某轿车噪声传递函数分析与优化_缪增华

某轿车噪声传递函数分析与优化_缪增华
某轿车噪声传递函数分析与优化_缪增华

车身噪声传递函数分析

车身噪声传递函数分析昝建明周舟李波灏肖攀 长安汽车股份有限公司汽车工程研究院

车身噪声传递函数分析 Noise Analysis of Car Body Using Transfer Function 昝建明周舟李波灏肖攀 (长安汽车股份有限公司汽车工程研究院,重庆401120 ) 摘 要: 车身的NVH特性是车身开发的重要内容。在车身的设计中,用有限元软件MSC Nastran 进行了噪声传递函数分析,并根据计算结果对车体结构进行优化,提高NVH 性能。关键词: 车身, NVH, MSC Nastran, 噪声传递函数, 优化 Abstract:NVH performance is the important task for body design. During the body design stage, using MSC Nastran to do NTF analysis, the results can help optimize the body structure to improve the NVH performance. Key words: Body, NVH, MSC Nastran, NTF, Optimization 1 引言 NVH性能是新车的重要性能指标之一。车身在整车的NVH性能中有着重要影响,不论是来自路面的激励,还是来自发动机的激励,都是通过车身传递给乘员。开发出合理的车身结构对提高整车的NVH性能有重要作用。车身噪声传递函数(NTF)分析就是车身开发中的重要方法之一。 将对车身与底盘之间的主要连接区域进行声学传递函数分析,以便找出噪音传递路径与对NVH特性影响比较大的关键零部件。分析时一个声学空腔模型将被包括在内并用来预测内噪声水平,车辆的详细有限元模型与声学空腔模型将被耦合并求解,通过车身与动力系统及底盘系统连接点上施加载荷来计算车内乘员耳侧的噪声响应。 2 分析模型 车身分析的有限元模型包括车身结构的有限元模型和车身声学空腔有限元模型两部分。其中,车身结构的有限元模型包括结构件的有限元模型和非结构件的有限元模型,非结构件的有限元模型就用集中质量来模拟。声学空腔的有限元模型用有限元流体的单元来模拟,包括乘员仓空腔,座椅和行李箱空腔三部分的有限元模型。图1表示了车身分析模型的结构关系。 声学单元的理想尺寸大约是每个波长不少于六个单元,实际上通常采用的声学单元的长

LMS Testlab Tansfer Path Analysis

LMS https://www.360docs.net/doc/aa6113457.html,b Transfer Path Analysis 传递路径分析 探究振动噪声问题的根源 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.360docs.net/doc/aa6113457.html,b提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。 从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。完整的解决方案 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.360docs.net/doc/aa6113457.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.360docs.net/doc/aa6113457.html,b TPA综合了一系列TPA技术,包括LMS https://www.360docs.net/doc/aa6113457.html,b单参考传递路径分析、空气声定量分析、LMS https://www.360docs.net/doc/aa6113457.html,b多参考点传递路径分析、LMS https://www.360docs.net/doc/aa6113457.html,b OPAX传递路径分析方法以及LMS https://www.360docs.net/doc/aa6113457.html,b时域传递路径分析等。 管理海量数据 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析软件可以对整个测试任务中的所有数据进行快捷高效的管理。根据数据中内嵌的试验描述信息,如分析函数类型、测点位置标识、各个传递函数以及工况数据,将在传递路径模型中自动完成排序和定义。这个自动处理功能可以保证排除数据处理过程中的人为操作失误,并保证数据处理的高效性。 相似的处理过程可以同时运用于各种不同的工况。对于

关于噪音实验报告模板.doc

关于噪音实验报告模板 篇一:建筑物理环境噪声测量实验报告 课程名称: 学生学号: 所属院部: (理工类) 专业班级: 学生姓名: 指导教师: 20xx——20xx学年第x学期 xx学院教务处制 实验项目名称:环境噪声测量实验实验学时: 4 同组学生姓名:实验地点: 实验日期:实验成绩:批改教师:批改时间: 一、实验目的和要求 (1)掌握噪声测量的方法,对噪声的大小有一个主观的认识 (2)学会使用声级计; (3)分析噪声的大小与来源,得知建筑是否符合规定。 二、实验仪器和设备 HS5633型声级计 三、实验过程

(1)测点的选择:建筑物外1m处,高1.2m; (2)检查声级计的电池电力并采用校准器对其进行校准; (3)测量应在无风雪、无雷电天气,风速5m/s以下进行。大风时应停止测量; (4)记录声级计读数值,保持声级计在L档,每隔5秒读一个数值,共记录200个数。 四、实验结果与分析 原理:将记录的200个数从大到小的顺序排列,第20个数值就是L10,L10反映交通噪声的峰值;第100个数值就是L50,第180个数值就是L90,L90反映背景噪声值。等效声级反映了在测量的时间内声能的平均分布情况。计算公式:Leq=L50+d/60其中d=L10-L90 测量得出数据(单位:db): 依据测量的的数据得出: L10(在10%时最大噪音峰值)=58.9db L50(在200个数据中最大平均值)=52.4 db L90(背景噪声)=47.5 Leq(等效声级)=52.59 (Leq=L50+d/60d=L10-L90) 分析:对照《城市区域环境噪声标准》的校园1类的昼间等效声级 Leq<=55db,所以符合标准。 篇二:噪声测量实验报告 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通

微博传播路径分析图

微博传播路径分析图 作者: | 来源:艾瑞网 发布于:2011-07-25 微博的功能在于可扩大媒体传播力度、相同话题的群体、以关系为核心的群发布,而媒体的盈利模式在于广告推送,是被动接受,恰恰微薄传播方式是 主动获取所以在信息接收层面来说,微博的软营销与微博的产品诉求是冲突的。 企业可以通过各种手段(如通过奖励的转发评论等)带来的粉丝,是被动加入的,而非主动加入。因为对于企业所提供信息而言,并没有给粉丝明确的 需求。其实企业通过微博在线上获取的用户,最大的问题就是用户转化率问题。 而转化率的关键在于通过长时间的转发从而真正寻找到合适恰当的用户,这需 要较长的时间与较大的精力和财力的投入。 企业建立微博的路径: 第一,企业投入一定的成本,或通过线上活动,或通过线下推广,获得大规模粉丝关注(当然通过这样的手段所获得的粉丝的忠实度需要思考)。 第二,通过发布大量可读性的信息,吸引大量用户对其话题的讨论、转发。 从而引发更多的关注与粉丝。这要求博主找到与自身企业与公众之间好的话题 切入点,同时企业要花费大量精力与成本对内容持续长期的经营。事实证明,企业结合自身行业,对该行业的分析论述更容易找到最终的客户群体,并能引 发较长尾的Follow。 思考: 默默的为微博平台提供有价值可读的信息,一旦内容失去可读性,粉丝群将大量流失。之前的工作将前功尽废。 企业微博传播路径图:

释义: 行业知识(行业分析、价格指数): 跟随者:客户、准客户 转化率:随Follow的级别的增加跟随者数量减少但是客户的精度也随之提高。 营销: 1、活动: 跟随者:非客户、准客户、客户

转化率:前期建立的粉丝较多,但精准性差,Follow的级别多,精度不高。 活动的一级传播是针对原有企业粉丝,所以一级传播精准度较高之后级别更高。 2、硬广 跟随者:无跟随 最后值得一提的是从信息的传播上来看,当年社区的泛娱乐化传播和今日的微博非常相似,而这些社区也在苦苦思索盈利模式,营销传播模式,其根源并非在于泛娱乐化平台,而在于这些以群、圈、关系、兴趣点为核心的社区是否能够为用户解决实际问题,单纯的信息传播,恐怕很难成为垄断级产品。 所以微博是猫扑、天涯是博客还是qq,就要看能否改变泛娱乐化的信息传播模式,提出更具实用价值的功能,才是微博的杀手级别的应用。微博值得思考当年的腾讯qq是怎样通过对用户生活的微渗透,从娱乐化工具逐渐转变为实用性工具的。

汽车NVH振动与噪声分析

汽车NVH介绍

1.NVH现象与基本问题 2.噪声与振动源 3.NVH传递通道 4.NVH的响应与评估 5.NVH试验 6.NVH的CAE分析 7.NVH开发 8.汽车声品质

动态性能 静态性能 汽车的性能 ?汽车的外观造型及色彩 ?汽车的内室造型、装饰、色彩?内室及视野 ?座椅及安全带对人约束的舒适性 ?娱乐音响系统?灯光系统?硬件功能 ?维修保养性能?重量控制 ?噪声与振动(NVH )?碰撞安全性能?行驶操纵性能?燃油经济性能?环境温度性能?乘坐的舒适性能?排放性能?刹车性能?防盗安全性能?电子系统性能?可靠性能 NVH 是汽车最重要的指标之一

汽车所有的结构都有NVH问题 ?车身 ?动力系统 ?底盘及悬架 ?电子系统 ?…… 在所有性能领域(NVH,安全碰撞、操控、燃油经 济性、等)中,NVH是设及面最广的领域。

什么是NVH? NVH : N oise, V ibration and H arshness ?噪声Noise: ●是人们不希望的声音 ●注解: 声音有时是我们需要的 ●是由频率, 声级和品质决定的 ●频率范围: 20-10,000 Hz ?振动Vibration ●人身体对运动的感觉, 频率通常在0.5-200 Motion sensed by the body, mainly in .5 hz-50 hz range ●是由频率, 振动级和方向决定的 ?不舒服的感觉Harshness ●-Rough, grating or discordant sensation

为什么要做NVH? ?NVH对顾客非常重要 ?NVH的好坏是顾客购买汽车的一个非常重要的因素. ?NVH影响顾客的满意度 ?在所有顾客不满意的问题中, 约有1/3是与NVH有关. ?NVH影响到售后服务 ?约1/5的售后服务与NVH有关

C++中函数调用时的三种参数传递方式

在C++中,参数传递的方式是“实虚结合”。 ?按值传递(pass by value) ?地址传递(pass by pointer) ?引用传递(pass by reference) 按值传递的过程为:首先计算出实参表达式的值,接着给对应的形参变量分配一个存储空间,该空间的大小等于该形参类型的,然后把以求出的实参表达式的值一一存入到形参变量分配的存储空间中,成为形参变量的初值,供被调用函数执行时使用。这种传递是把实参表达式的值传送给对应的形参变量,故称这种传递方式为“按值传递”。 使用这种方式,调用函数本省不对实参进行操作,也就是说,即使形参的值在函数中发生了变化,实参的值也完全不会受到影响,仍为调用前的值。 [cpp]view plaincopy 1./* 2. pass By value 3.*/ 4.#include https://www.360docs.net/doc/aa6113457.html,ing namespace std; 6.void swap(int,int); 7.int main() 8.{ 9.int a = 3, b = 4; 10. cout << "a = " << a << ", b = " 11. << b << endl; 12. swap(a,b); 13. cout << "a = " << a << ", b = " 14. << b << endl; 15.return 0; 16.} 17.void swap(int x, int y) 18.{ 19.int t = x; 20. x = y; 21. y = t; 22.}

如果在函数定义时将形参说明成指针,对这样的函数进行调用时就需要指定地址值形式的实参。这时的参数传递方式就是地址传递方式。 地址传递与按值传递的不同在于,它把实参的存储地址传送给对应的形参,从而使得形参指针和实参指针指向同一个地址。因此,被调用函数中对形参指针所指向的地址中内容的任何改变都会影响到实参。 [cpp]view plaincopy 1.#include https://www.360docs.net/doc/aa6113457.html,ing namespace std; 3.void swap(int*,int*); 4.int main() 5.{ 6.int a = 3, b = 4; 7. cout << "a = " << a << ", b = " 8. << b << endl; 9. swap(&a,&b); 10. cout << "a = " << a << ", b = " 11. << b << endl; 12. system("pause"); 13.return 0; 14.} 15.void swap(int *x,int *y) 16.{ 17.int t = *x; 18. *x = *y; 19. *y = t; 20.} 按值传递方式容易理解,但形参值的改变不能对实参产生影响。 地址传递方式虽然可以使得形参的改变对相应的实参有效,但如果在函数中反复利用指针进行间接访问,会使程序容易产生错误且难以阅读。

函数参数传递的原理

函数参数传递的原理 参数传递,是在程序运行过程中,实际参数就会将参数值传递给相应的形式参数,然后在函数中实现对数据处理和返回的过程,方法有按值传递参数,按地址传递参数和按数组传递参数。 形参:指出现在Sub 和Function过程形参表中的变量名、数组名,该过程在被调用前,没有为它们分配内存,其作用是说明自变量的类型和形态以及在过程中的作用。形参可以是除定长字符串变量之外的合法变量名,也可以带括号的数组名。 实参:实参就是在调用Sub 和Function过程时,从主调过程传递给被调用过程的参数值。实参可以是变量名、数组名、常数或表达式。在过程调用传递参数时,形参与实参是按位置结合的,形参表和实参表中对应的变量名可以不必相同,但它们的数据类型、参数个数及位置必须一一对应。 等号、函数名称、括弧和参数,是函数的四个组成部分。 函数“=SUM(1,2,3)”,1、2和3就是SUM函数的参数,没有参数1、2、3,函数SUM 则无从求值。 函数“=VLOOKUP(2,A:C,3,)”,没有参数2、A:C和3,函数VLOOKUP如何在A:C 区域查找A列中是2那一行第3列的数值? 当然,也有不需要参数的函数,如“=PI()”、“=NOW()”、“TODAY()”等。 函数参数传递的原理C语言中参数的传递方式一般存在两种方式:一种是通过栈的形式传递,另一种是通过寄存器的方式传递的。这次,我们只是详细描述一下第一种参数传递方式,另外一种方式在这里不做详细介绍。 首先,我们看一下,下面一个简单的调用例程: int Add (int a,int b,int c) { return a+b+c; }

道路噪声环境监测实验报告.doc

道 路 噪 声 监 测 班级:城规x5班 小组:第一小组 小组成员:李国强、苗茗凯、王莉、郝璐、万利、任慧、张素毓、任安平、 王璐玭、张平、牛凯、薛飞

道路噪声环境监测 噪声就是人们生活工作所不需要的声音。从物理现象判断。一切无规律的或声信号叫噪声,或人们主观上一切不希望存在的干扰声都叫噪声。环境噪声监测是环境监测的一个重要组成部分,是为环境保护事业服务、为创造清洁、优美、安静环境的一项基础性工作。 一、实验目的 1.掌握声级计的使用方法和环境噪声的监测技术; 2.熟悉对非稳定噪声监测数据的处理方法; 3.对道路噪声源及周边环境进行监测。 二、监测条件 1.天气条件选在无雨、无雪,风力小于四级(5.5m/s)的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),五级以上大风应停止测量。 2.测量仪器为普通声级计,了解如何使用仪器。 3.手持仪器测量,传声器要求距离地面1.2m。 三、监测项目 兴安南路,大学路至乌兰察布路段内车流量及噪声监测。 四、实验步骤

1.小组成员分工到各点测量。测量时间定为早上 8:00~8:30、9:00~9:00。 2.测量时,传声器水平设置,于道路边沿20厘米处,高约1.2m 左右,垂直指向道路。监测时,三人一小个组,一位同学负责固定仪器,一位同学计时,一位同学记录读数。 3.每个测点位在三个时间段各测 200个数据,读数方式使用慢档,每隔五秒读一个瞬时A声级,连续读取200个数据,求取各测点等效连续声级。测量时记录过往车流量、附近主要噪声来源(如交通噪声、施工噪声、工厂或车间噪声、锅炉噪声等)、天气条件及测量时间、点位位置和测量人姓名。 五、数据记录与处理 由于环境噪声是随时间无规则变化的,因此测量结果一般用统计值或等效声级来表示。因数据符合正态分布,可用近似公式:等效连续声级:L eq=d2/60+L50 ,d=L10-L90 噪声污染级:L NP=L eq+d

噪声测定实验教案

噪声测定实验 一实验目的 1掌握AWA5610C声级计的工作原理及其使用方法 2掌握AWA6270A噪声频谱分析仪的工作原理及其使用方法 二实验内容 1使用AWA5610C声级计测量噪音 2使用AWA6270A噪声频谱分析仪测量噪音 三实验原理 1 AWA5610C声级计的工作原理 工作原理是被测的声压信号通过传声器转换成电压信号,然后经衰减器、放大器以及相应的计权网络、滤波器,或者输入记录仪器,或者经过均方根值检波器直接推动以分贝标定 的指示表头。 2 AWA6270A噪声频谱分析仪的工作原理 工作原理是输入信号经衰减器直接外加到混波器,可调变的本地振荡器经与CRT同步的扫瞄产生器产生随时间作线性变化的振荡频率,经混波器与输入信号混波降频后的中频信号(IF)再放大,滤波与检波传送到CRT的垂直方向板。 四实验设备仪器 (一)AWA5610C声级计 AWA5610C型积分声级计是一种袖珍式智能化噪声测量仪 器,可广泛应用于环境噪声的测量与自动监测,也可用于劳动保 护、工业卫生及各种机器、车辆、船舶、电器等工业噪声测量。 本仪器采用了先进的数字检波技术,具有可靠性高、稳定性好、 动态范围宽等优点。 主要技术性能: 驻极体测试电容传声器,灵敏度: 1.传声器:Φ1 2.7mm(1/2”) 约40mV/Pa,频率范围:20Hz~12.5kHz。 2.测量范围:35~130dBA(以2×10-5Pa为参考,下同) 3.频率范围:20Hz~12.5kHz 4.频率计权:A计权 5.时间计权:快(F),慢(S) 图1 AWA5610C声级计 6.检波器特性:真有效值、峰值因数 3 7.准确度:2型 8.测量时间:手控、10s、1min、5min、10min、20min、1h、4h、8h、24h。 9.显示:4位LCD,直接显示测量结果Lp、Leq、Lmax、Lmin、Linst、Tm及日历年、月、日、时、分、秒等。 10.储存:60组数据,包括年、月、日、时、分、设定时间、测量经历时间、最大声级, 最小声级、等效声级。 11.输出接口:RS—232C,可接至微型打印机或计算机。

环境监测噪声实验报告(用)

校园环境噪声监测 一、目的要求 (1)掌握环境噪声的监测方法; (2)熟悉声级计的使用; (3)掌握对非稳态的无规则噪声监测数据的处理方法; 二、仪器设备:声级计(GM 1357)、GPS定位器 三、测量点位:6 经纬度:N:33°38.236′ E:117°04.243′ 四、测量条件 (1)天气条件要求在无雨无雪的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),四级以上大风应停止测量。 (2)使用仪器是声级计。 (3)手持仪器测量,传声器要求距离地面1.2m。 五、测定步骤 (1)将学校划分4×5的网格,共20个测点。测量点选在每个网格的交点,若交点位置不宜测量,可移到旁边能够测量的位置。 (2)每组3人配置一台声级计,每2组共用一台GPS定位器。 (3)读数方式用快档,每隔10秒读一个瞬时A声级,连续读取200个数据。读数同时要判断和记录附近主要噪声来源(如交通噪声、施工噪声、工厂或车间噪声、锅炉噪声…)和天气条件。 六、数据处理 环境噪声是随时间而起伏的无规律噪声,因此测量结果一般用统计值或等效声级来表示,本实验用等效声级表示。 (1)将各测点每一次的测量数据(200个)顺序排列找出L10、L50、L90,求出各测点等效声级Leq。 ①②③④⑤⑥⑦⑧⑨⑩ 88.5 71.5 69.6 67.5 66 64.6 63.1 62.1 60.5 58.2 88.4 71.5 69.5 67.5 65.9 64.6 63 62 60.5 57.7

80.4 71.4 69.4 67.3 65.9 64.5 62.9 62 60.5 57.6 76.7 71.1 69.4 67.1 65.8 64.4 62.9 61.7 60 57.3 76.7 71.1 69.3 67.1 65.8 64.3 62.8 61.6 60 57 76.5 71.1 69.1 67.1 65.8 64.3 62.8 61.5 60 56.6 76 71 69 67 65.5 64.1 62.8 61.4 59.8 56.6 75.1 70.9 69 67 65.5 64 62.7 61.4 59.8 56.6 74 70.8 68.9 67 65.5 64 62.7 61.2 59.6 56.5 73.9 70.7 68.9 66.8 65.5 63.8 62.7 61.2 59.5 56.4 73.7 70.6 68.8 66.7 65.5 63.7 62.7 61.2 59.4 56 73.5 70.5 68.8 66.7 65.4 63.7 62.5 61.2 59.1 55.9 73.4 70.5 68.6 66.7 65.3 63.6 62.3 61.1 58.9 55.9 72.6 70.4 68.3 66.6 65.2 63.6 62.3 61.1 58.8 55.8 72.5 70.4 68.3 66.5 65 63.5 62.2 61 58.6 55.8 72.4 70.3 67.9 66.4 64.9 63.4 62.2 61 58.6 55.2 72.2 70.3 67.9 66.4 64.9 63.4 62.1 60.9 58.6 54.8 72.1 69.8 67.7 66.3 64.9 63.3 62.1 60.8 58.5 53.6 71.7 69.7 67.5 66.2 64.8 63.3 62.1 60.8 58.3 52.1 71.5 69.6 67.5 66.1 64.6 63.2 62.1 60.8 58.3 52.1 (2)结果计算 如:1号点位,根据数据,算得等效连续A声级用Leq1表示。

基于传递函数的整车定置振动分析

基于传递函数的整车定置振动分析 Analysis of Vehicle stationary vibration based on transfer function 摘要:定置工况下汽车的振动是由发动机的各个激励经由传递路径抵达目标位置后叠加而成的。基于该观点,本文提出了定置工况下整车振动的计算方法。其中,应用有限元方法获取结构的传递函数,以发动机的激励为输入,通过载荷与传递函数的乘积得到响应量,将各响应叠加得到车内目标位置的总响应量。本方法可有效地用于车辆的NVH性能开发中。 关键词: 传递函数、振动灵敏度、整车振动 Abstract: V ehicle vibration at stationary condition is excited by each of engine load, superimposed upon the target position through transfer paths. The numerical method for vehicle vibration response is introduced based on this theory. In the procedure, transfer functions are obtained by using finite element method, and the engine load is used as input. Each response is obtained by multiplying engine load with transfer function. They are then superimposed to obtain the total response. This method can be effectively used in the vehicle development of NVH performance. Key words: Transfer Function; Vibration Sensitivity; Vehicle Vibration 1 概述 近年来,随着人们对乘坐舒适性要求的不断提高,驾驶室内的振动噪声问题越来越多地引起人们的重视。方向盘、座椅及脚踏板等部件的振动与顾客的感受直接相关,是乘客能感受到的整车NVH性能的重要指标。 汽车内部振动和噪声现象,往往是由发动机、路面冲击等多个激励经由不同的传递路径抵达目标位置后叠加而成的。本文主要研究定置工况下的车内振动,该工况下车内振动完全由发动机的激励而产生,响应点的振动与激励载荷及载荷传递路径的传递灵敏度成正比。当转速为怠速时,通过对车身关键点的振动的计算分析,可预测车辆的怠速振动性能及有针对性地进行相关改进优化。 2 发动机的激励载荷 车辆行驶在平坦的路面上或怠速运转时,只有发动机本身是主要激振源.发动机激励可分为惯性激励和燃烧激励。惯性激励包括X、Y、Z三个方向的惯性力及Tx、Ty、Tz三个惯性力矩及动力传动系统的不平衡力。燃烧激励为气缸的燃烧力矩。本文中只考虑了发动机的惯性力和燃烧力矩。惯性力和惯性力矩的周期都是360o曲轴转角,燃烧压力则不同,其周期与发动机冲程形式有关,四冲程发动机的周期为720o曲轴转角。对四冲程发动机,一般常将周期定为1转,也就是360o曲轴转角,因此产生了半阶振动频率0.5*ω。发动机的惯性力可以

噪声测量实验报告

噪声测量实验报告 学院: 专业班级: 组长: 组员: 组员: 组员: 实施时间:

噪声测量实验 ——周围环境与声学现象对人体主、客观评价室内声环境的影响 时间:2014.06.15 10:00—11:30 地点:湖南大学德智学生公寓5-6栋 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通噪声为主的噪声污染日趋严重,甚至形成了公害,它严重破坏了人们生活的安宁,危害人们的身心健康,影响人们的正常工作与生活。 众所周知,高校的宿舍是大学生在校内学习和生活的环境,良好的环境可促进学生的生长发育,增进健康,使学生有充沛的精力学习和研究。然而近年来,随着我国经济的高速发展,各地区院校的发展进程也不断加快,与此同时,也导致越来越多的校园噪声,声级也越来越高。 二、实验目的与原理 噪声级为30~40分贝是比较安静的正常环境;超过50分贝就会影响睡眠和休息。由于休息不足,疲劳不能消除,正常生理功能会受到一定的影响;70分贝以上干扰谈话,造成心烦意乱,精神不集中,影响工作效率,甚至发生事故;长期工作或生活在90分贝以上的噪声环境,会严重影响听力和导致其他疾病的发生。 学生公寓是学生在校园的一个家,是学生平时休息的场所,所以需要一个较为安静的环境,但是,同学们常常会抱怨宿舍不够安静,外界太吵闹,墙体隔音效果不好等等。为了降低宿舍内噪声,减少噪声的干扰和危害,保证同学们良好的学习和生活环境,充分了解宿舍的噪声污染情况是非常有必要的,为此,我们小组选择了湖南大学德智公寓进行了噪声测量实验,明确其中的噪声污染源,从而提出适当的措施,以便减少噪声。通过噪声测量,能让我们良好地掌握噪声计的使用方法和测量环境噪声技术。

王 卓_OptiStruct形貌优化在噪声传递函数分析中的应用

Altair 2009 HyperWorks 技术大会论文集
OptiStruct 形貌优化在噪声传递函数分析中的应用
王卓 周建文 李颖琎
长安汽车工程研究院 CAE 工程所
-1-

Altair 2009 HyperWorks 技术大会论文集
OptiStruct 形貌优化在噪声传递函数分析中的应用 Application of OptiStruct Topography Optimization on NTF Analysis
王卓 周建文 李颖琎 (长安汽车工程研究院 CAE 工程所)

要: 在对内饰车身 TB(Trimmed Body)模型进行噪声传递函数 NTF(Noise Transfer
Function)分析后,发现在某一频率段出现峰值,超出目标值,进一步研究后发现,车身前 地板在该频率段下振动较大,可能是产生峰值的主要原因。本文基于 Altair HyperWorks 软 件的 OptiStruct 模块,应用形貌优化分析对前地板进行优化,使结果得到优化和改进。
关键词: OptiStruct,TB,NTF,形貌优化,模态 Abstract:After the NTF analysis of TB, the peak response of sound pressure higher
than the target has found at a certain frequency scope. According to the result of researching this problem further, the vibration shapes of front floor is the main reason. Basing on Altair HyperWorks’s OptiStruct module, the topography optimization front floor is applied and the NTF performance is improved.
Key words:OptiStruct,Trimmed Body,NTF,Topography Optimization,Mode
1 概述
如今中国汽车市场正在日趋的走向成熟, 国内汽车企业发展势头非常强劲, 人们对汽车 的态度也早已发生了质的转变, 从以往的代步工具到现在的把汽车当成自己 “身份” 的象征。 而在评价汽车的众多指标中,噪声与振动的要求越来越备受关注,也就是我们平时所说的 NVH,即是噪声(Noise)、振动(Vibration)和舒适性(Harshness)三个英文单词字母 的简写。一辆汽车的 NVH 性能也是顾客购买汽车时主要考虑的因素,因此它已经成为影响 一部汽车品牌最重要的指标。 随着控制技术的发展和成本的降低、新材料的应用、测试技术不断的完善、计算机软件 的开发,汽车噪声与振动技术的发展非常迅速,虽然它是一门古老的学科,但新的技术不断 渗透进来, 使得它又成为一门非常新而且技术含量很高的学科。 主动降噪和减振已经在汽车 的很多系统上得到应用。CAE 软件的发展已经使得汽车噪声与振动的很多性能可以用计算 机模型来预测。 噪声传递函数(NTF)是分析汽车 NVH 性能的方法之一,即是在底盘和发动机系统与 车身各附接点施加单位力激励, 测得各附接点与空腔内声压的噪声级, 所以车身的设计对结
-2-

传递路径分析法

传递路径分析法 对复杂的汽车系统来说,如何找到一种既能较好地表征整车振动噪声特性,而其实现起来又较为简明、迅速的方法,一直是汽车NVH 研究人员孜孜以求的目标。近年来,基于频率响应函数(FRF )的车内噪声传递路径分析方法成为各大汽车公司和汽车研发中心的主要研究方向之一,这种方法从子结构传递函数的角度出发,在频域上描述了系统的振动噪声特性,为汽车噪声预测、振动噪声快速诊断等工作提供了一种快捷、精准的有利工具。此方法建立的模型中,一般把整个系统划分为几个较为独立的子结构,每个子结构都以频响函数来表征其结构特性,各子结构之间通过各种弹性元件相联结来传递信息。图2.1即为一个由动力总成和车身组成的简单汽车模型,在这模型里,汽车被划分成两个子结构,一个是车身子结构(以子结构A 表示),另一个是动力总成子结构(以子结构B 表示),二者之间通过动力总成悬置相联结。在研究过程中,可将此系统进一步理论化,把各子结构简化成一个个结构块,把联结子结构的各弹性元件(如动力总成悬置)简化成各个标量弹簧。这样,系统就以“结构块-弹簧”的形式表征出来,本章的主要工作即是研究这种“结构块-弹簧”与系统之间的关系,推导相关函数,建立基于频率响应函数的车内噪声传递路径分析方法[15][27~40]。 2.1、系统响应 假设一辆汽车受m 个激励力作用,每一个激励力都有x,y,z 三个方向分量(下面分别用k=1,2,3表示),每一个激励理分量都对应n 个特定的传递路径,那么这个激励理分量和对应的某个传递路径就产生一个系统的响应分量。以车内噪声声压作为系统响应,这个声压分量可以表示为: ()()mnk mnk nk p H F ωω=? 其中,mnk H 是传递函数,nk F 是激励力的频谱。 车内噪声声压受某个激励力作用,传递过来的所有声压成分之和可表示为: ,3,31,11,1()()N N m mnk mnk nk n k n k p p H F ωω===== =?∑∑ 车内噪声受所用激励力作用,传递过来的所有声压成分之和可表示为: m m p p =∑ 在式(2.1)中,激励力如果直接作用在车身,所对应的传递函数就是车身传递函数;激励力如果直接作用在车轴,所对应的传递函数就是从车轴到车身,再到车内声场的传递函数。传递路径分析中首先需要明确所需分析的激励点,这根据不同性质的问题而定。例如,车身问题只需考虑底盘与车身耦合处的力激励;整车问题就需考虑车轴处、发动机悬置减振器处、空气压缩机悬置鉴真处、甚至活塞和汽缸缸壁之间的力激励。明确所需分析系统的耦合点后,下步就需要估计各种耦合激励力和各种传递函数,工作量常常很大。本文只考虑了动力总成与车

LMS https://www.360docs.net/doc/aa6113457.html,b 传递路径分析

传递路径分析 探究振动噪声问题的根源 LMS https://www.360docs.net/doc/aa6113457.html,b 传递路径分析提供了基于工程试验方法的系统级振动噪声解决方案,对关键零部件进行工程分析。 作为一个全面理解振动噪声问题的方法,TPA 有助于对振动噪声问题进行故障诊断,并对每个关键零部件进行性能目标设定。 在一个由多个子结构组成的复杂结构(诸如汽车、飞机或船舶)中,某一特定位置的振动噪声现象往往是由一个远处的振动源所引起的。例如,能量可以通过不同的路径从汽车发动机传入驾驶室内:通过发动机悬置、排气系统连接点,甚至间接地通过传动轴和底盘悬架传入到驾驶室内。进气和排气系统的空气传播也会对振动噪声问题有一定的影响。 强大的传递路径分析技术能够解决这类振动噪声问题,它可以帮助工程师在设计早期检测到问题产生的根源。LMS https://www.360docs.net/doc/aa6113457.html,b 提供高效的解决方案,以识别振动噪声问题及其产生的根本原因,并能够快速地评价设计修改。

从故障诊断到根源分析 传递路径分析(TPA)是用于识别和评价能量从激励源到某个接收位置的各个结构传播和声传播的传递路径。一旦对这些激励源及传递路径建模并量化后,系统优化就成为一个相对容易的设计工作。传递路径分析用于定量分析不同的激振源及其传递路径,并且计算出其中哪些是重要的,哪些对噪声问题有贡献,哪些会互相抵消。 激励源-路径-响应:系统级的方法 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析是基于激励源-路径-响应的系统解决方案。所有的振动噪声问题都是始于一个激励源,然后通过空气传播或结构传播传递到一个可被人感知的响应位置。通过分析激励源及传递路径对响应的影响,并可以通过对其中的某几个因素进行调整,来解决振动噪声问题。传递路径分析的目标是计算从源到响应的各条路径的矢量贡献量,识别出传递路径中各零部件的NVH特性,并通过对其调整来解决特定的问题。最终,TPA通过合理选择各个零部件的特性以避免振动噪声问题,从而有助于产品优化设计。 完整的解决方案 LMS https://www.360docs.net/doc/aa6113457.html,b传递路径分析软件包包含各种分析功能,以帮助试验部门最大程度地节省时间和资源,是市场上最为广泛使用的TPA解决方案。LMS https://www.360docs.net/doc/aa6113457.html,b可以通过各个可能的角度来帮助客户解决问题——从简单系统到复杂结构。LMS https://www.360docs.net/doc/aa6113457.html,b TPA综合了一系列TPA

32_路面噪声传递路径分析与优化

路面噪声传递路径分析与优化 Transfer Path Analysis and Optimization of Road Noise 李朕王亮高亚丽王伟东 (泛亚汽车技术中心有限公司上海201209) 摘要:本文介绍了传递路径分析在路面噪声优化中的应用。借助HyperGraph的NVH分析模块,在纯仿真的环境下应用传递路径分析,在开发更早阶段找到问题根本原因。从本文的优化结果来看,基于纯仿真的传递路径分析周期短,优化效果好。 关键词:汽车NVH 路噪传递路径HyperGraph Abstract: Transfer path analysis was applied in road noise analysis. It is possible to find noise root cause in early stages of vehicle development process by using HyperGraph transfer path analysis in virtual environment. CAE based TPA is more efficient than test based TPA. Key Words: vehicle, NVH, road noise, TPA, HyperGraph 1 介绍 路面噪声是车辆NVH性能开发过程中控制的一个重要指标。它作为车内主要声源影响乘员舒适性。按照传递路径不同,路噪可分为结构传递声与空气传递声。本文介绍传递路径法(下文简称TPA)在结构传递声分析与优化中的应用。 结构传递路噪典型递路径如下。路面激励通过轮胎传递到轮心,轮心传入悬架,再通过悬架传递到车身。其中悬架与车身界面有多条传递路径。使用TPA方法能识别出噪声传递的主要路径和次要路径。随着建模、求解以及后处理的进步,基于仿真的TPA方法能够在早期快速准确的分析问题。 2 分析方法 影响路噪的主要因素有轮胎、悬架形式、衬套刚度以及车身侧底盘连接点的噪声传递函数。越软的衬套和轮胎隔振效果越好,对路噪越有利。但衬套过软会影响车辆的操控稳定性。为了不影响操控稳定性,本文重点关注车身噪声传递函数的优化。受限于燃油经济性的限制,传递函数优化不能以牺牲重量为代价。使用TPA方法识别出关键路径,能在不牺牲重量的情况下满足整车振动噪声的要求。

总结Java方法(函数)传值和传引用的问题

总结Java方法(函数)传值和传引用的问题 java方法中传值和传引用的问题是个基本问题,但是也有很多人一时弄不清。 (一)基本数据类型:传值,方法不会改变实参的值。 public class TestFun { public static void testInt(int i){ i=5; } public static void main(String[] args) { int a=0 ; TestFun.testInt(a); System.out.println("a="+a); } } 程序执行结果:a=0 。 (二)对象类型参数:传引用,方法体内改变形参引用,不会改变实参的引用,但有可能改变实参对象的属性值。 举两个例子: (1)方法体内改变形参引用,但不会改变实参引用,实参值不变。 public class TestFun2 { public static void testStr(String str){ str="hello";//型参指向字符串“hello” } public static void main(String[] args) { String s="1" ;

TestFun2.testStr(s); System.out.println("s="+s); //实参s引用没变,值也不变 } } 执行结果打印:s=1 (2)方法体内,通过引用改变了实际参数对象的内容,注意是“内容”,引用还是不变的。 import java.util.HashMap; import java.util.Map; public class TestFun3 { public static void testMap(Map map){ map.put("key2","value2");//通过引用,改变了实参的内容 } public static void main(String[] args) { Map map = new HashMap(); map.put("key1", "value1"); new TestFun3().testMap(map); System.out.println("map size:"+map.size()); //map内容变化了 } } 执行结果,打印:map size:2 。可见在方法testMap()内改变了实参的内容。 (3)第二个例子是拿map举例的,还有经常涉及的是 StringBuffer : public class TestFun4 {

相关文档
最新文档