解无约束优化问题的基本方法是牛顿法,本文从这点出发,介绍此方法步骤,探讨此方法的收敛性,讨论它的收敛速度,并给出高斯-牛顿法的一种修正:阻尼高斯牛顿法。 关键词:非线性最小二乘;高斯-牛顿法;收敛性;收敛速度 前言 非线性最小二乘问题结构特殊,不仅可以用一般的最优化问题求解的方法,还可以对一般的无约束优化问题求解方法进行改造,得到一些特殊的求解方法。而这些方法基本思想就是形成对目标函数的海森矩阵不同的近似。 1.非线性最小二乘法问题概述 非线性最小二乘法模型为 ()()[]()()()22 12 12121m in x r x r x r x r x f T m i i ===∑= 其一阶、二阶导数分别为 ()()()x r x A x g = ()()()()()()()x S x M x r x r x A x A x G m i i i T +=?+=∑=12 其中()()()()()T m x r x r x r x r ,,,21 =称为在点x 处的残向量,()x r i 为非线性函 数,且 ()()()[]x r x r x A m ??=,,1 ,其中()()() T x A x A x M =称为高斯-牛顿 矩阵,为()x G 中的线性项,()x S 为()x G 中的非线性项。 2.高斯-牛顿法 高斯-牛顿法主要思想是省略非线性项()x S 从而形成对海森矩阵的近似。

《最优化方法》期末试题

作用: ①仿真的过程也是实验的过程,而且还是系统地收集和积累信息的过程。尤其是对一些复杂的随机问题,应用仿真技术是提供所需信息的唯一令人满意的方法。 ②仿真技术有可能对一些难以建立物理模型或数学模型的对象系统,通过仿真模型来顺利地解决预测、分析和评价等系统问题。 ③通过系统仿真,可以把一个复杂的系统化降阶成若干子系统以便于分析,并能指出各子系统之间的各种逻辑关系。 ④通过系统仿真,还能启发新的策略或新思想的产生,或能暴露出在系统中隐藏着的实质性问题。同时,当有新的要素增加到系统中时,仿真可以预先指出系统状态中可能会出现的瓶颈现象或其它的问题。 2.简述两个Wardrop 均衡原理及其适用范围。 答: Wardrop提出的第一原理定义是:在道路的利用者都确切知道网络的交通状态并试图选择最短径路时,网络将会达到平衡状态。在考虑拥挤对行驶时间影响的网络中,当网络达到平衡状态时,每个 OD 对的各条被使用的径路具有相等而且最小的行驶时间;没有被使用的径路的行驶时间大于或等于最小行 驶时间。 Wardrop提出的第二原理是:系统平衡条件下,拥挤的路网上交通流应该按照平均或总的出行成本 最小为依据来分配。 第一原理对应的行为原则是网络出行者各自寻求最小的个人出行成本,而第二原理对应的行为原则是网络的总出行成本最小。 3.系统协调的特点。 答: (1)各子系统之间既涉及合作行为,又涉及到竞争行为。 (2)各子系统之间相互作用构成一个反馈控制系统,通过信息作为“中介”而构成整体 (3)整体系统往往具有多个决策人,构成竞争决策模式。 (4)系统可能存在第三方介入进行协调的可能。 6.对已经建立了概念模型的系统处理方式及其特点、适用范围。答:对系统概念模型有三种解决方式。 1.建立解析模型方式 对简单系统问题,如物流系统库存、城市公交离线调度方案的确定、交通量不大的城市交叉口交通控制等问题,可以运用专业知识建立系统的量化模型(如解析数学模型),然后采用优化方法确定系统解决方案,以满足决策者决策的需要,有关该方面的内容见第四、五章。 在三种方式中,解析模型是最科学的,但仅限于简单交通运输系统问题,或仅是在实际工程中一定的情况下(仅以一定的概率)符合。所以在教科书上很多漂亮的解析模型,无法应用于工程实际中。 2.建立模拟仿真模型方式 对一般复杂系统,如城市轨道交通调度系统、机场调度系统、城市整个交通控制系统等问题,可以对系统概念模型中各个部件等采用变量予以量化表示,并通过系统辨识的方式建立这些变量之间关系的动力学方程组,采用一定的编程语言、仿真技术使其转化为系统仿真模型,通过模拟仿真寻找较满意的优化方案,包括离线和在线均可以,有关该方面的内容见第七章。 模拟仿真模型比解析模型更能反映系统的实际,所以在交通运输系统中被更高层次的所使用,包括

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

第九章 试验设计与方差分析

第九章试验设计与方差分析 在科学试验中我们常常要研究参加试验的各种条件的改变对试验结果的影响,从中选出最好的试验组合,以达到最佳试验结果。试验结果也称试验指标,试验中变化的条件称为因素( facter ) , 因素在试验中所取的每一个状态称为因素的一个水平(level )。如在考察不同温度对收率有无显著影响的药物生产中,药物收率为试验指标,温度为一个因素,生产中所取的不同温度为水平。“方差分析”是研究各个因素各个水平对试验结果影响大小的一种常用方法。本章将简要介绍试验设计的原则和方法,着重讨论单因素试验,双因素试验,多因素正交试验及其方差分析。 第一节试验设计 一、试验设计原则 任何试验都包含三个基本要素:因素,对象和效应。例如在研究用有机溶液提取中药有效成分的试验中,溶液的种类和浓度,催化剂,温度等可视为因素;所选择的中药样品为对象;而浸出率则可视为效应。根据试验的目的选择参加试验的因素,并从质量或数量上对每个因素确定不同的水平,因素及其水平在试验全过程中应保持不变。试验中选择多一些因素和水平可以提高试验效率,但并不是愈多愈好;试验对象需要具有同质性,如以小白鼠为对象做某种药理试验,小白鼠的年龄,体重及其某些生理条件必须大体相同。效应即试验指标,有数量和非数量的两种,指标要求必须是客观的和精确的。为了准确地考查因素的不同水平所产生的效应,在试验设计中应注意以下基本原则。 1.对照(control )为了更好地说明试验因素的影响和作用,常在试验中设立对照组。对照的目的在于抵消或减少非试验因素的干扰,以避免对试验效应作出错误的判断。 2.均衡( balance) 通过对照抵消非试验因素干扰的关键是试验设计的均衡性,即在试验中应使试验组和对照组在非试验因素上大致相同。如在考察某种药物疗效的试验中,试验组和对照组的对象(病人)的性别,年龄,病情等应尽量一致,而观察指标,方法,仪器,人员等应相同,以保持试验对象和试验条件的均衡。 3.随机化(randomization )利用均衡原则还不能使所有非试验因素达到真正均衡。随机化是均衡的一种补救方法,使各对象或试验条件享有均等的机会。以利于非试验因素对结果的影响。随机化的常用工具是随机数字表。 4.重复( replication ) 重复是指在相同条件下对每个个体独立进行多次的试验,它可以避免由于试验次数太少而导致非试验因素的个别极端影响而产

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

基于单纯形法的最优化方法的毕业设计论文

基于单纯形法的最优化方法的毕业设计论 文 Revised on November 25, 2020

摘要: 最优化方法普遍的应用于工业、农业、商业、交通运输、国防、通信、建设、等各个方面与我们的生活息息相关;最优化方法主要用来解决最优计划、最优决策、最优设计、最优分配等最优化问题。本文主要研究的内容是通过单纯形方法对最优化问题的解决进行归纳总结,分析最优化问题所涉及的原理和方法,使用软件对最优化问题进行实践仿真测试,并将最优化问题推广应用到生活当中去。 关键词: 最优化单纯形方法仿真 Abstract Optimization method is widely used in industry, agriculture, commerce, transportation, defense, communications, construction, and other aspects of our lives; the optimization method is used to solve the optimal planning, optimal decision-making, optimal design, optimal allocation optimization problem. The main research content of this paper is summarized by the simplex method to solve the optimization problem, the principle and method of optimization analysis of the problems involved in the use of software simulation test of practical optimization problems, and promote the use of the optimization problem to life. Keywords : optimization Simplex method Simulation

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

2011年下学期最优化理论与方法考试试卷(A)

中南大学考试试卷 2011--2012学年 1 学期 时间100分钟 最优化理论与方法 课程 48 学时 学分 考试形式: 闭 卷 专业年级: 信科08、应数08 总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上,可用中英文作答。 1.(15 points ) For an unconstrained optimization problem: ),(min x f Let )0(x be a given point, )0(d be a descent search direction at )0(x . (1) With the exact line search, show that there is a steplength 0α satisfying .0)()0()0(0)0(=+?d d x f T α (2)Show that when applied to a quadratic objective function, the Newton method with the exact line search terminates in at most one iteration. 2. (15 points )For an unconstrained optimization problem: .2)(min 2 221x x x f += (1) Find a descent direction )0(d of f at .)1,1() 0(T x = (2) By the Armijo line search, find a steplength 0α along )0(d at .)0(x 3.(15 points ) (1)Let .2113???? ??=A Find two directions 1d and 2d such that 1d and 2d are conjugate with respect to the matrix A . (2)Show that when applied to a quadratic objective function, with the exact line search, the PRP conjugate gradient method is equivalent to the FR conjugate gradient method.

相关文档
最新文档