06章水泥路面荷载应力分析讲稿

06章水泥路面荷载应力分析讲稿
06章水泥路面荷载应力分析讲稿

低温地区沥青路面结构设计分析

低温地区沥青路面结构设计分析 发表时间:2019-05-23T11:01:43.723Z 来源:《防护工程》2019年第1期作者:潘攀 [导读] 因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 中铁四局集团有限公司设计研究院 230000 摘要:本文就低温地区沥青路面结构破坏类型及低温影响效果进行简单分析,并从沥青混合料、基层结构、联结层结构及表面层结构四个方面展开设计研究,旨在为低温地区沥青路面结构设计提供参考建议。 关键词:低温地区;沥青路面;结构设计 沥青路面具有平坦整洁、环保美观、舒适安全、维修养护简单等特点,因此逐渐成为世界道路桥梁建设工程首要选择,调查发现沥青路面在我国道路建设项目所占比重也呈现逐渐增加的趋势。因此对沥青路面进行结构设计具有非常重要的意义,特别是针对低温地区的沥青路面,合理的结构设计有助于提高道路使用寿命与质量。 一、低温地区沥青路面结构破坏研究 1、沥青路面结构破坏类型 通过对部分沥青道路调研发现,虽然道路结构、材料配比及使用年限存在较大差异,但道路路面呈现的结构破坏类型及特点却大致相同,具体表现在于:低温地区大多存在周期性冻土现象,道路基层在冻胀融缩的物理作用下容易出现结构变异,破坏道路结构引起不同程度的路面开裂问题。图1展示的就是低温地区常见的沥青路面结构破坏类型。 (a)路面剪裂(b)温缩开裂(c)反射开裂 图1 沥青论结构破坏类型 2、低温对沥青路面结构影响 道路建设需要应用到多种建筑材料,这些材料若长期处于低温状态会出现不同程度的收缩现象,由此产生较大拉应力,若拉应力超过材料拉伸强度将会导致材料结构被破坏进而出现开裂问题。道路路面纵向长度远大于横向长度,因此低温收缩引起的裂缝往往呈现为横向间隔,严重时才会出现纵向裂缝。种类各异的沥青基层对应特定的温度拉应力,因此结合实际情况选择合适的沥青材料显得尤为重要。 二、低温地区沥青路面结构设计研究 对低温地区沥青路面进行结构设计研究的时候需要针对基层耐受性、面层抗车辙、表面层抗裂性进行综合考量,因此需要对沥青混合料配比、基层温差、联结层荷载、表面层开裂等内容进行重点分析,以便确保结构设计的科学合理。 图2 沥青路面基本结构图 1、基于感温性能的沥青混合料设计 进行沥青混合料配比设计时需要综合考虑混合料所在位置及耐受特点,进而实现最优设计。图2展示的是沥青路面基本结构,分析可知表面层及联结层处于主要压力承载的高压应力区域,在进行建筑设计时需要选择抗磨损、高模量的沥青混合料,联结层处于表面层与基层的过度位置,最好选择传导效果优异的沥青材料,以便做好路面压力疏导工作。基层结构承受较大的拉应变,就整个路面而言担负着路面压力的重任,因此就沥青道路基层而言结构设计需要围绕荷载疲劳展开,研究发现沥青占比高的混合基层能够承受更大的荷载压力,有效避免了疲劳裂缝的出现。对于处于低温地区的沥青路面设计还需要着重考虑混合料感温性能,不同类型的沥青混合料其感温性能存在差异,在此基础上计算获得代表其粘弹性的劲度抗压指标,进而明确沥青混合料在特定温度时的物理特性。 2、基于大温差作用的沥青基层设计 沥青路面各结构在低温大温差的作用下会沿着路面横向出现不均衡温度场,此时的沥青路面这一受约整体在温度场作用下将产生温度

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度cω=1.3;因此该路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料 交通组成及各车型汽车参数表1-1

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 表1-2 ○1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载Pi的作用次数Ni按下式换算成标准轴载P的当量作用次数N的计算公式为: 35 .4 1 2 1 ∑= ? ? ? ? ? = k i i i P P N C C N 式中:N——标准轴载当量轴次数(次/d); Ni——被换算的车型各级轴载作用次数(次/d); P——标准轴载(kN); Pi——被换算车型的各级轴载(kN); C1——被换算车型的各级轴载系数,当其间距大于3m时,按单独的一个轴计算,轴数系数即为轴数m,当其间距小于3m时,按双轴或多 轴计算,轴数系数为C1=1+1.2(m-1);

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

路面材料分类及结构类型

路面材料分类及结构类型 (一)路面材料的分类 路面材料分为矿料和结合料两大类。矿料分为骨料和填充料两类。骨料是指碎石、卵砾石,有时为片石、料石;填充料是指土、砂、石粉和矿渣等;结合料分为有机结合料———沥青和无机结合料——粘土、石灰、煤粉灰和水泥。 (二)路面结构类型 按矿料在路面结构层中所占位置的不同,路面结构可分为嵌锁结构、混凝结构和细粒结构三种结构形成。 1.嵌锁结构 主要由矿料组成的结构,以中小规格碎石为主体,借碾压外力将骨料拧紧并相互嵌锁牢固,这样形成的结构层,常见的有: (1)沥青碎石,贯入式或拌合式的沥青碎石路面结构,主要靠骨料相互嵌锁,固结成板,沥青材料只起粘 结、密封防水的作用; (2)泥结碎石,骨料结构方式相同,粘结材料为粘土; (3)水结碎石,骨料在重型压路机及洒水碾压下,相互嵌锁形成结构层,再接着在结构层上撒嵌缝料,再 用重碾洒水碾压,使之结成密实的上壳,成为完整 的路面结构。

其他用强度高耐风化的料石嵌成的路面面层,称为条石或石块路面,用手摆片经碾压嵌锁形成的路面基层,都属于这一结构类型。 2混凝结构 采用混凝结构铺筑的路面,都以骨料为主要成分,按比例掺入填充料,并以凝聚性材料使之结合成板状。比如水泥混凝土路面,沥青混凝土路面,砂石级配路面等。 (1)水泥混凝土路面,以碎石为骨料。砂为填充料,水泥为凝聚料胶结而成的路面结构层,具有强度高、水温稳定性好的特点 (2)沥青混凝土路面,以碎石为骨料,砂和石粉为填充料,以石油沥青或煤沥青为凝聚料结合成的路面结构层,具有弹性和放水性能好的特点。 (3)砂石级配路面,以级配碎石为骨料,以级配砂为填充料,按一定比例掺入粘土,结合成的路面结构层,具有一定的整体性。但级配砂砾作基层,抗剪度不足,切均匀度极差,易引起沥青混凝土路面面层的开裂。北京市近20年来的经验证明,级配砂砾层做沥青混凝土路面的基层,往往由于碾压密实度不一,强度不一而过早损坏。 3.细粒结构 以细粒与粘结料相结合,构成具有较高耐磨性但强度不高的结构层,只能用于低级路面的面层或高级里面结构层中的磨耗

2路面结构及其层次划分

§2路面结构及其层次划分 一.路面断面 路拱平均坡度: 沥青或水泥混凝土路面:1.5% 厂拌沥青碎石等:1.5-2.5% 石砌路面:2-3% 碎石,砾石路面:2.5-3.5% 土路:3-4% 二.层次划分和作用 1.面层: 面层是直接同行车和大气接触的表面层次,它承受较大的行车荷载的垂直力、水平力和冲击力的作用,同时还受到降水的浸蚀和气温变化的影响。因此,同其它层次相比,面层应具备较高的结构强度,抗变形能力,较好的水稳定性和温度稳定性,而且应当耐磨,不透水;其表面还应有良好的抗滑性和平整度。 修筑面层所用的材料主要有:水泥混凝土、沥青很凝土、沥青碎(砾)石混合料、砂砾或碎石掺上或不掺土的混合料以及块料等。

2.基层: 基层主要承受由面层传来的车辆荷载的垂直力,并扩散到下面的垫层和土基中去,上基层是路画结构中的承重层,它应具有足够的强度和刚度,并具有良好的扩散应力的能力.基层遭受大气因素的影响虽然比面层小,但是仍然有可能经受地下水和通过面层渗入雨水,所以基层结构应具有足够的水稳定性。基层表面虽不直接供车辆行驶,但仍然要求有较好的平整度,这是保证面层平整性的基本条件。 修筑基层的材料主要有各种结合料(如石灰、水泥或沥青等)稳定土或稳定碎(砾)石、贫水泥混凝土、天然砂砾、各种碎石或砾石、片石、块石或圆石,各种工业废渣(如煤渣、粉煤灰、矿渣、石灰渣等)和土、砂、石所组成的混合料等。 3.垫层: 垫层介于路基与基层之间,它的功能是改善土基的湿度和温度状况,以保证面层和基层的强度、刚度和稳定性不受土基水温状况变化所造成的不良影响。另一方面的功能是将车辆荷载应力加以扩散,以减小土基产生的应力和变形.同时也能阻止路基土挤入基层中,影响基层结构的性能。 修筑垫层的材料,强度要求不一定高,但水稳定性利隔温性能要好。常用的垫层材料分为两类,一类是由松散粒料,如砂、砾石、炉渣等组成的透水性垫层;另一类是用水泥或石灰稳定土等修筑的稳定类垫层。

05沥青路面应力分析讲稿

第五章 沥青路面应力分析 一.古典设计方法 1.麻省公式 图5-1 古典公式示意图 1901年,美国麻省道路委员会第八次年会上发表了世界上第一个路面设计的公式。它假定汽车是一个集中荷载P ,荷载以45?角通过碎石基层分布于边长为碎石层厚2倍的正方形面积的土基上,所以: q P h q h P 2122 = )=( (5-1) 载 荷中集 度强载承基土中:式 P q 2.Downs公式 1933年,Downs对麻省公式进行修正,认为荷载在路面层内的传布与垂直方向成某一分布角θ的圆锥上,所以传到路面的顶面时,压力分布于一个圆形的面积上而不是正方形,但他仍假定汽车荷载为集中荷载。据此: 图5-2 古典公式改进 P h tg q h tg P q ==  πθθ 220564.(5-2) 载 荷中集 度强载承基土中:式 P q 3.Gray公式

1934年、Gray认为由于汽车荷载轮胎接触路面由一个面积,所以不应当假定汽车荷载为集中荷载,而应当假定汽车荷载为圆形均布荷载,并设轮载接地圆形面积的半径为a ,即: P htg a q h tg P q a =()=() πθθ+-210564. (5-3) 载 荷中集 度强载承基土中:式 P q 4.评述 古典理论公式是假定路面只要起分布荷载的作用,采用简单的分布角的概念,这个朴素思想的路面力学理论应予解决的问题; 从各公式得知,路面厚度主要取决于土基承载力得大小,这就是土基强度得问题。但初期没有提出土基参数的测定问题; 古典公式以轮载作为交通荷载,它不能反映交通量的因素,这在当时轻交通时代可能矛盾不突出,但随着交通得发展,不考虑交通量是无法使用的解决的办法就是在土基承载力取值上应根据交通量的大小采取不同的安全系数。 二.弹性半空间体 1.解答过程 1887~1885 布辛尼斯克得到完整的解答,方法是采用半逆解法。 1925年 A.E.Love势能法得到了解答。 采用路面力学中的方法,同样可以得到解答。 2.A.E.Love解 轮隙弯沉的计算及应用采用以上公式 ()()[ ]π μμμμ2 1201200211221 222/1222E pa w z a r E pa w z r z z a z a a E p w )(= 时 =,=当) (= 时 =,=当+)+()(=2/--? ? ?? ??--++ () ????????+??? ??+??? ??+??? ??+??? ??? ?? ??- 6 422024.0047.0125.011120r a r a r a r r a F r a F E pa z a r 2=时 w==,>当μ 三.多层体系 1.解答过程 1945年,D.M.Burmister得到理论解. 1945-1955 研究层状体系的工程应用 1955,R.L.希夫曼得到非轴对称的解 2.计算方法 采用查诺模图法 采用程序计算法 四.计算程序 沥青路面通常是多层体系。自从本世纪四十年代以来无论在理论分析,还是在数值计算方面,都取得很大进展,特别是计算机科学的发展及其在工程技术中广泛应用,使层状体系理论的研究的日趋完善,其中有波米斯特(D.M.Burmister)(1945年)及英因福克斯(L.Fox)、阿堪姆(W.E.Acum)、苏联科岗(Korah)及英国琼斯(A.Jones)等所作的贡献。在荷载形式方面,包括轴对称均布荷载与非轴对称单向水平荷载,都可直接进行数值计算,在层次结构方面,由双层体系、三层体系发展到多层体系。在计算机程序方面,有壳牌公司编制的Bisar 程序,雪弗隆公司编制的Chevron 程序,美国地沥青学会所采用的DAMA 程序。

2017版沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

浅谈几种公路沥青面层的结构特点

龙源期刊网 https://www.360docs.net/doc/a210501408.html, 浅谈几种公路沥青面层的结构特点 作者:冯彦龙 来源:《中小企业管理与科技·上旬刊》2011年第03期 摘要:沥青面层是直接承受行车荷载作用和大气降水、温度变化影响的路面结构层,应具有足够的结构强度,良好的温度稳定性,耐磨、抗滑、平整和不透水性。现已得到广泛的应用,所以质量已成为今后研究的重点。本文针对公路沥青面层的结构类型及其各自的特点进行了分析,在实际工程中应根据当地的交通状况、气候条件、降雨量、材料情况、施工工艺、经济造价等因素选择合适的沥青面层类型。 关键词:沥青路面面层结构类型特点 从我国目前高等级公路沥青路面来看,主要有以下几种结构形式:①传统的沥青混凝土面层(AC);②多碎石沥青混凝土面层(SAC);③沥青玛蹄脂碎石混合料面层(SMA)。 1 传统的沥青混凝土面层(AC) 《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。 其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。 1.1 按沥青混合料集料的粒径分类 ①细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。②中粒式沥青混凝土:AC—16mm 或AC—19mm。③粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。 其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。 1.2 按沥青混合料压实后的孔隙率大小分类 ①Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%)。②Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%)。③AM型开级配热拌沥青碎石:孔隙率为(大于10%)。

2020年一建市政精讲第05讲-沥青路面结构组成特点1

2020年一建市政课程 1K411012 沥青路面结构组成特点 本节知识框架 一、结构组成 (一)基本原则 (1)城镇沥青路面是城市道路的典型路面,道路结构由面层、基层和路基组成,层间结合必须紧密稳定,以保证结构的整体性和应力传递的连续性。 (2)行车载荷和自然因素对路面的影响随深度的增加而逐渐减弱,因而对路面材料的强度、刚度和稳定性的要求也随深度的增加而逐渐降低。各结构层的材料回弹模量应自上而下递减。 (3)按使用要求、受力状况、土基支承条件和自然因素影响程度的不同,在路基顶面采用不同规格和要求的材料分别铺设基层和面层等结构层。 (4)面层、基层的结构类型及厚度应与交通量及载重量相适应。交通量大、轴载重时,应采用高级路面面层与强度较高的结合料稳定类材料基层。 (二)路基与填料 1.路基分类 路基断面形式有:路堤——路基顶面高于原地面的填方路基; 路堑——全部由地面开挖出的路基(又分全路堑、半路堑、半山峒三种形式);

半填、半挖——横断面一侧为挖方,另一侧为填方的路基。 2.路基填料 高液限黏土、高液限粉土及含有机质细粒土,不适于做路基填料。因条件限制而必须采用上述土做填料时,应掺加石灰或水泥等结合料进行改善。 岩石或填石路基顶面应铺设整平层。整平层可采用未筛分碎石和石屑或低剂量水泥稳定粒料,其厚度视路基顶面不平整程度而定,一般为 100-150mm。 (三)基层与材料 (1)基层是路面结构中的承重层,主要承受车辆荷载的竖向力,并把面层下传的应力扩散到路基。基层可分为基层和底基层

(2)应根据道路交通等级和路基抗冲刷能力来选择基层材料。 (3)常用的基层材料: 1)无机结合料稳定粒料 无机结合料稳定粒料基层属于半刚性基层,适用于交通量大、轴载重的道路。 2)嵌锁型和级配型材料 级配砂砾及级配砾石基层属于柔性基层,可用作城市次干路及其以下道路基层。 补充: 半刚性基层:用无机结合料稳定粒料或土类材料铺筑的基层。 刚性基层:用普通混凝土、碾压混凝土、贫混凝土、钢筋混凝土、连续配筋混凝土等材料铺筑的基层。 柔性基层:用热拌或冷拌沥青混合料、沥青贯入式碎石、粒料类等材料铺筑的基层。 (四)面层与材料 (1)高级沥青路面面层可划分为磨耗层、面层上层、面层下层,或称之为上(表)面层、中面层、下(底)面层。 1)热拌沥青混合料面层 热拌沥青混合料(HMA),包括SMA(沥青玛碲脂碎石混合料)和OGFC(大空隙开级配排水式沥青磨耗层)等嵌挤型热拌沥青混合料,适用于各种等级道路的面层。 2)冷拌沥青混合料面层 冷拌沥青混合料适用于支路及其以下道路的面层、支路的表面层,以及各级沥青路面的基层、连接层或整平层;冷拌改性沥青混合料可用于沥青路面的坑槽冷补。 3)温拌沥青混合料面层 温拌沥青混合料是通过在混合料拌制过程中添加合成沸石产生发泡润滑作用、拌合温度120~130℃条件下生产的沥青混合料,与热拌沥青混合料的适用范围相同。 4)沥青贯入式面层 沥青贯入式面层宜用作城市次干路以下道路面层,其主石料层厚度应依据碎石的粒径确定,厚度不宜超过100mm。 5)沥青表面处治面层 沥青表面处治面层主要起防水层、磨耗层、防滑层或改善碎(砾)石路面的作用,其集料最大粒径应与处治层厚度相匹配。

路面结构设计

5.路面结构设计 5.1沥青路面 5.1.1交通量及轴载计算分析 路面设计以单轴载双轮组100KN 为标准轴载。 1) 以设计弯沉值为指标及验算沥青层层底拉应力中的累计当量轴次: ①轴载换算: 轴载换算采用如下的计算公式:=N ∑=k i i i P P n C C 135.421)/( 计算结果如下表所示: 表5.1轴载换算表 =i i i 1 21

②累计当量轴次 根据《公路沥青路面设计规范JTG D50-2006》,高速公路沥青路面的设计年限取15年,四车道的车道系数是取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]18918830 5.060.430336506449 .0365106449.0115 =????-+= (次) 2) 验算半刚性基层层底拉应力中的累计当量轴次 ①轴载换算 验算半刚性基层层底拉应力轴载换算公式:812'1')/('P P n C C N i k i i ∑== 计算结果如下表所示: 表5.2 轴载换算结果(半刚性基层层底拉应力) =i i i 1 21

②累计当量轴次 参数取值同上,设计年限是15年,车道系数取0.5。 累计当量轴次: ()111365 t e N N γηγ ??+-???= ()[]321652575.087.731636506449 .0106449.0115 =???-+= (次) 5.1.2结构组合设计及材料选取 1) 拟订路面结构组合方案 根据规定推荐结构,并考虑到公路沿途有大量碎石且有石灰供应,路面结构面层采用沥青混凝土(取18cm ),基层采用水泥碎石(取20cm ),下基层采用石灰土(厚度待定)。 另设20cm 厚的中粗砂垫层。 2) 拟订路面结构层的厚度 由于计算所得的累计当量轴载达到了500万次,按一级路的路面来设计,由设计规范《公路沥青路面设计规范JTG D50-2006》规定高速公路、一级公路的面层由二层至三层组成。采用三层式沥青面层,表面层采用细粒式密级配沥青混凝土(厚度为4cm ),中面层采用中粒式密级配沥青混凝土(厚度为6cm ),下面层采用粗粒式密级配沥青混凝土(厚度为8cm )。 5.1.3设计指标及设计参数确定 1) 确定路面等级和面层类型 由上面的计算得到设计年限内一个行车道上的累计标准轴次约为大于500万次。根据规范《公路沥青路面设计规范JTG D50-2006》和设计任务书的要求可确定路面等级为高级路面,面层类型采用沥青混凝土,设计年限为15年。 2) 确定土基的回弹模量 ① 此路为新建路面,根据设计资料可知路基干湿状态为干燥状态。 ② 根据设计资料,由设计规范《公路沥青路面设计规范JTG D50-2006》,该路段处于II 2a 区,为粉质土,确定土基的稠度为1.05。

城市道路沥青路面的结构组成

城市道路沥青路面的结构组成 一)路基 路基的断面型式有: 路堤一路基顶面高于原地面的填方路基。路堑一全部由地面开挖出的路基(又分重路堑、半路堑、半山桐三种型式);半填、半挖一横断面一侧为挖方,另一侧为填方的路基.从材料上分,路基可分为土路基、石路基、土石路基三种。 (二)路面 行车载荷和自然因素对路面的影响随深度的增加而逐渐减弱奋对路面材料的强度、刚度和稳定性的要求也随深度的增加而逐渐降低。为适应这一特点,绝大部分路面的结构是多层次的.按使用要求、受力状况、土基支承条件和自然因素影响程度的不同,在路基顶面采用不同规格和要求的材料分别铺设垫层、基层和面层等结构层。 1.面层 面层是直接同行车和大气相接触的层位承受行车荷载引起的竖向力、水平力和冲击力的作用,同时又受降水的侵蚀作用和温度变化的影响。因此面层应具有较高的强度、刚度、耐磨、不透水和高低温稳定性,并且其表面层还应具有良好的平整度和粗糙度。面层可由一层或数层组成,高等级路面面层可划分为磨耗层、面层上层、面层下层,或称之为上(表)面层、中面层、下(底)面层。 ( l )沥青混凝土面层的常用厚度和适宜层位见表 可按使用要求结合各xx 实践经验选用. ( 2)热拌、热铺的沥青碎石可用作双层式沥青面层的下层或单层式面层。作单层式面层时,为了达到防水和平整度要求,应加铺沥青封层或磨耗层。沥青碎石的常用厚度为 50 -70mm。 ( 3)沥青贯入式碎(砾)石可做面层或沥青混凝土路面的下层。作面层

时,应加铺沥青封层或磨耗层,沥青贯人式面层常用厚度为 5 0?80mm . ( 4)沥青表面处治主要起防水层、磨耗层、防滑层或改善碎(砾)石路面的作用。常用厚度为15 -30mm . 2 基层 基层是路面结构中的承重层,主要承受车辆荷载的竖向力,并把由面层下传的应力扩散到土基,故基层应具有足够的、均匀一致的承载力和刚度.基层受自然因素的影响虽不如面层强烈,但沥青类面层下的基层应有足够的水稳定性,以防基层湿软后变形大导致面层损坏。 用于基层的材料主要有 ( 1)整体型材料 无机结合料稳定粒料 ——石灰粉煤灰稳定砂砾、石灰稳定砂砾、石灰煤渣、水泥稳定碎砾石等,其强度高,整体性好,适用于交通量大、轴载重的道路工业废渣混合料的强度、稳定性和整体性均较好,适用于各种路面的基层。使用的工业废渣应性能稳定、无风化、无腐蚀。 ( 2)嵌锁型和级配型材料 级配碎(砾)石应达到密实稳定。为防止冻胀和湿软,应控制小于0.5mm 颗粒的含量和塑性指数。在中湿和潮湿路段,用作沥青路面的基层时,应掺石灰。符合标准级配要求的天然砂砾可用作基层.不符合标准级配要求时,只宜用作底基层或垫层,并应按路基干、湿类型适当控制小于0.5mm 的颗粒含量。为便于碾压,砾石最大粒径宜不大于60mm. 泥灰结碎(砾)石——适用于中湿和潮湿路段,掺灰量为其含土量的8 % - 12%。骨料的粒径宜小于或等于40mm,并不得大于层厚的0.7 倍。嵌缝料应与骨料的最小粒径衔接. 水结碎石一一碎石的粒径宜小于或等于70m m,并不得大于层厚的0.7倍。

复合式路面结构特点及应用1

复合式路面结构特点及应用 1、复合式路面 1.1无论从经济、技术、使用性能方面都优于单一柔性或刚性路面结构。 规范定义:面层由两层不同材料类型和力学性质的结构层复合而成的路面 1.2种类: 1)水泥复合式路面:碾压砼—普通砼(RCC —PCC )、贫砼—普通砼(EPCC —PCC )、 2)水泥混凝土加铺沥青混凝土复合路面: 碾压混凝土—沥青面层(RCC —AC )、 普通混凝土—沥青面层(PCC —AC )、 钢筋混凝土—沥青面层(JRC —AC )、 连续配筋混凝土—沥青面层(CRC —AC )。 1.3 水泥混凝土——沥青混凝土(CC-AC )复合路面特点: 在水泥混凝土路面上加铺沥青层,即修筑水泥混凝土与沥青混凝土复合式路面结构,不仅可减少沥青用量(与柔性路面相比),而且可弥补刚性路面的不足(行车舒适性差、养护难度大等)。 沥青面层薄时的应力分布 沥青面层厚时的应力分布 2.1 沥青

路面路用性能 (1)足够的力学强度,能承受车辆荷载施加到路面上的各种作用力; (2)一定的弹塑性变形能力,能承受应变而不破坏; (3)与汽车轮胎附着力较好,可保证行车安全; (4)有高度的减震性,可使汽车快速行驶,平稳而低噪音; (5)不扬尘,且容易清扫和冲洗; (6)维修工作比较简单,且沥青路面可再生利用。 2.2 沥青路面不同于其他路面的使用性能 1)沥青路面高温性能 沥青路面高温性能习惯上是指沥青混合料在荷载作用下抵抗永久变形的能力。稳定性不足,一般出现在高温、低加荷速率以及抗剪切能力不足时,也既沥青路面的劲度较低情况下(劲度——一定温度条件下的应力) 对于渠化交通的沥青路面,高温稳定性问题主要表现为车辙; 推移、拥包、波浪等类损坏,主要是由于沥青路面在水平荷载作用下抗剪强度不足所引起的。 2)沥青路面的低温稳定性 沥青路面在低温环境下,失去柔性,变现出一定程度的脆性,并出现各种形式的低温裂缝。路面上出现的各种裂缝,包括纵向裂缝、横向裂缝、龟裂、网裂等多与沥青路面低温下的脆性有关。 从国内路面裂缝的调查结果可知,由于路面设计不周或施工原因,而导致结构层本身强度不足,不能适应日益增长的交通量及轴载作用而产生的开裂,最初一般表现为纵向开裂,然后发展为网裂,这一类由荷载引起的裂缝,在中、低级道路及一些超载严重的高等级道路车道轮迹处常见。对于大多数高等级公路来说,由于普遍采用了半刚性基层,有足够的强度,因此这一类荷载裂缝并不是主要的。相反另一类裂缝即非荷载裂缝(低温裂缝)则普遍存在。 非荷载裂缝大部分为横向裂缝,主要为:①由于降温及温度循环反复作用,在离去路面产生的温度收缩裂缝;②由于半刚性基层收缩开裂产生的反射裂缝。但是许多裂缝是多方面原因共同作用而产生的。 沥青路面的低温性能与沥青混凝土的低温变形能力有关,在很大程度上取决于沥青材料的低温性质、沥青与矿料的黏结强度、级级配类型以及沥青混合料的均匀性。从低温抗裂性能要求出发,沥青混合料在低温时应具有良好的低温松弛性能,有较低的劲度和较大的变形适应能力,在降温收缩过程中不产生大的应力积聚,在行车荷载和其他因素的反复作用下不致产生疲劳开裂。 3)沥青路面水稳定性

沥青路面承载能力应力应变指标分析

沥青路面承载能力应力应变指标分析 摘要:笔者在路面结构力学基础上,研究了路面结构破坏的根本原因。分析结果表面:路面破坏在于过度的应力或应变,而不是挠度造成。有些路面损坏如推移、开裂与弯沉并无直接联系,而是与结构材料中的应力应变相联系。因此,理想的承载力评价应以应力、应变为基础。 关键词:应力应变挠度承载力评价 应力应变变化与“局部”破坏 路面结构内的应力应变状况是极为复杂的,它随着结构层次组合、结构层厚度、作用荷载类型及温度、湿度等因素变化。由于不直观、检测困难,目前在我国沥青路面设计规范中,只是将沥青及基层底部拉应力作为验算指标[1]。 FWD测试利用弯沉盆代替贝克曼梁的单点弯沉,使结构性能评价细化到路面各结构层。这样建立在弯沉盆特性基础上的路面结构反算方法,使以应变为基础的无破损评价得以实现[2]。本文的重点在于如何根据FWD测试数据获取结构层模量、应力应变及结构状态,而对对设计及评价指标不进行深入研究。 利用应变进行剩余寿命计算 ⑴AI法计算剩余寿命 美国地沥青协会(AI)基本认定公路沥青路面破坏的两大准则是车辙和疲劳裂缝率。通过模量的反算,也可以采用美国地沥青协会退到的两个道路寿命评估模型来确定路面的使用寿命。这两个模型属于纯力学方法建立的路面剩余寿命评定模型,其特点是求出、,最重要的是首先确定路面的各层弹性模量。由力学法建立的模型有较成熟的理论基础,它是利用弹性理论模型或粘塑性模型通过结构分析得到路面在荷载作用下的应力应变[3~6]。 对于疲劳开裂,在沥青协会MS-1路面设计手册所用的传递函数为: 式中,为全路面20%~25%或轮迹带上45%裂缝率时的容许重复轮载作用次数(ESAL);为沥青混凝土路面底部拉应变;为沥青混凝土面层模量。 对于永久变形(车辙),沥青协会给出的永久变形公式为: 式中,为车辙13时的容许重复轮载作用次数(ESAL);为非胶结层顶面垂直压应变。

路面结构计算书

阿图什市哈拉峻乡至吐古买提乡至铁 列克乡公路工程 路面结构计算书

1.概述 本项目位于克孜勒苏柯尔克孜自治州北部,项目起点于哈拉峻乡西北侧接规划国道219线,利用现有哈拉峻乡至吐古买提乡老路进行布线,在K34+000处从巴什苏洪木村东侧避饶,随后继续利用现状道路,于K54+700处从吐古买提乡北侧绕行,继续向西 布线至阿图什、乌恰交界处,路线全长74.985公里。 本工程沥青混凝土路面结构计算采用双圆垂直均布荷载下层状弹性体系理论,采用单轴双轮组BZZ-100作为标准轴载,设计年限为15年。 2.计算软件、版本 本工程路面结构计算采用公路路面设计程序系统(HPDS2011)进行计算。 3.计算依据 (1)《公路沥青路面设计规范》(JTG D50--2006) (2)《公路水泥混凝土路面设计规范》(JTG D40-2011) (3)其他相关规范 4. 计算内容 根据本项目预测的交通量,采用现行路面设计规范中的设计理论及技术标准,计算本工程沥青路面结构厚度及设计弯沉。 5.参数选取 (1)交通量 本项目车种组成预测结单位:pcu/d表1 年份小客大客小货中货大货汽车列车客车货车2020 68.9% 4.8%11.6% 5.9% 4.9% 3.9%73.7%26.3% 2025 70.1% 4.6%11.2% 5.7% 4.4% 4.0%74.7%25.3% 2030 71.4% 4.3%10.8% 5.5% 3.7% 4.3%75.7%24.3% 2035 72.0% 4.1%10.5% 5.3% 3.5% 4.6%76.1%23.9% 代表车型表表2货车类型代表车型前轴轴重(kN)后轴轴重(kN)后轴轴数后轴轮组数小客江淮AL6600 17.0 26.5 1 双轮组大客会客JT692A 28.4 67.7 2 双轮组

一建【市政】02沥青路面结构组成特点1

1K411012沥青路面结构组成特点 一、结构组成 (一)基本原则 (1)城镇沥青路面是城镇道路的典型路面,道路 结构由面层、基层和路基组成,层间结合必须紧密 稳定,以保证结构的整体性和应力传递的连续性。 大部分道路结构组成是多层次的,但层数不宜过 多。 (二)路基与填料 1.路基分类 根据材料不同,路基可分为土方路基、石方路基、 特殊土路基。路基断面形式有:路堤--路基顶面高 于原地面的填方路基;路堑--全部由地面开挖出的 路基(又分全路堑、半路堑、半山峒三种形式); 半填、半挖--横断面一侧为挖方,另一侧为填方的 路基。 2.路基填料 高液限黏土、高液限粉土及含有机质细粒土,不适于做路基填料。因条件限制而必须采用上述做填料时,应掺加石灰或水泥等结合料进行改善。 岩石或填石路基顶面应铺设整平层。整平层可采用未筛分碎石和石屑或低剂量水泥稳定粒料,其厚度视路基顶面不平整程度而定,一般100~150mm。 (三)基层与材料 (1)基层是路面结构中的承重层,主要承受车辆荷载的竖向力,并把面层下传的应力扩散到路基。基层可分为基层和底基层,两类基层结构性能、施工或排水要求不同,厚度也不同。(2)应根据道路交通等级和路基抗冲刷能力来选择基层材料。 (3)常用的基层材料: 1)无机结合料稳定粒料(粒料:砂砾、碎石) 无机结合料稳定粒料基层属于半刚性基层,包括石灰稳定土类基层、石灰粉煤灰(二灰)稳定砂砾基层、石灰粉煤灰钢渣稳定土类基层、水泥稳定土类基层等,其强度高,整体性好,适用于交通量大、轴载重的道路。所用的工业废渣(粉煤灰、钢渣等)应性能稳定、无风化、无腐蚀。 2)嵌锁型和级配型材料 级配砂砾及级配砾石基层属于柔性基层,可用作城市次干路及其以下道路基层。为防止冻胀和湿软,天然砂砾应质地坚硬,含泥量不应大于砂质量(粒径小于5mm)的10%,砾石颗粒中细长及扁平颗粒的含量不应超过20%。级配砾石用作次干路及其以下道路底基层时,级配中最大粒径宜小于53mm,用作基层时最大粒径不应大于37.5mm。 (四)面层与材料 (1)高级沥青路面面层可划分为磨耗层、面层上层、面层下层,或称之为上(表)面层、中面层、下(底)面层。 (2)沥青路面面层类型: 1)热拌沥青混合料面层 热拌沥青混合料(HMA),包括SMA(沥青玛 脂碎石混合料)和OGFC(大空隙开级配排水式沥青磨耗层)等嵌挤型热拌沥青混合料,适用于各种等级道路的面层,其种类应按集料

路面结构设计

路面结构设计 新建广东惠州惠东至东莞常平高速公路(K16+000-K17+500),道路路基宽度为34.5米,全长1.5千米,结合近几年马惠州、东莞经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5800辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。一、交通量分析 交通组成及各车型汽车参数如表1: 表1 车型前轴重 (KN) 后轴重 (KN) 后轴数 后轴轮 组数 前轮轮 组数 交通量 黄河 JN150 49 101.6 1 双单1392 解放 CA10B 19.40 60.85 1 双单2900 东风 EQ140 23.70 69.2 1 双单928 太拖拉 138 51.40 2?80 2 双单232 小汽车11.5 23 1 单单348 路面设计以双轮组单轴载100KN为标准,当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载P i的作用次数N i按下式换算成标准轴载P的当量作用次数N的计算公式为: 35 .4 1 2 1 ∑= ? ? ? ? ? = k i i i P P N C C N 式中:N——标准轴载当量轴次数(次/d); N i——被换算的车型各级轴载作用次数(次/d); P——标准轴载(kN); P i——被换算车型的各级轴载(kN); C1——被换算车型的各级轴载系数,当其间距大于3m时,按单独的一个轴计算,轴数系数即为轴数m,当其间距小于3m时,按双轴或多轴计算,轴数系数为C1=1+1.2(m-1); C2——被换算车型的各级轴载轮组系数,单轮组为6.4,双轮组为1.0,四轮组为0.38。 当以半刚性层底拉应力为设计指标时,标准轴载当量轴次数N: 8 1 2 1 ∑= ? ? ? ? ? ' ' = k i i i P P N C C N 式中: 1 C'——轴数系数 2 C'——轮组系数,单轮组为18.5,双轮组为1.0,四轮组为0.09。

各类沥青混凝土优缺点

1 传统的沥青混凝土面层(AC) ps:普通密级配沥青混凝土 《公路沥青路面设计规范》JTJ014—97,根据“七五”国家科技攻关研究及修订该规范的专题研究,统一将沥青混合料中集料粒径标准由圆孔筛标准改为方孔筛标准。 其主要原因为:①计量标准向ISO国际标准靠近;②便于参考国外同类结构形式的级配标准;③世行项目增多,便于国际招标、监理及质量检验;④许多国外拌和设备均以方孔筛为标准。沥青混凝土的符号由原LH改为AC。 1.1 按沥青混合料集料的粒径分类 1.1.1 细粒式沥青混凝土:AC—9.5mm或AC—13.2mm。 1.1.2 中粒式沥青混凝土:AC—16mm或AC—19mm。 1.1.3 粗粒式沥青混凝土:AC—26.5mm或AC—31.5mm。 其组合原则是:沥青面层集料的最大粒径宜从上层至下层逐渐增大。上层宜使用中粒式及细粒式,且上面层沥青混合料集料的最大粒径不宜超过层厚1/2,中、下面层集料的最大粒径不宜超过层厚的2/3。 1.2 按沥青混合料压实后的孔隙率大小分类 1.2.1 Ⅰ型密级配沥青混凝土:孔隙率为(3%~6%) 1.2.2 Ⅱ型密级配沥青混凝土:孔隙率为(4%~10%) c、AM型开级配热拌沥青碎石:孔隙率为(大于10%) 其组合原则是:沥青面层至少有一层是Ⅰ型密级配沥青混凝土,以防水下渗。若上面层采用Ⅱ型沥青混凝土,中面层须采用Ⅰ型沥青混凝土,AM型开级配沥青碎石不宜作面层,仅可做联结层。 2 多碎石沥青混凝土面层(SAC)

2.1 产生背景 较大流量的车辆在高速公路上安全、舒适高速地通行,沥青面层必须具有良好的抗滑性能。这就要求沥青面层不但要有较大的磨擦系数,而且要有较深的表面构造深度(构造深度是高速行车减低噪音和减少水〖LM〗漂、溅水影响司机视线的主要因素)。近年来的研究成果表明:“沥青面层的抗滑性能是由面层结构的微观构造和宏观构造两部分形成。其中宏观构造来源于沥青混合料的配合比,主要由骨料的粗细、级配形式决定”。 80年代中期我国开始修筑高等级公路,从沥青面层的结构形式来看:Ⅰ型沥青混凝土,空隙率3%~6%,透水性小,耐久性好,表面层的摩擦系数能达到要求,但表面构造深度较小,远不能达到要求。Ⅱ型沥青混凝土空隙率6%~10%,表面构造深,抗变形能力较强,但其透水性、耐久性较差。为了解决沥青面层的抗滑性能(特别是表面层在构造深度较大的情况下,又具有良好的防水性的结构形式),多碎石沥青混凝土面层被加以研究和使用。 2.2 多碎石沥青混凝土面层的特点 多碎石沥青混合料是采用较多的粗碎石形成骨架,沥青砂胶填充骨架中的孔隙并使骨架胶合在一起而形成的沥青混合料形式。具体组成为:粗集料含量69%~78%,矿粉6%~10%,油石比5%左右。经几条高等公路的实践证明,多碎石沥青混凝土面层既能提供较深的表面构造,又具有传统Ⅰ型沥青混凝土那样的较小空隙及较小透水性,同时又具有较好的抗形变能力(动稳定度较高)。换言之,“多碎石沥青混凝土既具有传统Ⅰ型沥青混凝土的优点,又具有Ⅱ型沥青混凝土的优点,同时又避免了两种传统沥青混凝土结构形式的不足。” 3 沥青玛蹄脂碎石混合料面层(SMA) 3.1 形成背景

相关文档
最新文档