循环球式转向器计算说明书

循环球式转向器计算说明书
循环球式转向器计算说明书

汽车循环球式转向器设计

摘要

循环球式转向器是由螺杆和螺母共同形成的螺旋槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副总成。循环球式转向器的优点是:在螺杆与螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度,螺杆和螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨损性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合来做整体式动力转向器。

本文的主要内容即是设计一款机械式循环球式转向器。通过查阅相关文献资料,进行循环球式转向器的尺寸的设计计算与强度校核,然后进行循环球式转向器的三维CATIA建模,最后绘制转向器的二维装配图及其重要零件的零件图。

关键词:循环球式转向器;三维建模;螺杆螺母传动副

Circulating Ball Type Steering of the Vehicle

Design

Abstract

Circulating ball type steering gear is formed by the screw and nut of the spiral groove ball inside the transmission, vice, and the nut on the rack and constitute of the rocker arm shaft gear fan drive assembly.The advantage of circulating ball type steering gear :Between the screw and nut because of circulating ball,change the sliding friction to rolling friction,so transmission efficiency can reach 75% ~ 85%;On the structure and process measures,including improve the manufacturing accuracy, and improve the surface roughness of the work surface,the spiral groove on the screw and nut for quenching and grinding.Make it has enough hardness and wear resistance, to ensure adequate service life;Steering gear ratio can change;Stable and reliable;Rack and gear clearance between fan adjustment work easily;Suitable for integrated power steering.

The main content of this title is to design a mechanical circulating ball type steering gear.Through consulting relevant literature,to design and calculation of the size of the circulating ball type steering gear and strength check.Then the circulating ball type steering gear three-dimensional modeling using CATIA.Finally draw the redirector assembly drawing and part drawing of important parts.

Key words: Circulating ball type steering gear;3 d modeling;The screw and nut combination

目录

摘要 (1)

Abstract (1)

第1章绪论 (1)

1.1 课题背景 (1)

1.2 国内外研究现状 (2)

1.3 研究的目的及意义 (3)

1.4 研究内容和设计方法 (4)

第2章转向器的设计 (5)

2.1 转向器的组成与分类 (5)

2.2 循环球式转向器方案分析 (6)

2.3 转向器主要性能参数 (7)

2.3.1 转向器的效率 (8)

2.3.2 传动比的变化特性 (9)

2.3.3 转向器传动副的传动间隙t (12)

2.4 循环球式转向器设计与计算 (13)

2.4.1 转向器计算载荷的确定 (13)

2.4.2 循环球式转向器主要尺寸参数的确定 (13)

2.4.3 零件的强度校核 (20)

第3章基于CATIA的三维造型 (23)

3.1 CATIA简介 (23)

3.2 循环球式转向器的三维建模 (23)

3.2.1 转向螺杆的建模 (23)

3.2.2 转向器的装配设计 (24)

总结 (27)

致谢 (28)

参考文献 (29)

附件一 (31)

附件二 (34)

第1章绪论

1.1 课题背景

21世纪的开局十年,既是我国改革开放经济高速增长的十年,也是我国的汽车工业快速发展的十年。2009年,我国汽车工业产销量突破1000万量大关,跃居世界第一位。在这样的大环境下,汽车零部件也得到了飞速的发展。汽车零部件行业是汽车工业发展的基础,其带动的产业很多,比如上游的钢材、有色金属、石油、橡胶及其他的材料行业,还有处于下游的整车装配行业和汽车的服务维修行业。随着我国整车消费市场和汽车保有量的大幅提升,不仅仅吸引了国外的汽车品牌来中国合资建厂,同时许多的国际知名汽车零部件厂商也把目光聚焦在了中国这片市场上,包括电装、博世、马勒、博泽、法雷奥等等。当然国内也成长起来一大批汽车配套零部件企业。

全球汽车行业的整车厂和零部件厂关系大体分为三种模式,一是以欧美为代表的平行发展模式,即零部件企业完全与整车厂是相互独立的,零部件企业通过自由竞争来赢取市场,获得发展;二是以日韩为代表的塔式模式,整车企业与零部件企业之间是利益共同体的关系,两种企业之间的合作关系很深,相互依存,共同发展;三是中国计划经济时代的模式,即零部件厂附属于整车厂,比如一汽,东风这些国有企业。目前在国内仍有部分企业采取这种模式。然而随着国际化浪潮的不断推进,经济全球化已经成为世界经济发展的主流趋势,这种整车厂和零部件企业的关系也在不断地丰富和变换着。现在欧美企业也越来越强调整车企业和零部件企业共同合作的关系;而在一些日韩的汽车企业当中,也有全球化采购零部件的倾向。如今,整车厂对零部件厂提出越来越高的要求,零部件企业已经不是传统的意义上的单纯的零部件供应商,二是能够给整车厂提供系统的解决方案的供应商。也就是说,在整车厂研发设计产品阶段会对各个总成零部件提出限定和要求,或者在产品的研发过程中产生问题的时候,这时候都要求零部件供应商来协作,提供配套的解决方案。这就对零部件企业提出了更高的要求,比如要有很强的创新能力和设计经验等。基于这样的趋势,零部件企业要想获得更好的发展,就必须在前沿技术开发的早期,就与整车厂进行紧密的合作,共同发展,合作共赢。从长远的眼光看,这种模式下的整车厂和零部件企业之间是共创未来的关系,为整车厂和零部件企业创造了和谐发展的环境和广阔空间。

经过多年的努力发展,国有品牌零部件质量有了很大的提高,但是整体的质量水平与外资企业相比还是有一定的差距的,尤其是在产品的一致性和可靠性方面还有很多需要尽快提升的。当然,这也是有原因的。由于部分国内零部件企业仍然处在粗放式的生产管理方式阶段,缺少对工艺系统的研究与持续改进,过程控制能力不足,产品质量不稳定,很难形成高质量的产品,这样在市场的竞争方面就很难形成优势。产品的技术实力是企业参与市场竞争的核心要素,国外的零部件企业的来源于不断地研发投入和持续的技术创新。而反观国内,由于起步比较晚,国内零部件企业在这一方面仍有欠缺。目前,国内的零部件供应商大多采用“来图加工”的模式,即整车厂商将产品数据及图样提供给零部件供应商,后者按照图样进行生产加工制造。多数企业没有完全掌握核心技术,产品市场多面向中低端,高端产品较少。尤其是在涉及动力系统、油耗、排放、安全等电控零部件方面技术落后,部分领域甚至处于空白。可以说,汽车零部件产业的发

展水平直接影响着我国汽车工业的未来,因此,加强零部件的设计,提高其质量和技术水平便显得尤为重要。

转向器是转向系统中的重要组成的部件,对其进行深入的研究意义重大。而循环球式转向器由于具有较高的传动效率,磨损较小,使用寿命长,近年来得到了广泛的应用。

1.2 国内外研究现状

随着国内汽车行业的发展,作为汽车关键部件之一的转向器也得到了相应的发展,基本上形成了专业化、系列化的生产局面。汽车转向器的结构很多,但从目前的使用的普遍程度来看,主要有四种类型:循环球式、齿轮齿条式、蜗杆滚轮式、蜗杆销式[1]。而且齿轮齿条式转向器和循环球式转向器也是应用最广泛的两种转向器。汽车车速的不断提高,需要在高速时有更加良好的转向稳定性,这就要求转向器具有较高的刚度。循环球式转向器由于通过钢球的滚动来传递转向力,具有较高的强度,并且该转向器可以被设计成具有等强度结构,适用于高速车辆。当齿条齿扇传动副产生磨损后,可以重新调整间隙,使其保持合适的传动间隙,从而减少振动,提高转向器寿命。

目前,汽车上广泛采用循环球式转向器。在循环球式转向器的设计过程中,主要包括齿轮齿条传动副,螺杆螺母传动副以及导球机构的设计。所谓导球机构,是指将螺杆螺母之间的滚球,经导向管组成首尾相接的循环线路的装置。这装置包括螺母螺杆,滚球及导管。正确设计的导球机构,可保证在不发生任何干涉且阻力较小的情况下,引导滚球在该机构中顺利流通。相反,如设计不合理,就可能产生过大的阻力,使传动效率降低,甚至会发生几何干涉,使导管损坏。目前设计导球机构的方法,,一般是参照现有结构选择几何参数,试制出样品以后再根据滚球流通情况进行修正。

螺母滚球与螺杆组成行星机构,滚球相当于行星轮。当螺母不动而螺杆旋转时,滚球一方面绕自身的中心自转,同时又绕螺杆的中心公转。滚球公转时,其球心的运动轨迹是一条螺旋线。螺母上如装有导管,导管阻止滚球沿滚道运动,使其改变方向而沿导管运动。滚球由沿螺旋运动改为由导管运动时,会使运动阻力增加。如果设计不当,则会发生运动干涉现象。如何使滚球运动通畅,关键问题是设计合理的几何尺寸。影响滚球运动通畅的主要几何因素为滚道截面形状,螺旋导程角,导管的布置,滚球直径以及螺母,螺杆传动副的尺寸。螺母的螺旋槽与螺杆的螺旋槽形成滚球的运动轨道,或称为滚道。假定滚道与滚球间没有间隙,在滚道上任意位置的滚球,有的运动为沿该点螺旋线切线方向的移动及绕滚球本身球心的转动[2]。导管的作用即是限制其螺旋线上的运动而引导其沿导管运动。导管限制滚球沿螺旋线运动而引导其沿导管运动特性,称为导管导球特性。滚球的运动,可用其球心的运动轨迹来描述,导管导球特性即为描述滚球球心轨迹的方程式或曲线。导管在钢球旋转中起着至关重要的作用,故在设计制造时应给予充分重视。试验证明,转向器的可靠性主要取决于导管的设计和制造质量。导管进出孔与钢球的间隙一般为0.8mm左右,这是为了补偿螺母导管孔与滚道间的偏移误差,以及导管本身的形状与尺寸误差。为减少钢球在导管中排列不规则而引起的流通阻力,推荐导管采用变截面,缩小二导管孔之间的断面尺寸,使之与钢球之间的间隙控制在0.2~0.4mm为宜。

循环球式转向器是汽车转向器中唯一采用滚动摩擦和二级转速的转向器,目前国内外所有后轮驱动,以及以后轮驱动主驱动装置的四轮驱动汽车中的手动转向器和动力转向器普遍采用循环球式,由于采用滚动摩擦,其加工精度高于其他转向器。循环球式转

向器的螺母、螺母滚道的加工精度,直接关系到转向盘的自由行程和转动力矩,钢球应该能保证在螺杆和螺母45°圆弧角上运行,运行轨迹越窄,转向越轻。加工第一个螺杆和螺母后,必须对其滚道尺寸进行精密测量,根据测量结果选择合适的钢球,螺杆、螺母滚道与循环球的间隙应控制在0.02mm以内。

转向螺杆支撑轴承分为向心球轴承和圆锥滚子轴承,其中向心球轴承转向较轻,进口转向器均采用这类轴承。选用向心球轴承必须保证上下轴承盖的同轴度误差小于0.1mm,如果向心球轴承上、下轴承盖同轴度误差过大,使用中可能会使相对比较单薄的转向器上盖破裂,导致转向失效,极易引发交通事故[3]。国内加工精度较一般的转向器厂通常选用圆锥滚子轴承,该轴承虽比向心球轴承滚动阻力大,但对上下轴承盖的同轴度误差要求略微宽松。螺杆支承轴承预紧力的调整,分为调整垫和调整螺母两种。采用调整垫调整时,必须使用钢制调整垫。垫与垫之间必须抹密封胶,防止油的泄露,预紧力调整到轴向间隙小于0.05mm,旋转起来十分轻松即为合适。

转向盘的自由行程即为转向盘的自由转动量,它是指汽车在直线位置上转向盘的空行程,即转向盘转动,而转向轮无转动的过程。转向盘的自由行程是整个转向系统综合间隙在转向盘上的反应,其间隙主要是指转向器齿条和齿扇之间的啮合间隙。手动齿扇转向器为5个齿,动力转向器齿扇为3个齿。调整其自由行程时,应将齿扇中央点(齿扇中间的齿)对准齿条,此时齿扇和齿条之间的啮合间隙为最小,在此点(即汽车在直线行驶的位置上)处调整自由行程。通常情况下,转向盘自由行程调整的越小越好。进口汽车循环球式转向器转向盘自由行程通常不超过10°,以轿车为例,转向盘自由行程应该控制在37mm之内。国产轻型汽车转向盘自由行程通常规定不得超过15°,即左右个7.5°,转向盘自由行程应该在54mm之内。中型汽车转向盘自由行程通常规定不得超过20°,即左右各10°转向盘自由行程应该在80mm之内(中型汽车的转向盘直径大)[4]。如果转向盘自由行程较大时,转向器较轻,但调整到规定的行程时,转向器明显变重,说明螺母、螺杆滚道加工精度不够。转向盘保持适当的自由行程可以使操纵柔和,减小转向机构的冲击载荷。但自由行程必须适当,过大则影响转向操纵的灵敏度,过小使转向机构吃力。在汽车运行的过程中,尤其是在一些路面质量较差的路段行驶时,转向机构受冲击载荷频繁,致使转向机构各结合部位极易磨损,齿条和齿扇之间的啮合间隙增大,转向直拉杆上球头销和球头座磨损增大,转向盘自由行程也势必增大,影响操纵灵敏度。因此必须定期对方向盘自由行程进行检查和调整。在进行转向盘自由行程检查调整时,一般先调整转向螺杆的轴承预紧度,转向盘应无明显的轴向窜动,否则可用增减垫片来调整;齿条和扇形齿轮的啮合间隙的调整用拧动调整螺钉来调整。

1.3 研究的目的及意义

本次毕业设计主要是针对汽车循环球式转向器,根据一些指定的参数,并且结合《汽车设计》和其他相关书籍中关于转向器的理论知识设计一款循环球式转向器,确定其相关参数,使设计出的转向器符合使用要求。另外,也是通过本次毕业设计,熟悉掌握设计步骤与理念,为以后在专业领域的发展奠定坚实的基础。

1.4 研究内容和设计方法

研究内容:

(1)调研收集课题相关资料,结合毕业设计课题进行必要的文献检索,查阅、归纳、整理相关资料;

(2)深入学习并掌握汽车设计、汽车构造等专业知识,了解循环球式转向器设计的指导思想和设计原则;

(3)掌握汽车设计的方法和步骤,参考相关资料、标准和手册,对各零部件进行选型。计算、校核等;

(4) 计算循环球式转向器的主要参数,并对其重要部件进行强度校核,确定相关参数、材料以及装配要求。绘制循环球式转向器的三维模型,按照标准和生产工艺要求,绘制汽车转向器总装配图和主要零件图。

设计方法:根据设计中已知参数并结合已学的理论知识,分析并计算得到循环球式转向器的基本结构参数,然后利用相关经验公式对转向器的重要部件进行强度校核,校核的结果不符合国家相关要求则需要重新计算,当结果满足要求的时候,可确定其相关几何尺寸并完成图纸的绘制,结束本论文的设计工作。

第2章转向器的设计

2.1 转向器的组成与分类

汽车在行驶过程中,需按驾驶员的意志经常改变其行驶方向,即所谓汽车转向。就轮式汽车而言,实现汽车转向的方法是,驾驶员通过一套专设的机构,使汽车转向桥上的车轮相对于汽车纵轴线偏转一定角度。在汽车直线行驶时,往往转向轮也会受到路面侧向干扰力的作用,自动偏转而改变行驶方向。此时,驾驶员也可利用这套机构使转向轮向相反方向偏转,从而使汽车恢复原来的行驶方向。这一套用来改变或恢复汽车行驶方向的专设机构,即称为汽车转向系统。转向系即是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

汽车转向系可按转向能源的不同分为机械式转向系和动力转向系两大类。机械转向系的能量来源是人力,所有传力件都是机械的,由转向操纵机构、转向器、转向传动机构三大部分组成[5]。其中转向器是将操纵机构的旋转运动转变为传动机构的直线运动的机构,是转向系的核心部件。动力转向系除具有以上三大部件外,其最主要的动力来源是转向助力装置。由于转向助力装置最常用的是一套液压系统,因此也离不开泵、油管、阀、活塞和储油罐。转向盘即通常所说的方向盘。转向盘内部有金属制成的骨架,是用钢、铝合金或镁合金等材料制成。由圆环状的盘圈、插入转向轴的转向盘毂,以及连接盘圈和盘毂的辐条构成。采用焊接或铸造等工艺制造,转向轴是由细齿花键和螺母连接的。骨架的外侧一般包有柔软的合成橡胶或树脂,也有采用皮革包裹以及硬木制作的转向盘。转向盘外皮要求有某种程度的柔软度,手感良好,能防止手心出汗打滑的材质,还需要有耐热、耐候性。转向盘位于司机的正前方,是碰撞时最可能伤害到司机的部件,因此需要转向盘具有很高的安全性,在司机撞到转向盘上时,骨架能够产生变形,吸收冲击能,减轻对司机的伤害。转向盘的惯性力矩也是很重要的,惯性力矩小,我们就会感到“轮轻”,操作感良好,但同时也容易受到转向盘的反弹的影响,为了设定适当的惯性力矩,就要调整骨架的材料或形状等。现在的转向盘与以前的看似没有太大变化,但实际上已经有了改进。由于转向助力装置的普及,转向盘外径变小了,而手握处却变粗了,采用柔软材料,使操作感得到了改善。现在有越来越多的汽车在转向盘里安装了安全气囊,也使汽车的安全性大大提高了[6]。当汽车转向时,驾驶员对转向力矩。该力矩通过转向轴、转向万向节、和转向传动轴输入转向器。经转向器放大后的力矩和减速后的运动传到转向摇臂,再通过转向直拉杆传给固定于左转向节上的转向节臂,使左转向节和它所支撑的左转向轮偏转。从转向盘到转向传动轴这一系列零件和部件,均属于转向操纵机构。有转向摇臂至转向梯形这一系列零件和部件,均属于转向传动机构。对转向系提出的要求有:

(1)汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转,任何车轮不应有侧滑。不满足这项要求会加速轮胎磨损,并降低汽车的行驶稳定性。

(2)汽车转向行驶后,在驾驶员松开转向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

(3)汽车在任何行驶状态下,转向轮都不得产生自振,转向盘没有摆动。

(4)转向传动机构和悬架导向装置共同工作时,由于运动不协调使车轮产生的摆动应最小。

(5)保证汽车有较高的机动性,具有迅速和小转弯行驶能力。

(6)操纵轻便。

(7)转向轮碰撞到障碍物以后,传给转向盘的反冲力要尽可能小。

(8)转向器和转向传动机构的球头处,有消除因磨损而产生间隙的调整机构。

(9)在车祸中,当转向轴和转向盘由于车架或车身变形而共同后移时,转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

(10)进行运动校核。保证转向轮与转向盘转动方向一致。

正确设计转向梯形机构,可以使第一项要求得到保证。转向系中设置有转向减震器时,能够防止转向轮产生自振,同时又能使传到转向盘上的反冲力明显降低。要求M1类汽车以50km/h的车速,M2、M3、N1、N2、N3类汽车以40km/h的车速沿曲线半径为50m的弯道的切线方向驶离时,转向盘不得有异常振动。为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外车轮轨迹计算,其最小转弯半径大小能达到汽车轴距的2~2.5倍[7]。通常用转向时驾驶员作用在转向盘上的手力大小和转向盘转动圈数多少两项指标来评价操纵轻便性。当汽车以10km/h的车速从直线进入转弯半径为12m的弯道上行驶时,作用到转向盘上的最大手力对M1、M2类汽车为150N,对M3、N1类汽车为200N,对N2、N3类汽车为245N。乘用车转向盘从中间位置转到每一端的圈数不得超过2.0圈,货车则要求不超过3.0圈。

2.2 循环球式转向器方案分析

循环球式转向器由螺杆和螺母共同形成的螺旋槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副组成。

图2-1 循环球式转向器示意图

循环球式转向器的优点是:在螺杆与螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度,螺杆和螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨损性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合用来作整体式动力转向器[8]。循环球式转向器的主要缺点是:逆效率高,结构复杂,制造困难,制造精度要求高。循环球式转向器主要用于商用车上。循环球式转向器同样分为机械式的和助力似的,本文主要是设计一款机械式循环球式转向器。

转向器由螺杆、螺母、钢球、导管、摇臂轴、壳体、侧盖及上下盖等主要零件组成。如图2-1所示,螺杆螺母支承在壳体两端的上下盖轴承中。螺母下方切制成齿距相等的齿条,它与摇臂轴上的变厚齿扇相啮合,摇臂轴的轴颈支承在壳体及侧盖的滚针轴承中。转动螺杆时,通过钢球使螺母沿轴线移动,螺母齿条与摇臂轴齿扇的啮合,使摇臂轴往复摆动。螺杆轴承的预紧负荷,可通过增加或减少上盖处的调整垫片,达到转动螺杆所要求的预紧扭矩。齿条与齿扇的啮合可通过调整侧盖处的调整螺钉,使处在中间位置时无啮合间隙,转动螺杆时的扭矩应在规定范围内。转向器总成通过通过螺杆上的渐开线花键与转向轴相联接,转向器与转向盘间有两个(或一个)十字轴万向节。螺杆与螺母具有与钢球精密配合的螺纹滚道,其法向断面由双圆弧构成,其优点是消除螺杆与螺母的相对位移,减小转向盘的自由行程;在低负荷时,滚道与钢球为点接触,负荷较大时为局部接触,从而提高转向器的效率;钢球与滚道间的间隙可储存杂物,减少磨损,提高寿命。为减少钢球与滚道的接触应力,采用高精度钢球,分组装配,使螺杆与螺母的间隙控制在允许的范围内。

2.3 转向器主要性能参数

表1 原始参数

名称参数

角传动比20.25

最大工作压力12.9MPa

G)2~3T

前桥负荷(

1

理论最大输出力矩1665N

旋向右旋

输出摆角

?

±45

齿扇模数 6

2.3.1 转向器的效率

功率P1从转向轴输入,经转向摇臂轴输出所求得的效率称为正效率,用符号+η表示,121/)(P P P -=+η;反之称为逆效率,用符号-η表示,323/)(P P P -=-η。式中,2P 为转向器的摩擦功率;3P 为作用在转向摇臂上的功率。为了保证转向时驾驶员转动转向盘轻便,要求正效率高;为了保证汽车转向后转向轮和转向盘能自动返回到直线行驶位置,又需要有一定的逆效率。为了减轻在不平路面上的行驶时驾驶员的疲劳,车轮与路面之间的作用力传至转向盘上要尽可能小,防止打手,这又要求此逆效率尽可能低。

影响转向器正效率的因素有:转向器的类型、结构特点、结构参数和制造质量等。

(1)转向器类型、结构特点与效率,在前述四种转向器中,齿轮齿条式、循环球式转向器的正效率比较高,而蜗杆指销式特别是固定销和蜗杆滚轮式转向器的正效率要明显低一些。同一类型转向器,因结构不同效率也不一样。如蜗杆滚轮式转向器的滚轮与支持轴之间的轴承可以选用滚针轴承、圆锥滚子轴承和球轴承等三种结构之一。第一种结构除滚轮与滚针之间有摩擦损失外,滚轮侧翼与垫片之间还存在滑动摩擦损失,故这种转向器的效率+η仅有54%[9]。另外两种结构的转向器效率,根据试验结果分别为70%和75%。转向摇臂轴轴承的形式对效率也有影响,用滚针轴承比用滑动轴承可使正或逆效率提高约10%。

(2)转向器的结构参数与效率,如果忽略轴承和其他地方的摩擦损失,只考虑啮合副的摩擦损失,对于蜗杆和螺杆类转向器,其正效率为 )

tan(tan 00ρααη+=+ (2.1) 式中,0α为蜗杆(或螺杆)的螺线导成角;ρ为摩擦角,f arctan =ρ;f 为摩擦因数。取0α为?8;f 取0.03,?==146.1arctan f ρ; )

tan(tan 00ρααη+=+%3.87146.18tan(8tan =+=???) (2.2) 根据逆效率大小不同,转向器又有可逆式和不可逆式之分。路面作用在车轮上的力,经过转向系可大部分传递至转向盘,这种逆效率较高的转向器属于可逆式。它能保证转向后,转向轮和转向盘自动回正。这既减轻了驾驶员的疲劳,又提高了行驶安全性。但是,在不平路面上行驶时,车轮受到的冲击力能大部分传至转向盘,造成驾驶员“打手”,使之精神紧张;如果长时间在不平路面上行驶,易使驾驶员疲劳,影响安全驾驶[10]。属于可逆式的有齿轮齿条式和循环球式转向器。不可逆时转向器,是指车轮受到的冲击力不能传到转向盘的转向器。该冲击力由转向传动机构的零件承受,因而这些零件容易损坏。同时,它既不能保证车轮自动回正,驾驶员又缺乏路面感觉,因此,现代汽车不采用这种转向器。极限可逆式转向器介于上述两者之间,在车轮受到冲击力作用时,此力

只有较小一部分传至转向盘。它的逆效率极低,在不平路面上行驶时,驾驶员并不十分紧张,同时转向传动机构的零件所承受的冲击力也比不可逆时转向器要小。

如果忽略轴承和其他地方的摩擦损失,只考虑啮合副的摩擦损失,则逆效率为 %5.858tan 146.1-8tan(tan )tan(00==-=?

??-)αραη (2.3) 由式(2.2)和式(2.3)可见,增加导程角0α,正、逆效率均增大。受-η增大的影响,0α不宜取得过大。当导程角小于或等于摩擦角时,逆效率为负值或者为零。此时表明,该转向器是不可逆时转向器。为此,导程角必须大于摩擦角,通常螺线导程角选在?8~?10之间,取8°。

2.3.2 传动比的变化特性

转向系的传动比包括转向系的角传动比0ωi 和转向系的力传动比p i 。从轮胎接地面中心作用在两个转向轮上合力2w F 与作用在转向盘的手力h F 之比,称为力传动比,即h w p F F i /2=

转向盘角速度w ω与同侧转向节偏转角速度k ω之比,称为转向系角传动比0ωi ,即 k

k k w d d dt d dt d i β?β?ωωω===//0 (2.4) 式中,d ?为转向盘转角增量;d k β为转向节转角增量;d t 为时间增量。0ωi 又由转向器

角传动比ωi 和转向传动机构角传动比'ωi 所组成,即

'0ωωωi i i = (2.5)

转向盘角速度w ω与摇臂轴角速度p ω之比,称为转向器角传动比ωi ,即 p

p p w d d dt d dt d i β?β?ωωω===// (2.6) 式中,p d β为摇臂轴转角增量。此定义适用于除齿轮齿条式之外的转向器。 摇臂轴角速度p ω与同侧转向节偏转角速度k ω之比,称为转向传动机的角传动比

i , k p k p k p d d dt d dt d i ββββωωω===//'

(2.7) 轮胎与地面之间的转向阻力w F 和作用在转向节上的转向阻力矩r M 之间有如下关系 a

M F r w = (2.8) 式中,a 为主销偏移距,指从转向节主销轴线的延长线与支撑平面的交点至车轮中心平面与支承平面交线间的距离。作用在转向盘上的手力h F 为 sw

h h D M F 2= (2.9) 式中,h M 为作用在转向盘上的力矩;sw D 为转向盘直径。

将式(2.8)代入式(2.9)h w p F F i /2=后得到 a

M D M i h sw r p = (2.10) 由式(2.10)可见,当主销偏移距a 小时,力传动比p i 应取大些才能保持转向轻便。通常乘用车的a 值在0.4~0.6倍轮胎的胎面宽度尺寸范围内选取,而货车的a 值在40~60mm 范围内选取[11]。转向盘直径sw D 对轻便性有影响,选用尺寸小些的转向盘,虽然占用的空间少,但转向时需对转向盘施以较大的力;而选用尺寸大些的转向盘又会使驾驶员进、出驾驶室时入座困难。根据车型不同,转向盘直径sw D 在380~550mmd 标准系列内选取,这里取sw D =420mm 。

如果忽略摩擦损失,根据能量守恒原理,h r M M /2为 02ωβ?i d d M M k

h r == (2.11) 将式(2.11)代入式(2.10)后得到 a

D i i sw p 20ω= (2.12) 当a 和sw D 不变时,力传动比p i 越大,虽然转向越轻,但0ωi 也越大,表明转向不灵

敏。

转向传动机构角传动比,除用k p d d i ββω

/'=表示以外,还可以近似地用转向节臂臂长2L 与摇臂臂长1L 之比来表示,即12'/L L i ≈ω

。现代汽车结构中,2L 与1L 的比值大约在0.85~1.10之间,可近似认为其比值为1,则β?ωωd d i i /0=≈。由此可见,研究转向系的传动比特性,只需研究转向器的角传动比ωi 及其变化规律即可。考虑到ωωi i ≈0,由0ωi 的定义可知:对于一定的转向盘角速度,转向轮偏转角速度与转向器角传动比成反比。角传动比增加后,转向轮偏转角速度对转向盘角速度的响应变得迟钝,使转向操纵时间

增长,汽车转向灵敏性降低,所以“轻”和“灵”构成一对矛盾[12]。为解决这对矛盾,

可采用变速比转向器。

齿轮齿条式、循环球式、蜗杆指销式转向器都可以制成变速比转向器。下面介绍齿轮齿条式转向器变速比工作原理。相互啮合齿轮的基圆齿距必须相等,即21b b P P =。其中,齿轮基圆齿距111cos απm P b =,齿条基圆齿距222cos απm P b =。由上述两式可知:当具有标准模数1m 和标准压力角1α的齿轮与一个具有变模数2m 、变压力角2α的齿条相啮合,并始终保持2211cos cos ααm m =时,它们就可以啮合运转。如果齿条中部(相当于汽车直线行驶位置)齿的压力角最大,向两端逐渐减小(模数也随之减小),则主动齿轮啮合半径也减小,致使转向盘每转动某同一角度时,齿条行程也随之减小。因此,转向器的传动比是变化的。

循环球齿条齿扇式转向器的角传动比p r i /2πω=。因结构原因,螺距P 不能变化,但可以用改变齿扇啮合半径r 的方法,达到使循环球齿条齿扇式转向器实现变速比的目的。

随转向盘转角的变化,转向器角传动比可以设计成减小、增大或保持不变的。影响选取角传动比变化规律的因素,主要是转向轴负荷大小和对汽车机动能力的要求。若转

向轴负荷小,则在转向盘全转角范围内,驾驶员不存在转向沉重问题[13]。装有动力转向

的汽车,因转向阻力矩由动力装置克服,所以在上述两中情况下,均应取较小的转向器角传动比并能减少转向盘转动的总圈数,以提高汽车的机动能力。

转向轴负荷大又没有装动力转向的汽车,因转向阻力矩大致与车轮偏转角度的大小成正比变化,汽车低速急转弯行驶时的操纵轻便性问题突出,故应选用大些的转向器角传动比。汽车以较高车速转向行驶时,转向轮转角较小,转向阻力矩也小,此时要求转向器应当小写。因此,转向器角传动比变化曲线应选用大致呈中间小两端大些的下凹形曲线,转向盘在中间位置时的转向器角传动比不宜过小,否则在汽车高速直线行驶时,对转向盘转角过分敏感和使反冲效应加大,使驾驶员精确控制转向轮的运动有困难。相当于汽车直行位置时的转向器角传动比不宜低于15~16。对乘用车,推荐转向器角传动比ωi 在17~25范围内选取;对商用车,ωi 在23~32范围内选取,有原始数据得ωi =20.25。

2.3.3 转向器传动副的传动间隙t ?

传动间隙是指各种转向器中传动副(如循环球式转向器的齿扇和齿条)之间的间隙该间隙随转向盘转角?的大小不同而改变,这种变化关系称为转向器传动副传动间隙特性。研究该特性的意义在于,它与直线行驶的稳定性和转向器的使用寿命有关。直线行驶时,转向器传动副若存在传动间隙,一旦转向轮受到侧向力作用,就能在间隙的t ?范围内,允许车轮偏离原行驶位置,是汽车失去稳定。为防止出现这种情况,要求传动副的传动间隙在转向盘处于中间及其附近位置时要极小,最好无间隙。转向器传动副在中

间及其附近位置因使用频繁,磨损速度要比两端快[14]。在中间附近位置因磨损造成的间

隙大到无法确保直线行驶的稳定性时,必须经调整消除该处的间隙。调整后,要求转向盘能圆滑地从中间位置转到两端,而无卡住现象。为此,传动副的传动间隙特性,应当设计成在离开中间位置以后呈逐渐加大的形状。

循环球式转向器的齿条齿扇传动副的传动间隙特性,可通过将齿扇齿做成不同厚度来获取必要的传动间隙,即将中间齿设计成正常齿吼,从靠近中间齿的两侧齿到离开中间齿最远的齿,其厚度依次递减。如图2-2所示,齿扇工作时绕摇臂轴的轴线中心O 转动,加工齿扇时使之绕切齿轴线1O 转动。两轴线之间的距离n 称为偏心距。用这种方法切齿,可获得厚度不同的齿扇齿。其传动特性为 ??

????-+--=?22122cos cos tan 2n R n n R t p p d ββα (2.13) 式中,d α为端面压力角;R 为节圆半径;p β为摇臂轴转角;1R 为中心1O 到b 点的距离;n 为偏心距。偏心距n 不同,传动副的传动间隙特性也不同。偏心距n 不同时的传动间隙变化特性。n 越大,在同一摇臂轴条件下,其传动间隙也越大。一般偏心距n 去0.5mm 左右为宜。

图2-2 确定齿扇齿切齿轴线偏移的传动副径向间隙△R 及传动间隙△t 的示意图

2.4 循环球式转向器设计与计算

2.4.1 转向器计算载荷的确定

为了保证行驶安全,组成转向系的各零件应有足够的强度。欲验算转向系零件的强度,需首先确定作用在各零件上的力。影响这些力的主要因素有转向轴的负荷,路面阻力和轮胎气压等。为转动转向轮要克服的阻力,包括转向轮绕主销转动的阻力、车轮稳定阻力、轮胎变形阻力和转向系中的内摩擦阻力等。精确地计算这些力是困难的,为此推荐用足够精确地半经验公式来计算汽车在沥青或者混凝土路面上的原地转向阻力矩R M (N ·mm),即 P

G f M R 313= (2.14) 式中,f 为轮胎和路面间的滑动摩擦因数,一般取0.7;1G 为转向轴负荷(N );P 为轮胎气压(MPa),这里取P=352/cm kg =0.3432/m m N 。

mm N M r ·1001.2343

.0)8.910003(37.062

?=??= 作用在转向盘上的手力为

+

=ηωi D L M L F sw R h 212 (2.15) 式中,1L 为转向摇臂长;2L 为转向节臂长;sw D 为转向盘直径,由前已知为420mm ;ωi 为转向器角传动比;+η为转向器正效率。

对给定的汽车,用式(2.15)计算出来的作用力是最大值。因此,可以用此值作为计算载荷。然而,对于前轴负荷大的货车,用式(2.15) 计算的力往往超过驾驶员生理上的可能,在此情况下,对转向器和动力转向器动力缸以前零件的计算载荷,应取驾驶员作用在转向盘轮缘上的最大瞬时力,此力为700N 。

2.4.2 循环球式转向器主要尺寸参数的确定

(1)钢球中心距D 、螺杆外径1D 和螺母内径2D ,尺寸D 、1D 、2D 如图2-3所示。钢球中心距是基本尺寸。螺杆外径1D 、螺母内径2D 及钢球直径d 对确定钢球中心距D

的大小有影响,而D 又对转向器结构尺寸和强度有影响。在保证足够的强度条件下,尽可能将D 值取消些。选取D 值规律是随着齿扇模数的增大,钢球中心距D 也相应增加。设计时先参考同类型汽车的参数进行初选,经强度验算后,再进行修正。螺杆外径1D 通常在20~38mm 范围内变化,设计时应根据转向轴负荷的不同来选定。螺母内径2D 应大于1D ,一般情况下要求2D -1D =(5%~10%)D 。由查表和计算得D =35mm,1D =34mm,2D =37mm 。

图2-3 螺杆、钢球和螺杆传动副

(2)钢球直径d 及数量n ,钢球直径尺寸d 取得大,能提高承载能力,同时螺杆和螺母传动机构和转向器的尺寸也随之增大。钢球直径应符合国家标准,一般常在7~9mm 范围内选用,取d =8mm [15]。增加钢球数量n ,能提高承载能力;但使钢球流动性变坏,从而使传动效率降低。因为钢球直径本身有误差,所以共同参加工作的钢球数量并不是全部钢球数。经验证明,每个环路中的钢球数以不超过60个为好。为保证尽可能多的钢球都承载,应分组装配。每个环路中的钢球数为 34.34000

.85.23514.3cos 0=??=≈=d DW d DW n ππα (2.16) 式中,D 为钢球中心距;W 为一个环路中的钢球工作圈数;n 为不包括环流导管中的钢球数,由计算得n=35;0α为螺线导成角,常取??=8~50α,故1cos 0≈α。

(3)当螺杆和螺母的滚道各由两条圆弧组成,形成四段圆弧滚道截面时,如图2-4所示,钢球与滚道有四点接触,传动时轴向间隙最好,可满足转向盘自由行程小的要求。图中滚道与钢球之间的间隙,除用来贮存润滑油之外,还能贮存磨损杂质。为了减少摩擦,螺杆和螺母沟槽的半径2R 应大于钢球半径d/2,一般取d R )53.0~51.0(2=。取2R =4.6mm 。螺杆滚道应倒角,用来避免该处被啮出毛刺而划伤钢球后降低传动效率。

图2-4 四段圆弧滚道截面

(4)接触角θ,钢球与螺杆滚道接触点的正压力方向与螺杆滚道法向截面轴线间的夹角称为接触角θ,如图2-4所示。θ角多取为?45,已使轴向力和径向力分配均匀。

(5)螺距P 和螺旋线导程角0α,转向盘转动?角,对应螺母移动的距离s 为 π

2P s ?= (2.17) 式中,P 为螺纹螺距,取11mm 。与此同时,齿扇节圆转过的弧长等于s ,相应摇臂轴转过p β角,其间关系为

r s p β= (2.18)

式中,r 为齿扇节圆半径。又因为2

mz r =

,已知z =13,得 mm mz r 392

1362=?== (2.19) 联立式(2.17)、式(2.18)得p P r β?π2=,将?对p β求导,得循环球式转向器角传动比ωi P r i π2=

ω (2.20)

由式 (2.20)可见,螺距P 影响转向器角传动比的值。在螺距不变的条件下,钢球直径d 越大,图2-2中的尺寸b 越小,要求mm d P b 5.2)(>-=。取b=3mm 。螺距P 一般在8~11mm 选取,取11mm 。

(6)工作钢球圈数W ,多数情况下,转向器用两个环路,而每个环路的工作钢球圈数W 又与接触强度有关:增加工作钢球圈数,参加工作的钢球增多,能降低接触应力,提高承载能力;但钢球受力不均匀、螺杆增长使刚度降低。工作钢球圈数 1.5和 2.5圈两种,取2.5圈。

(7)导管内径1d ,容纳钢球而且钢球在其内部流动的导管内径e d d +=1,式中,e 为钢球直径d 与导管内径之间的间隙。e 不易过大,否则钢球流经导管时球心偏离导管中心线的距离增大,并使流动阻力增大。推荐mm e 8.0~4.0=,于是导管内径1d 取8.6mm 导管壁厚取为1mm 。

(8)材料的选取,螺杆和螺母一般采用20CrMnTi 钢制造,表面渗碳处理,以加强其表面硬度,渗碳层深度为0.8~1.2mm ,大型的商用汽车由于前轴负荷较大,可加深其渗碳层深度到1.05~1.45mm 。淬火后表面硬度为HRC58~64[16]。螺杆、钢球和螺母传动副还要对滚道截面进行高精度加工,使滚道表面具有高光洁度,采用标准的高精度的钢球,可用二、三级精度的,以尽可能的减少摩擦。 表2 螺杆螺母参数总结

螺杆外径

34mm 螺距 11mm 螺母内径

37mm 导程角 ?8 钢球中心距

35mm 导管内径 8.6mm 钢球直径

8mm 导管壁厚 1mm 钢球数量 35 螺杆螺母材料 20CrMnTi

(9)齿条、齿扇传动副设计,滚刀相对齿扇作斜向进给运动加工齿扇齿,得到变厚齿扇。变厚齿扇的齿顶和齿根的轮廓面是圆锥的一部分,其分度圆上的齿厚是变化的,故称之为变厚齿扇。图2-5中若O O -剖面的原始齿形变位系数0=ξ,且I-I 剖面和II-II 剖面分别位于O O -剖面两侧,则I-I 剖面的齿轮是正变位齿轮,II-II 剖面的齿轮为负变位齿轮,故变厚齿扇在整个齿宽方向上,是由无数个原始齿形变位系数逐渐变化的圆柱齿轮所组成的。对齿轮来说,因为在不同位置的剖面中,其模数m 不变,所以它的分度圆半径r 和基圆半径b r 相同。因此,变厚齿扇的分度圆和基圆均为一圆柱,它在不同剖面位置上的渐开线齿形,都是在同一个基圆柱上所展出的渐开线,只是其轮齿的渐开线齿形相对基圆的位置不同而已,所以应将其归入圆柱齿轮的范畴。变厚齿扇齿形的计算,如图2-5所示,一般将中间剖面I-I 规定为基准剖面。由I-I 剖面向右时,变

位系数ξ为正,向左则由正变为零,再变为负。若O O -剖面距I-I 剖面的距离为0α,则其值为γξαtan /10m =,γ是切削角,常见的有'306?和'307?两种,这里取'307?。在切削角γ一定的条件下,各剖面的变位系数ξ取决于距基准剖面I-I 的距离α。进行变厚齿扇齿形计算之前,必须确定的参数有:模数m =6,法向压力角0α,一般在??30~20之间,取20°;齿顶高系数1x ,一般取0.8或1.0,取1.0;径向间隙系数,取0.2;整圆齿数z ,在12~15之间选取,取15;齿扇宽度B ,一般在22~38mm ,取38mm 。

图2-5 变厚齿扇齿形计算简图

通常取齿扇宽度的中间位置作基准截面O O -,O O -截面以右至II-II 截面齿形变位系数均为正,以左至III-III 截面的齿形变位系数为负,则任一截面I-I 的齿形变位系数的绝对值可由以下公式得到:

m /tan 0γαξ= (2.21) 式中:0α——该截面距离基准截面的距离

m ——模数为6

γ——切削角,选取为'307?

由上式可知,模数和切削角已定,则齿形变位系数只与截面距离基准平面的距离有关。整圆齿数z 选择15,一般保留齿数为3、5两种,保留齿数为5,法向压力角0α取?20,则相应的齿顶高系数1χ即为1.0,齿根高系数2χ为1.25初定齿扇宽度为38mm ,

循环球式转向器的设计

2.4 主要尺寸参数的选择 长安福特福克斯2.0满载前轴载荷为51%Mg,再根据表(2-2)选择齿扇模数为4.5。在确定齿扇模数后,转向器其他参数根据表(2-1)和表(2-3)进行选取。 表2-1 循环球转向器的主要参数 参数数值 齿扇模数/mm 3.0 3.5 4.0 4.5 5.0 6.0 6.5 摇臂轴直径/mm 22 26 30 32 32 38 42 钢球中心距/mm 20 23 25 28 30 35 40 螺杆外径/mm 20 23 25 28 29 34 38 钢球直径/mm 5.556 6.350 6.350 7.144 8.000 螺距/mm 7.938 8.731 9.525 10.000 11.000 工作圈数 1.5 2.5 2.5 环流行数 2 齿扇齿数 5 5 齿扇整圆齿数12 13 18 14 15 齿扇压力角22°30′ 27°30′ 切削角6°30′6°30′7°30′ 齿扇宽/mm 22 25 25 27 25 28 30 28-32 34 38 35 38

表2-2各类汽车循环球转向器的齿扇齿模数 齿扇齿模数 m/mm 3.0 3.5 4.O 4.5 5.O 6.0 6.5 轿车发动机 排量/ ml 500 1000 ~ 1800 1600 ~ 2000 2000 2000 前轴负 荷/N 3500 ~ 3800 4700 ~ 7350 7000 ~ 9000 8300 ~ 11000 10000 ~ 11000 货车和大客车前轴负 荷/N 3000 ~ 5000 4500 ~ 7500 5500 ~ 18500 7000 ~ 19500 9000 ~ 24000 17000 ~ 37000 23000 ~ 44000 最大装 载/kg 350 1000 2500 2700 3500 6000 8000 表2-3 循环球式转向器的部分参数 模数m 螺杆外 径 螺纹升程 螺母长 度 钢球直径 齿扇压 力角 齿扇切 削角 摇臂 轴外 径 3.0 20 7.938 40 5.556 22 30′ 6 30′ 7 30′ 22 3.5 23 8.731 45 5.556 22 30′ 6 30′ 7 30′ 26 4.0 25 9.525 48 6.350 22 30′ 6 30′ 7 30′ 20 4.5 28 9.525 58 7.144 22 30′ 6 30′ 7 30′ 32 5.0 29 10.319 62 7.144 22 30′ 6 30′ 7 30′ 35 根据所选择的齿扇模数,根据表(2-1)和表(2-3)选取对应的参数为:

循环球式转向器的拆装

循环球式转向器的拆装 一、实验目的 1、熟悉转向器的构造、工作原理、拆卸、装配与检查、调整方法。 2、初步掌握循环球式转向器的正确拆装顺序、各零件的特点、检修项目、装配时的注意事项、有关调整的位置和正确方法。 二、实验原理 根据循环球式转向器的组成部分、工作原理和结构特点,以及转向器中各零部件之间的装配关系、动力传递路线,进行循环球式转向器的分拆装实训。 三、使用设备、仪器及材料 1、循环球式转向器总成1个 2、工作台架1个 3、常用、专用工具全套 4、各式量具全套 四、实验步骤 1、将传动轴(传动轴与转向螺杆为一体)套管从传动轴上拆下 2、卸出侧盖锁紧螺母,将齿扇轴(摇臂轴)转到中间位置,再拧下侧盖的4个紧固螺栓,用软质锤或铜棒轻轻敲打齿扇轴端头,卸出侧盖和齿轮扇轴总成(即拧下转向器侧盖的固定螺栓,取下侧盖和转向臂轴总成;) 3、从转向器壳体中卸出转向螺杆及转向螺母总成 4、分解转向螺杆螺母总成(必要时分解):先拆下固定导管夹螺钉,再拆下管夹,取出导管,最后握住螺母,慢慢地转动螺杆,排出全部钢球 5、观察各零部件的结构特点、有无损坏,以及其工作原理和装配关系

6、装配顺序与上述相反,并按技术要求进行装配 五、实验过程原始记录 1、装入钢球后,转动螺母的轴向窜动量不得大于0.10mm。 2、将轴承内圈压在转向螺杆的轴颈上。 3、组装摇臂轴: (1)、检查用于转向螺母与齿扇啃合间隙的调整螺钉的轴向间隙,此间隙若大0.12mm,则在调整螺钉与摇臂上的轴孔端面间加推力垫片调整。 (2)、摇臂轴承预润滑之后,将摇臂装入壳体内。并按顺序装入推力垫片、调整螺钉、垫圈、弹性挡圈。 4、安装转向器上盖、下盖: (1)、把轴承装入下盖承孔中。 (2)、安装调整垫片和下盖,从壳体孔中放入转向螺杆组件,安装下盖。装下盖之前在结合平面上涂以密封胶。 (3)、把轴承外圈和转向螺杆油封压入上盖,并装入上盖调整垫片和上盖。 (4)、通过增减下盖调整垫片或用下盖上的调整螺塞调整转向螺杆的轴承紧度。然后检查转向盘的转向力矩,一般为 0.6~0.9N·m。 5、安装转向器侧盖: (1)、给油封涂密封胶后,油封唇口向内,均匀地压入壳体上承孔内。 (2)、将转向螺母移至中间位置(转向器总圈数的1/2),使扇形齿的中间齿与转向螺母的中间齿相啮合,装入摇臂轴组件。 (3)、侧盖密封垫涂以密封胶,再安装、紧固。 6、调整转向器啃合间隙: (1)、使转向器的传动副处于中间位置(直行位置)。 (2)、通过调整螺钉,调整转向器传动副的啃合间隙,在直线位置上应呈

汽车转向系设计说明书

汽车设计课程设计说明书 题目:重型载货汽车转向器设计 姓名:席昌钱 学号:5 同组者:严炳炎、孔祥生、余鹏、李朋超、郑大伟专业班级:09车辆工程2班 指导教师:王丰元、邹旭东

设计任务书 目录 1.转向系分析 (4) 2.机械式转向器方案分析 (8) 3.转向系主要性能参数 (9) 4.转向器设计计算 (14) 5.动力转向机构设计 (16) 6.转向梯形优化设计 (22) 7.结论 (24) 8.参考文献 (25)

1转向系设计 基本要求 1.汽车转弯行驶时,全部车轮应绕瞬时转向中心旋转。 2.操纵轻便,作用于转向盘上的转向力小于200N。 3.转向系的角传动比在23~32之间,正效率在60%以上,逆效率在50%以上。 4.转向灵敏。 5.转向器和转向传动机构中应有间隙调整机构。 6.转向系应有能使驾驶员免遭或减轻伤害的防伤装置。 基本参数 1.整车尺寸: 11976mm*2395mm*3750mm。 2.轴数/轴距 4/(1950+4550+1350)mm 3.整备质量 12000kg 4.轮胎气压 2.转向系分析 对转向系的要求[3] (1) 保证汽车有较高的机动性,在有限的场地面积内,具有迅速和小半径转弯的能力,同时操作轻便; (2) 汽车转向时,全部车轮应绕一个瞬时转向中心旋转,不应有侧滑; (3) 传给转向盘的反冲要尽可能的小; (4) 转向后,转向盘应自动回正,并应使汽车保持在稳定的直线行驶状态; (5) 发生车祸时,当转向盘和转向轴由于车架和车身变形一起后移时,转向系统最好有保护机构防止伤及乘员. 转向操纵机构 转向操纵机构包括转向盘,转向轴,转向管柱。有时为了布置方便,减小由于装置位置误差及部件相对运动所引起的附加载荷,提高汽车正面碰撞的安全性以及便于拆装,在转向轴与转向器的输入端之间安装转向万向节,如图2-1。采用柔性万向节可减少传至转向轴上的振动,但柔性万向节如果过软,则会影响转向系的刚度。采用动力转向时,还应有转向动力系统。但对于中级以下的轿车和前轴负荷不超过3t的载货汽车,则多数仅在用机械转向系统而无动力转向装置。

循环球转向器设计

汽车课程设计计划 一、题目: 货车总体设计及各总成选型设计 二、要求: 分别为给定基本设计参数的汽车,进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数;详细计算指定总成的设计参数,绘出指定总成的装配图和部分零件图。其余参数如表1: 表1 三、设计计算要求 .根据已知数据,选取汽车类型、确定轴数、驱动形式、布置形式。注意国家道路交通法规规定和汽车设计规范。 选择轴数:2根驱动形式:4×2 布置形式:平头式发动机前置后驱 .确定汽车主要参数: 1)主要尺寸,可从参考资料中获取; 平头式货车长4000mm 宽1500mm 高2000mm 轴距2500mm 轮距1500mm 前悬300mm 后悬1200mm 车头长度1400mm 2)进行汽车轴荷分配; 4×2后轮单胎满载时:前轴35%后轴65%空载时:前轴55%后轴45% 3)百公里燃油消耗量; 设计的货车百公里燃油消耗量:3L(100t·km)-1 4)最小转弯直径 货车的最小转弯直径: 5)通过性几何参数 通过性几何参数:hmin 200mmγ1 50°γ2 30°ρ1 5m 6)制动性参数 表

.选定发动机功率、转速、扭矩。可以参考已有的车型。 发动机最大功率Pemax=(m a gf r v amax/3600+C D Av amax3/76140)/ηTηT为传动系效率,汽车可取90%,m a为汽车总质量;g为重力加速度;f r为滚动阻力系数,对货车取;C D为空气阻力系数,货车取;A为汽车正面投影面积。代入数值;得Pemax= 转速n p取5000r/min 最大转矩转速:T emax=9549×α×P emax/n p α为转矩适应性系数,一般在之间选取,此时取,故T emax =265N·m 因n p/n T在之间选取,故n T取2500 r/min。

汽车齿轮齿条式转向器设计分解

" 汽车设计课程设计说明书 题目:汽车齿轮齿条式转向器设计(3) - 系别:机电工程系 专业:车辆工程 班级: 姓名: 学号: 指导教师: 、 日期: 2012年7月

汽车齿轮齿条式转向器设计 摘要 根据对齿轮齿条式转向器的研究以及资料的查阅,着重阐述了齿轮齿条式转向器类型选择,不同类型齿轮齿条式转向器的优缺点,和各种类型齿轮齿条式转向器应用状况。根据原有数据首先分析转向器的特点,确定总体的结构方案,并确定转向器的计算载荷以及转向器的主要参数,然后确定齿轮齿条的形式,接着对齿轮模数的选择确定,主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定,通过确定转向器的线传动比计算其力传动比以及齿轮齿条的结构参数,在以上的基础上选择主动齿轮、齿条的材料,受力分析,及对齿轮齿条的疲劳强度校核、齿根弯曲疲劳强度校核。修正齿轮齿条式转向器中不合理的数据。通过对齿轮齿条式转向器的设计,选取出相关的零件如:螺钉、轴承等,并在说明书中画出相关零件的零件图。通过说明书并画出齿轮齿条式转向器的零件图2张、装配图1张。 关键词:齿轮齿条,转向器,设计计算 ^ 。

` 目录 序言............................................. 错误!未定义书签。 1.汽车转向装置的发展趋势........................... 错误!未定义书签。 2.课程设计目的..................................... 错误!未定义书签。 3.转向系统的设计要求............................... 错误!未定义书签。 4.齿轮齿条式转向器方案分析......................... 错误!未定义书签。… 5.确定齿轮齿条转向器的形式......................... 错误!未定义书签。 6.齿轮齿条式转向器的设计步骤....................... 错误!未定义书签。 已知设计参数.................................... 错误!未定义书签。 齿轮模数的确定、主动小齿轮齿数的确定、压力角的确定、齿轮螺旋角的确定.............................................. 错误!未定义书签。 确定线传动比、转向器的转向比.................... 错误!未定义书签。 小齿轮的设计.................................... 错误!未定义书签。 小齿轮的强度校核................................ 错误!未定义书签。 齿条的设计...................................... 错误!未定义书签。 ~ 齿条的强度计算.................................. 错误!未定义书签。 主动齿轮、齿条的材料选择........................ 错误!未定义书签。 7.总结............................................. 错误!未定义书签。参考文献........................................... 错误!未定义书签。致谢............................................. 错误!未定义书签。 $

机械毕业设计1535循环球式转向器的设计

1 绪论 (1) 1.1课题背景 (1) 1.2 国内外研究现状 (3) 1.3 研究目的及意义 (3) 1.4 研究内容和设计方法 (3) 2 转向器的设计 (4) 2.1 转向系统简介 (4) 2.2 机械转向系 (5) 2.2.1 转向操纵机构 (6) 2.2.2 转向器 (6) 2.2.3 转向传动机构 (8) 2.3 转向系主要性能参数 (8) 2.3.1 转向器的效率 (8) 2.3.2 传动比的变化特性 (10) 2.4 主要尺寸参数的选择 (12) 2.4.1 螺杆、钢球、螺母传动副设计 (15) 2.4.2 齿条、齿扇传动副设计 (19) 2.5转向器的计算和校核 (21) 2.5.1循环球式转向器零件的强度计算 (21) 2.5.2 转向摇臂轴直径的确定 (24) 3结论 (25) 致谢 (26) I

汽车是一种性能要求高,负荷变化大的运输工具。转向系统作为汽车的关键部件之一,更需要了解和掌握。转向器作为转向系统中最重要的组成部件,对它进行深入的研究便显得意义重大。循环球式转向器主要由螺杆、螺母、钢球、转向器壳体等组成,具有较高的传动效率,操纵轻便,磨损较小,使用寿命长,近年来得到广泛使用。根据现用的国家标准并依据轻型汽车的循环球转向器数据,按照汽车设计的原则设计一款循环球转向器,完成三维图形和零件平面图的绘制,使其能够满足现代轿车的国家标准要求。 关键词: 循环球;转向器;设计;分析 II

Abstract Automobile is a transport machine with high-performance and variable loads. Steering system is one of the key components for vehicles and need to be understood and grasped. As the most important part of steering system, steering gear need to be studied importantly. Circulating ball-type steering gear contains screw, nut, ball, steering gear housing, etc. It has many Advantages, such as high transmission efficiency, light manipulation, less wear and long service life, so as to be widely used in recent years. According to current national standards and the ball steering vehicle data of BJ2020, a cycle ball steering is designed by the automotive principles, and some three-dimensional graphics and rendering parts of the plan are completed, so as to meet the national standards of Modern utility vehicle. Key words: Circulating ball;Steering gear;Design;Analysis III

循环球式转向器概述

循环球式转向器概述 学号姓名联系方式 1 转向器概述 转向器总成是汽车行驶系统中的重要安全部件,其质量好坏对汽车直线行驶的稳定性和操纵稳定性都有直接影响[1]。 转向器一般固定在汽车车架或车身上,是转向系统中的减速机构,它一般由1~2级传动副组成,其结构有多种形式[2]。 转向器的功用有:将转向力的放大;将方向盘的转矩变为转向摇臂的前后摆动[3]。 对转向器的要求:转向灵敏,故转向器的减速比不可太大,一般轿车转向器的减速比为12~21[4];有较高的传动效率;增大由方向盘传到转向节的力并改变力的传递方向,获得所要求的摆动速度和角度;有一定的可逆性,即从转向轮自动回正和传递适当路感这两个因素综合考虑[5]。 2 机械式转向器分类 按转向器结构形式可分为齿轮齿条式、蜗杆曲柄指销式、循环球-齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等[6]。 按其作用力的传递情况可分为可逆式、不可逆式、极限可逆式三种[7]。转向器的逆效率表示转向器的可逆性[8]。可逆式转向器正、逆传动效率都高,有利于转向后转向轮的自动回正,但也容易出现“打手”现象。不可逆式转向器转向器零件易损坏,且没有“路感”。极限可逆式转向器有一定的路感,转向轮自动回正也能实现,“打手”现象不太明显。驾驶员作用在商用车转向盘的切向力在一定条件下不超过250N[9]。经常在良好路面上行驶的汽车多用可逆式转向器[10]。 3 循环球式转向器的特点及应用 正传动效率很高,故操作轻便,工作平稳可靠,使用寿命长。但其逆效率也高,易将路面冲击力传到转向盘。不过对于轻型的、前轴轴载质量不大而又经常在良好路面上行驶的汽车而言,这一缺点影响不大。因此,循环球式转向器在各类各级汽车上,特别是商用车和越野车上获得了广泛的应用[13]。 4 循环球式转向器的组成

转向器的结构型式选择及其设计计算

5.2转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于1.2t 的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于2.5t 且无动力转向和不大于4t 带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。 下面分别介绍几种常见的转向器。 5.2.1循环球式转向器 循环球式转向器又有两种结构型式,即常见的循环球-齿条齿扇式和另一种即循环球-曲柄销式。它们各有两个传动副,前者为:螺杆、钢球和螺母传动副以及落幕上的齿条和摇臂轴上的齿扇传动副;后者为螺杆、钢球和螺母传动副以及螺母上的销座与摇臂轴的锥销或球销传动副。两种结构的调整间隙方法均是利用调整螺栓移动摇臂轴来进行调整。 循环球式转向器的传动效率高、工作平稳、可靠,螺杆及螺母上的螺旋槽经渗碳、淬火及磨削加工,耐磨性好、寿命长。齿扇与齿条啮合间隙的调整方便易行,这种结构与液力式动力转向液压装置的匹配布置也极为方便。 5.2.1.1循环球式转向器的角传动比w i 由循环球式转向器的结构关系可知:当转向盘转动?角时,转向螺母及其齿条的移动量应为 t s )360/(?= (5-21) 式中t ——螺杆或螺母的螺距。 这时,齿扇转过β角。设齿扇的啮合半径w r ,则β角所对应的啮合圆弧长应等于s ,即 s r w =?πβ2)360/( (5-22) 由以上两式可求得循环球式转向器的角传动比w i 为

GX1608A型循环球齿条-齿扇式转向器设计说明书

1.摘要 汽车转向器是汽车的重要组成部分,也是决定汽车主动安全性的关键总成,它的质量严重影响汽车的操纵稳定性。随着汽车工业的发展,汽车转向器也在不断的得到改进,虽然电子转向器已开始应用,但机械式转向器仍然广泛地被世界各国汽车及汽车零部件生产厂商所采用。而在机械式转向器中,循环球齿条-齿扇式转向器由于其自身的特点被广泛应用于各级各类汽车上。本文选择GX1608A型循环球齿条-齿扇式转向器作为研究课题,其主要内容有:汽车转向器的组成分类;转向器总成方案分析及其数据确定和转向器的设计过程。 这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。 关键词;转向器操纵稳定性循环球齿条-齿扇式转向器

目录 摘要 (1) 1绪论 (4) 2汽车转向系的组成及分类 (6) 2.1汽车转向系的类型和组成 (6) 2.1.1 机械式转向系 (9) 2.1.2 动力转向器 (10) 2.2 转向系主要性能参数 (11) 2.2.1转向器的效率 (11) 2.2.2传动比的变化特性 (12) 2.2.3转向盘自由行程 (17) 2.3 转向操纵机构及转向传动机构 (17) 2.3.1转向操纵机构 (17) 2.3.2转向传动机构 (18) 3转向器总成方案分析 (20) 3.1转向器设计要求 (20) 3.2转向器总成方案设计 (21) 4循环球式转向器主要尺寸参数的选择 (25) 5 转向器输出力矩的确定 (26) 6 轴的设计计算及校核 (27) 6.1 转向摇臂轴(即齿形齿扇轴)的设计计算 (27) 6.1.1材料的选择 (27) 6.1.2结构设计 (27) 6.1.3轴的设计计算 (27) 6.2 螺杆轴设计计算及主要零件的校核 (31) 6.2.1材料选择 (31) 6.2.2结构设计 (31) 6.2.3轴的设计计算 (32) 6.2.4钢球与滚道之间的接触应力校核 (34)

液压助力循环球式转向器的设计

摘要 汽车是一种性能要求高,负荷变化大的运输工具。转向系统作为汽车的关键部件之一,更需要了解和掌握。转向器作为转向系统中最重要的组成部件,对它进行深入的研究便显得意义重大。循环球式转向器主要由螺杆、螺母、钢球、转向器壳体等组成,具有较高的传动效率,操纵轻便,磨损较小,使用寿命长,近年来得到广泛使用。根据现用的国家标准并依据轻型汽车的循环球转向器数据,按照汽车设计的原则设计一款循环球转向器,完成二维图形和零件平面图的绘制,使其能够满足现代轿车的国家标准要求。 关键词: 循环球;转向器;设计;分析

Abstract Automobile is a transport machine with high-performance and variable loads. Steering system is one of the key components for vehicles and need to be understood and grasped. As the most important part of steering system,steering gear need to be studied importantly. Circulating ball-type steering gear contains screw,nut,ball,steering gear housing,etc.It has many Advantages,such as high transmission efficiency,light manipulation,less wear and long service life,so as to be widely used in recent years.According to current national standards and the ball steering vehicle data of BJ2020,a cycle ball steering is designed by the automotive principles,and some three-dimensional graphics and rendering parts of the plan are completed,so as to meet the national standards of Modern utility vehicle. Key words: Circulating ball;Steering gear;Design;Analysis

汽车循环球式转向器设计

目录 1绪论 (2) 2基本参数与结构设计 (5) 3螺杆螺母取材及齿轮齿条参数确定 (8) 4循环球式转向器强度计算 (10) 5转向摇臂轴直径的确定 (13) 6总结 (14) 7参考文献 (15)

1 绪论 课题背景 转向器又名转向机、方向机,它是转向系中最重要的部件。转向器的作用是:增大转向盘传到转向传动机构的力和改变力的传递方向。 转向器按结构形式可分为多种类型。目前较常用的有齿轮齿条式、蜗杆曲柄指销式、循环球-齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等。 循环球式转向器 这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向。循环球式转向器的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线内循环滚动,循环球式故而得名。 进入90年代以来,汽车已经融入我们的生活,我国的经济实力不断增强,人民生活水平大幅度提高,同时也反映出民族汽车工业的巨大进步。现在我国已经成为世界五大汽车强国。 作为汽车关键部件之一的转向系统也得到了相应的发展,基本已形成了专业化、系列化生产的局面。有资料显示,国外有很多国家的转向器厂,都已发展成大规模生产的专业厂,年产超过百万台,垄断了转向器的生产,并且销售点遍布了全世界。汽车转向器的结构很多,从目前使用的普遍程度来看,主要的转向器类型有4种:有蜗杆销式(WP型)、蜗杆滚轮式(WR型)、循环球式(BS型)、齿轮齿条式(RP型)。这四种转向器型式,已经被广泛使用在汽车上[]1。 综合上述对有关转向器品种的使用分析,得出以下结论: 循环球式转向器和齿轮齿条式转向器,已成为当今世界汽车上主要的两种转向器;而蜗轮-蜗杆式转向器和蜗杆销式转向器,正在逐步被淘汰或保留较小的地位。在小客车上发展转向器的观点各异,美国和日本重点发展循环球式转向器,

循环球式转向器的原理

1 绪论 循环球式转向器主要由蜗杆、扇形齿轮轴、钢球、转向器壳、钢球螺母、调整螺钉、向心推力轴承等组成。为了降低摩擦,采用了具有循环球结构的滚动螺母,蝶、母的一侧制成齿条与转向摇臂轴的齿扇啃合。其结构和工作原理如下。 转动转向盘时,与转向轴结合成一体的螺杆便带动方形螺套做轴向移动。螺套的一个面切成齿条,故能进而带动与转向摇臂轴制成一体的齿扇转动。为了减小蜗杆与螺套间摩擦和磨损,二者的螺纹均制成半圆形凹槽,并不直接接触,其间装有许多钢球,因为借助钢球的滚动,蜗杆和球螺母之间的摩擦阻力小,从而构成了滚动摩擦传动副。 蜗杆的上、下端支承在两个滚锥轴承上,轴承的松紧度可用轴承端盖和壳体间的调整垫片调整。螺杆与方形螺套二者的螺旋槽对合而成近似圆形断面的螺旋形通道。方形螺套的外面有两根钢球导管,每根导管的两端分别塞入方形螺套侧面的孔内,导管内也塞满了钢球。这样,两根导管和方形螺套内的螺旋形通道组合成两个各自独立的封闭钢球"流道"。转向轴连同螺杆转动时,通过钢球将力传给方形蝶、套,螺套就产生轴向移动。同时,由于摩擦力作用,所有钢球便在螺杆与螺套之间滚动,形成“球流”。钢球在螺套内绕行两周之后,就流出螺套而进入导管,再由导管流回螺套内。故在转向器工作时,两列钢球只是在各自的封闭流道内循环,不致脱出。与齿扇制成一体的转向摇臂轴支承在壳体内的材套上,在转向摇臂轴的端部嵌入调整螺钉的圆柱形端头,调整螺钉拧在侧盖上,用螺母锁紧。因齿扇的齿高是做成沿齿扇轴线倾斜变化的,故转动调整螺钉使转向摇臂轴做轴向移动,即可调整齿条与齿扇的啮合间隙。 循环球式转向器的英文名称是Recirculating Ball Steering Gear。循环球式转向器由两队传动副组成,一对是螺杆﹑螺母,另一对是齿条、齿扇或曲柄销。在螺杆和螺母之间装有可循环滚动的钢球,使滑动摩擦变为滚动摩擦,从而提高了传动效率。 循环球式:这种转向装置是由齿轮机构将来自转向盘的旋转力进行减速,使转向盘的旋转运动变为涡轮蜗杆的旋转运动,滚珠螺杆和螺母夹着钢球啮合,因而滚珠螺杆的旋转运动变为直线运动,螺母再与扇形齿轮啮合,直线运动再次变为旋转运动,使连杆臂摇动,连杆臂再使连动拉杆和横拉杆做直线运动,改变车轮的方向,这是一种古典的机构,现代轿车已大多不再使用,但又被最新方式的助力装置所应用。它的原理相当于利用了螺母与螺栓在旋转过程中产生的相对移动,而在螺纹与螺纹之间夹入了钢球以减小阻力,所有钢球在一个首尾相连的封闭的螺旋曲线内循环滚动,循环球式故而得名。 这种转向器的优点是,操纵轻便,磨损小,寿命长。缺点是结构复杂,成本高,转向灵敏度不如齿轮齿条式。因此逐渐被齿轮齿条式取代。但随着动力转向的应用,循环球式转向器近年来又得到广泛使用。 本文选择GX1608A型循环球齿条—齿扇式转向器作为研究,其主要内容有:汽车转向器相关知识,循环球式转向器的主要参数选择及其设计。设计部分还包括转向摇臂轴,渐开线花键,扇形齿轮轴以及螺杆轴的设计与校核。 转向器按结构形式可分为多种类型。历史上曾出现过许多种形式的转向器,目前较常用的有齿轮齿条式、蜗杆曲柄指销式、循环球—齿条齿扇式、循环球曲柄指销式、蜗杆滚轮式等。 2.3.2 转向传动机构 为牢固支撑转向盘而设有转向柱。传递转向盘操作的转向轴从中穿过,内部有轴承和衬

轿车转向系设计课程设计

轿车转向系设计 此次设计的是与非独立悬架相匹配的整体式两轮转向机构。利用相关汽车设计和连杆机构运动学的知识,首先对给定的汽车总体参数进行分析,在此基础上,对转向器、转向系统进行选择,接着对转向

器和转向传动机构(主要是转向梯形)进行设计,再对动力转向机构进行设计。 转向器在设计中选用的是循环球式齿条齿扇转向器,转向梯形的设计选用的是整体式转向梯形,通过对转向内轮实际达到的最大偏转角时与转向外轮理想最大偏转角度的差值的检验和对其最小传动角的检验,来判定转向梯形的设计是否符合基本要求。 一、整车参数 1、汽车总体参数的确定 本设计中给定参数为: 二、转向系设计概述 汽车转向系统是用来改变汽车行驶方向的专设机构的总称。 汽车转向系统的功用是保证汽车能按驾驶员的意愿进行直线 或转向行驶。 对转向系提出的要求有: 1) 汽车转向行驶时,全部车轮绕瞬时转向中心转动; 2) 操纵轻便,方向盘手作用力小于200N; 3) 转向系角传动比15~20;正效率高于60%,逆效率高于50%;

4) 转向灵敏; 5) 转向器与转向传动装置有间隙调整机构; 6) 配备驾驶员防伤害装置; 三、机械式转向器方案分析 机械转向器是将司机对转向盘的转动变为转向摇臂的摆动(或齿条沿转向车轴轴向的移动),并按一定的角转动比和力转动比进行传递的机构。 机械转向器与动力系统相结合,构成动力转向系统。高级轿车和重型载货汽车为了使转向轻便,多采用这种动力转向系统。采用液力式动力转向时,由于液体的阻尼作用,吸收了路面上的冲击载荷,故可采用可逆程度大、正效率又高的转向器结构。 1、机械式转向器方案选取 选取循环球式转向器 循环球式转向器有螺杆和螺母共同形成的落选槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副组成,如图所示。 循环球式转向器示意图

循环球式转向器计算说明书精选文档

循环球式转向器计算说 明书精选文档 TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

汽车循环球式转向器设计 摘要 循环球式转向器是由螺杆和螺母共同形成的螺旋槽内装钢球构成的传动副,以及螺母上齿条与摇臂轴上齿扇构成的传动副总成。循环球式转向器的优点是:在螺杆与螺母之间因为有可以循环流动的钢球,将滑动摩擦转变为滚动摩擦,因而传动效率可达到75%~85%;在结构和工艺上采取措施后,包括提高制造精度,改善工作表面的表面粗糙度,螺杆和螺母上的螺旋槽经淬火和磨削加工,使之有足够的硬度和耐磨损性能,可保证有足够的使用寿命;转向器的传动比可以变化;工作平稳可靠;齿条和齿扇之间的间隙调整工作容易进行;适合来做整体式动力转向器。 本文的主要内容即是设计一款机械式循环球式转向器。通过查阅相关文献资料,进行循环球式转向器的尺寸的设计计算与强度校核,然后进行循环球式转向器的三维CATIA建模,最后绘制转向器的二维装配图及其重要零件的零件图。 关键词:循环球式转向器;三维建模;螺杆螺母传动副

Circulating Ball Type Steering of the Vehicle Design Abstract Circulating ball type steering gear is formed by the screw and nut of the spiral groove ball inside the transmission, vice, and the nut on the rack and constitute of the rocker arm shaft gear fan drive advantage of circulating ball type steering gear :Between the screw and nut because of circulating ball,change the sliding friction to rolling friction,so transmission efficiency can reach 75% ~ 85%;On the structure and process measures,including improve the manufacturing accuracy, and improve the surface roughness of the work surface,the spiral groove on the screw and nut for quenching and it has enough hardness and wear resistance, to ensure adequate service life;Steering gear ratio can change;Stable and reliable;Rack and gear clearance between fan adjustment work easily;Suitable for integrated power steering. The main content of this title is to design a mechanical circulating ball type steering consulting relevant literature,to design and calculation of the size of the circulating ball type steering gear and strength the circulating ball type steering gear three-dimensional modeling using draw the redirector assembly drawing and part drawing of important parts. Key words: Circulating ball type steering gear;3 d modeling;The screw and nut combination

循环球转向器课程设计

汽车课程设计计划 一、题目:货车总体设计及各总成选型设计 二、要求: 分别为给定基本设计参数的汽车,进行总体设计,计算并匹配合适功率的发动机,轴荷分配和轴数,选择并匹配各总成部件的结构型式,计算确定各总成部件的主要参数;详细计算指定总成的设计参数,绘出指定总成的装配图和部分零件图。其余参数如表1: 表1 三、设计计算要求 3.1.根据已知数据,选取汽车类型、确定轴数、驱动形式、布置形式。注意国家道路交通法规规定和汽车设计规范。 选择轴数:2根驱动形式:4×2 布置形式:平头式发动机前置后驱 3.2.确定汽车主要参数: 1)主要尺寸,可从参考资料中获取; 平头式货车长4000mm 宽1500mm 高2000mm 轴距2500mm 轮距1500mm 前悬300mm 后悬1200mm 车头长度1400mm 2)进行汽车轴荷分配; 4×2后轮单胎满载时:前轴35%后轴65%空载时:前轴55%后轴45% 3)百公里燃油消耗量; 设计的货车百公里燃油消耗量:3L(100t·km)-1 4)最小转弯直径 货车的最小转弯直径:10.0m 5)通过性几何参数 通过性几何参数:hmin 200mmγ 1 50°γ 2 30°ρ1 5m 6)制动性参数

表2 制动性参数 3.3.选定发动机功率、转速、扭矩。可以参考已有的车型。 发动机最大功率Pemax=(m a gf r v amax/3600+C D Av amax3/76140)/ηTηT为传动系效率,汽车可取90%,m a为汽车总质量;g为重力加速度;f r为滚动阻力系数,对货车取0.02;C D为空气阻力系数,货车取1.00;A为汽车正面投影面积。代入数值;得Pemax=115.7kw 转速n p取5000r /min 最大转矩转速:T emax=9549×α×P emax/n p α为转矩适应性系数,一般在1.1-1.3之间选取,此时取1.2,故T emax =265N·m 因n p/n T在1.4-2.0之间选取,故n T取2500 r/min。

齿轮齿条式转向器设计和计算

转向器的结构型式选择及其设计计算 根据所采用的转向传动副的不同,转向器的结构型式有多种。常见的有齿轮齿条式、循环球式、球面蜗杆滚轮式、蜗杆指销式等。 对转向其结构形式的选择,主要是根据汽车的类型、前轴负荷、使用条件等来决定,并要考虑其效率特性、角传动比变化特性等对使用条件的适应性以及转向器的其他性能、寿命、制造工艺等。中、小型轿车以及前轴负荷小于的客车、货车,多采用齿轮齿条式转向器。球面蜗杆滚轮式转向器曾广泛用在轻型和中型汽车上,例如:当前轴轴荷不大于且无动力转向和不大于4t带动力转向的汽车均可选用这种结构型式。循环球式转向器则是当前广泛使用的一种结构,高级轿车和轻型及以上的客车、货车均多采用。轿车、客车多行驶于好路面上,可以选用正效率高、可逆程度大些的转向器。矿山、工地用汽车和越野汽车,经常在坏路或在无路地带行驶,推荐选用极限可逆式转向器,但当系统中装有液力式动力转向或在转向横拉杆上装有减振器时,则可采用正、逆效率均高的转向器,因为路面的冲击可由液体或减振器吸收,转向盘不会产生“打手”现象。 关于转向器角传动比对使用条件的适应性问题,也是选择转向器时应考虑的一个方面。对于前轴负荷不大的或装有动力转向的汽车来说,转向的轻便性不成问题,而主要应考虑汽车高速直线行驶的稳定性和减小转向盘的总圈数以提高汽车的转向灵敏性。因为高速行驶时,很小的前轮转角也会导致产生较大的横向加速度使轮胎发生侧滑。这时应选用转向盘处于中间位置时角传动比较大而左、右两端角传动比较小的转向器。对于前轴负荷较大且未装动力转向的汽车来说,为了避免“转向沉重”,则应选择具有两端的角传动比较大、中间较小的角传动比变化特性的转向器。(转向盘转角增量与相应的转向摇臂转角增量之比iω1称为转向器角传动比。) 二、两侧转向轮偏转角之间的理想关系式 汽车转向行驶时,为了避免车轮相对地面滑动而产生附加阻力,减轻轮胎磨损,要求转向系统能保证所有车轮均作纯滚动,即所有车轮轴线的延长线都要相交于一点。 cotα=cotβ+B/L 其中α、β分别是内外侧转向轮的偏转角,B是两侧主销轴线与地面相交点之间的距离;L是汽车轴距。 如果是多轴汽车转向,转向轮转角间的关系与双轴汽车基本相同。

循环球式转向器设计分析

机械工程学院毕业设计 题目:循环球式转向器 专业:车辆工程 班级: 姓名: 学号: 指导教师: 日期: 2016年6月1日

目录 摘要 (1) 第一章绪论 1.1课题背景 (1) 1.2国内外研究现状 (2) 1.3研究的目的及意义 (2) 1.4研究内容和设计方法 (2) 第二章转向系简介 2.1转向系统简介 (3) 2.2转向操纵机构 (4) 2.3 转向器 (4) 2.4 转向传动机构 (5) 第三章转向器结构设计 3.1转向器效率 (6) 3.2传动比变化特性 (7) 3.3主要参数的选择 (9) 3.4螺杆、钢球、螺母传动副设计 (11) 3.5齿条齿扇传动副设计 (14) 第四章主要零部件校核 4.1转向盘受力确定 (16) σ (17) 4.2校核钢球与滚道间的接触应力 j σ (18) 4.3校核齿的弯曲应力 w 4.4齿扇齿接触应力校核 (19) 4.4转向摇臂轴直径的确定 (22) 附件 (23) 总结 (26) 参考文献 (26)

摘要 汽车是一种高性能要求,负荷变换巨大的运输工具。转向系统是汽车很关键的部件,更要详细的了解跟认识。这些年循环球式转向器得到市场普遍认可跟应用。本文主要设计了齿扇,螺杆,螺母三个主要零部件并校核。根据现在国家标准与循环球式转向器相关车型(本文以BJ2020)的数据,选取主要参数,参考汽车设计与相关资料设计一款循环球式转向器,并绘制二维平面图。 关键词: 循环球、转向器、设计、分析 1 绪论 1.1课题背景 转向器又叫转向机或者方向机,它是转向系中最重要的部件。转向器能增大转向盘传递到转向传动机构的力矩并改变传递方向。 转向器按结构形式可分很多种。目前常用的有齿轮齿条式、蜗杆指销式、循环球式、蜗杆滚轮式等。如果按照助力形式又可分为机械式和动力式两种。 循环球式转向器将来自转向盘的旋转进行减速并增大扭矩,使方向盘的旋转运动转变成螺母的上下运动,螺母再与扇形齿轮啮合,直线运动再次转变为旋转运动,使连杆臂摇动,连杆臂连动拉杆和横拉杆做直线运动,改变车轮的行驶方向。循环球式转向器由两组传动副构成,一个是螺杆、螺母,另一个是齿条、齿扇。循环滚动的钢球安装在螺杆和螺母之间,这样使滑动摩擦转变为滚动摩擦,从而提高了传动效率。 现代社会,汽车已经已经成为我们生活中不可或缺的交通工具,我国的经济实力不断增强,人民生活水平不断提高,同时民族汽车工业不断进步。现在我国已经成为世界汽车较强的国家。 当然作为汽车关键部件之一的转向系也得到了相应的发展,已形成了专业化、系列化生产的局面。国外有很多国家的转向器厂,已发展成大规模生产的专业厂商,年产超过百万台,基本垄断了转向器的生产,并且销售点遍布全世界。 循环球式转向器与齿轮齿条式转向器,成为当今世界汽车上最主要的两种转向器;而蜗轮蜗杆式转向器和蜗杆销式转向器,正在逐步被淘汰。在小客车上发展转向器的各个国家都不一样,美国和日本重点发展循环球式转向器超过90%;欧洲则重点发展齿轮齿条式转向器超过50%,法国惊人的高达95%。 在全世界范围内,汽车循环球式转向器占45%左右,而且有继续增长的趋势,齿条齿轮式转向器在40%左右,蜗杆滚轮式转向器占10%左右,其它型式的转向器占5%。可以说循环球式转向器在稳步发展。 1.2 国内外研究现状 循环球式转向器是汽车上常用的一种转向器,主要由螺母、螺杆、钢球、转向器壳体等

相关文档
最新文档