一次函数与二元一次方程组综合测试题(含答案)详解

一次函数与二元一次方程组综合测试题(含答案)详解
一次函数与二元一次方程组综合测试题(含答案)详解

一次函数与二元一次方程(组) 同步练习题

一、选择题

1.图中两直线L 1,L 2的交点坐标可以看作方程组( )的解. A .121x y x y -=??

-=-? B. 121x y x y -=-??-=? C .321x y x y -=??-=? D. 3

21

x y x y -=-??-=-?

2.把方程x+1=4y+

3x

化为y=kx+b 的形式,正确的是( ) A .y=13x+1 B .y=16x+14 C .y=16x+1 D .y=13x+1

4

3.若直线y=2x

+n 与y=mx-1相交于点(1,-2),则( ).

A .m=12,n=-52

B .m=12,n=-1;

C .m=-1,n=-52

D .m=-3,n=-3

2

4.直线y=12x-6与直线y=-231x-11

32

的交点坐标是( ).

A .(-8,-10)

B .(0,-6);

C .(10,-1)

D .以上答案均不对

5.在y=kx+b 中,当x=1时y=2;当x=2时y=4,则k ,b 的值是( ). A .00k b =??

=? B. 20k b =??=? C .31k b =??=? D. 0

2k b =??=?

6.直线kx-3y=8,2x+5y=-4交点的纵坐标为0,则k 的值为( )

A .4

B .-4

C .2

D .-2 二、填空题

1.点(2,3)在一次函数y=2x-1的________;x=2,y=3是方程2x-y=1的_______.

2.已知4,3

53x y ?=????=??

是方程组3,12x y x

y +=???-=??的解,那么一次函数y=3-x 和y=2x +1的交点是________. 3.一次函数y=3x+7的图像与y 轴的交点在二元一次方程-?2x+?by=?18?上,?则b=_________.

4.已知关系x ,y 的二元一次方程3ax+2by=0和5ax-3by=19化成的两个一次函数的图像的交点坐标为(1,-1),则a=_______,b=________. 5.已知一次函数y=-

32x+m 和y=1

2

x+n 的图像都经过A(-2,?0)?,?则A?点可看成方程组________的解. 6.已知方程组230,2360y x y x -+=??+-=?的解为4,3

1,

x y ?

=?

??=?则一次函数y=3x-3与y=-32x+3的交点P 的坐标是______. 三、解答题

1.若直线y=ax+7经过一次函数y=4-3x 和y=2x-1的交点,求a 的值.

2.(1)在同一直角坐标系中作出一次函数y=x+2,y=x-3的图像. (2)两者的图像有何关系?

(3)你能找出一组数适合方程x-y=2,x-y=3吗?_________________,?这说明方程组2,

3,x y x y -=-??-=?

________.

3.如图所示,求两直线的解析式及图像的交点坐标.

探究应用拓展性训练

1.(学科内综合题)在直角坐标系中,直线L 1经过点(2,3)和(-1,-3),直线L 2经过原点,且与直线L 1交于点(-2,a). (1)求a 的值.

(2)(-2,a)可看成怎样的二元一次方程组的解?

(3)设交点为P ,直线L 1与y 轴交于点A ,你能求出△APO 的面积吗?

2.(探究题)已知两条直线a 1x+b 1y=c 1和a 2x+b 2y=c 2,当

12a a ≠1

2b b 时,方程组111222

,,a x b y c a x b y c +=??+=? 有唯一解??这两条直线相交?你知道当a 1,a 2,b 1,b 2,c 1,c 2分别满足什么条件时,方程组111222

,

,a x b y c a x b y c +=??+=?无解?无数多组解?这时对应的

两条直线的位置关系是怎样的?

3.(2004年福州卷)如图,L 1,L 2?分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间x(h)的函数图像,假设两种灯的使用寿命都是2000h ,照明效果一样. (1)根据图像分别求出L 1,L 2的函数关系式. (2)当照明时间为多少时,两种灯的费用相等? (3)小亮房间计划照明2500h ,他买了一个白炽灯和一个节能灯,请你帮他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).

4.图表示甲、乙两名选手在一次自行车越野赛中路程y(km)随时间x(min)变化的图像(全程).根据图像回答下列

问题:

(1)比赛开始多少分钟时,两人第一次相遇?

(2)这次比赛全程是多少千米?

(3)比赛开始多少分钟时,两人第二次相遇

?

同步练习答案:

一、选择题

1.B 解析:设L 1的关系式为y=kx-1,将x=2,y=3代入,得3=2k-1,解得k=2. ∴L 1的关系式为y=2x-1,即2x-y=1.

设L 2的关系式为y=kx+1,将x=2,y=3代入,得3=2k+1,解得k=1. ∴L 2的关系式为y=x+1,即x-y=-1.故应选B .

2.B 解析:∵x+1=4y+

3x ,∴4y=x+1-3x ,4y=2

3

x+1,y=16x+14.故应选B .

3.C 解析:把x=1,y=-2代入y=2x +n 得-2=12+n ,n=-2-12,n=-5

2

.

把x=1,y=-2代入y=mx-1得-2=m-1,m=-2+1,m=-1,故应选C .

4.C 解析:解方程组16,22113131y x y x ?

=-????=--

??

,得10,1,x y =??=-?

∴直线y=

12x-6与直线y=-231x-1131

的交点为(10,-1),?故应选C .

5.B 解析:把1,2,x y =??

=? 2,4,x y =??=?分别代入y=kx+b ,得2,24,k b k b +=??+=?

解得2,

0,k b =??=? 故应选B . 6.B 解析:把y=0代入2x+5y=-4,得2x=-4,x=-2. 所以交点坐标为(-2,0).

把x=-2,y=0代入kx-3y=8,得-2k=8,k=-4,故应选B . 二、填空题

1.解析:当x=2时,y=2x-1=2×2-1=3,∴(2,3)在一次函数y=2x-1的图像上. 即x=2,y=3是方程2x-y=1的解.答案:图像上 解

2.解析:因为方程组3,

1,2

x y x

y +=??

?-=??中的两个方程变形后为3,1,2y x x y =-+???=+?? 所以函数y=3-x 与y=

2x +1的交点坐标就是二元一次方程组的解,即为(43,53)。答案:(43,5

3

) 提示:此题不用解方程组,根据一次函数与二元一次方程组的关系,?结合已知就可得到答案.

3.解析:y=3x+7与y 轴的交点的坐标为(0,7).

-2

-1

O

x

A

y

把x=0,y=7代入-2x+by=18,得7b=18,b=187。 答案:18

7

4.解析:把x=1,y=-1分别代入3ax+2by=0,5ax-3by=19得320,5319,a b a b -=??

+=? 解得2,

3.

a b =??=? 答案:2 3

5.解析:把2,0.

x y =-??

=? 代入y=-32x+m ,得0=3+m ,∴m=-3, ∴y=-32x-3,即3

2x+y=-3.

把2,0.

x y =-??

=? 代入y=12x+n ,得0=-1+n ,∴n=1,∴y=12x+1,即1

2x-y=-1.

∴A(-2,0)可看作方程组33,21 1.2x y x y ?+=-????-=-?? 的解.答案:33,21 1.2

x y x y ?+=-???

?-=-??

6.解析:方程组330,2360.

y x y x -+=??

+-=?中的两个方程分别变形即为y=3x-3与y=-3

2x+3,?

故两函数的交点坐标为方程组的解,即(43,1)。 答案:(4

3

,1) 三、解答题 1.解析:解方程组4321

y x y x =-??

=-? 得1,

1.x y =??=? ∴两函数的交点坐标为(1,1).

把x=1,y=1代入y=ax+7,得1=a+7,解得a=-6.

2.解析:(1)图像如答图所示.(2)y=x+2与y=x-3的图像平行. (3)y=x+2即x-y=-2,y=x-3即x-y=3.

∵直线y=x+2与y=x-3无交点,∴方程组2,

3.x y x y -=-??-=?

无解.

提示:当两直线平行时无交点,即由两个函数解析式组成的二元一次方程组无解.

3.解析:设L 1的解析式为y =k 1x+b 1, 把2,0,x y =-??=? 0,3,x y =??=-? 分别代入 得11120,3,k b b -+=??=-? 解得113,

23,k b ?

=-???=-?

∴L 1的解析式为y=-3

2x-3. 设L 2的解析式为y=k 2x+b 2,把0,1,x y =??=? 4,0,x y =??=?分别代入, 得222

1,40,b k b =??+=? 解得

221,41,k b ?=-???=? ∴L 的解析式为y=-14x+1. 解方程组33,211,4y x y x ?

=--????=-+?? 得16,59,5x y ?=-???

?=??

∴L 1与L 2的交点坐标为(-165,95)。 探究应用拓展性训练答案:

1.(1)设L 的关系式为y=kx+b ,把(2,3),(-1,-3)分别代入,

得23,3,

k b k b +=??

-+=-? 解得2,

1,k b =??=-? ∴L 1的解析式为y=2x-1. 当x=-2时,y=-4-1=5,即a=-5.

(2)设L 2的关系式为y=kx ,把(2,-5)代入得-5=2k ,k=-52, ∴L 1的关系式为y=-5

2

x .

∴(-2,a)是方程组21,5.2

y x y x =-??

?=-??的解.

(3)如答图,把x=0代入y=2x-1,得y=-1. ∴点A 的坐标为A(0,-1). 又∵P(-2,-5),∴S △APO =

12·OA ·2=12×│-1│×2=1

2

×1×2=1. 2.解析:对于两个一次函数y 1=k 1x+b 1,y 2=k 2x+b 2而言:

(1)当k 1≠k 2时,两直线相交. (2)当k 1=k 2,且b 1≠b 2时,两直线平行. (3)当k 1=k 2,且b 1=b 2时,两直线重合. 故对两直线a 1x+b 1y=c 1与a 2x+b 2y=c 2来说: (1)当

12a a ≠1

2b b 时,两直线相交,即方程组111222

,a x b y c a x b y c +=??+=?有唯一解. (2)当12a a =12b b ≠1

2c c 时,方程组111222

,a x b y c a x b y c +=??+=?无解,两直线平行.

(3)当

12a a =12b b =1

2c c 时,方程组111222

,a x b y c a x b y c +=??+=?有无数多个解,两直线重合. 提示:方程组的解就是两个一次函数的交点坐标,当两直线只有一个公共点时,?方程组有唯一解;当两直线平

行(无公共点)时,方程组无解;?当两直线有无数个公共点时,方程组有无数多个解. 3.解析:(1)设L 1的解析式为y 1=k 1x+2,由图像得17=500k 1+2,解得k=0.03, ∴y 1=0.03x+2(0≤x ≤2000). 设L 2的解析式为y 2=k 2x+20,

由图像得26=500k 2+20,解得k 2=0.012. ∴y 2=0.012x+20(0≤x ≤2000). (2)当y 1=y 2时,两种灯的费用相等, ∴0.03x+2=0.012x+20,解得x=1000.

∴当照明时间为1000h 时,两种灯的费用相等. (3)最省钱的用灯方法:

节能灯使用2000h ,白炽灯使用500h .

提示:本题的第(2)题,只要求出L 1与L 2交点的横坐标即可.第(1)题中,求出L 1与L 2的解析式,一定不能忽略自变量x 的取值范围,这为第(3)题的分析、设计方案作了铺垫.在第(3)题中,当x>1000h 时,L 2在L 1的下方,即采用节能灯省钱,因x 最多为2000h ,故求以下的500h 应采用白炽灯.

4.解析 由图像可以看出甲、乙二人的图像有两个交点,即相交两次.

(1)当15≤x ≤33时,设AB 的解析式为y=kx+b ,把(15,5),(33,7)分别代入,

得 1111515,733,k b k b =+??=+? 解得111,9

103k b ?=????=??

∴AB 的解析式为y=

19x+103. 当y=6时,有6=19x+10

3

,解得x=24.

所以比赛开始24min 时,两人第一次相遇.

(2)设OD 的解析式为y=kx ,把(24,6)代入,得6=24k ,解得k=

1

4

,

∴OD 的解析式为y=1

4

x . 当x=48时,y=

1

4

×48=12, ∴比赛全程为12km .

(3)当33≤x ≤43时,设BC 的解析式为y =k 2x+b 2. 把(33,7),(43,12)分别代入,

得2222337,4312,k b k b +=??+=? 解得221,2

19.

2

k b ?=????=-??

∴BC 的解析式为y=

12x-192

. 解方程组1

,4

119.22

y x y x ?

=??

?

?=-?? 得38,

19.2x y =???=??

∴比赛开始后38min 两人第二次相遇.

评注 在本题中,两人相遇在图像上直观地体现为交点.共有两个交点,?故有两次相遇.交点的坐标是两个函数解析式组成的二元一次方程组的解是本题的入手点,而求每一段函数的关系式又是解决本题的关键.

一次函数单元测试题基础卷

一次函数单元测试题基础 卷 The pony was revised in January 2021

第12章 一次函数测试题 一、相信你一定能填对!(每小题3分,共30分) 1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .. . D .2.下面哪个点在函数y=1 2x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y=3x C .y=2x 2 D .y=-2x+1 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四 5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>1 2 B .m=1 2 C .m<12 D .m=-1 2 6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0

7.已知一次函数的图象与直线y=-x+1平行,且过点(8,2),那么此一次函数的解析式为() A.y=-x-2 B.y=-x-6 C.y=-x+10 D.y=-x-1 8.汽车开始行驶时,油箱内有油40升,如果每小时耗油5升,则油箱内余油量y(升)与行驶时间t(时)的函数关系用图象表示应为下图中的() 9.李老师骑自行车上班,最初以某一速度匀速行进,?中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程y?(千米)与行进时间t(小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是() 10.一次函数y=kx+b的图象经过点(2,-1)和(0,3),?那么这个一次函数的解析式为() A.y=-2x+3 B.y=-3x+2 C.y=3x-2 D.y=1 2 x-3 二、你能填得又快又对吗(每小题3分,共30分) 11.已知自变量为x的函数y=mx+2-m是正比例函数,则m=________,?该函数的解析式为_______ 12.若点(1,3)在正比例函数y=kx的图象上,则此函数的解析式为________. 13.已知一次函数y=kx+b的图象经过点A(1,3)和B(-1,-1),则此函数的解析式为_________.

二元一次方程组经典练习题+答案解析100道 (1)

二元一次方程组练习题100道(卷一) 1、?? ?? ?-==312y x 是方程组?????? ?=-=-9 10326 5 23 y x y x 的解 …………( ) 2、方程组? ? ?=+-=5 231y x x y 的解是方程3x -2y =13的一个解( ) 3、由两个二元一次方程组成方程组一定是二元一次方程组( ) 4、方程组???????=-++=+++2 5323 473 5 23y x y x ,可以转化为?? ?-=--=+27651223y x y x ( ) 5、若(a 2-1)x 2 +(a -1)x +(2a -3)y =0是二元一次方程,则a 的值为±1( ) 6、若x +y =0,且|x |=2,则y 的值为2 …………( ) 7、方程组? ? ?=+-=+8 1043y x x m my mx 有唯一的解,那么m 的值为m ≠-5 …………( ) 8、方程组?? ???=+=+62 3 131 y x y x 有无数多个解 …………( ) 9、x +y =5且x ,y 的绝对值都小于5的整数解共有5组 …………( ) 10、方程组? ? ?=+=-351 3y x y x 的解是方程x +5y =3的解,反过来方程x +5y =3的解也是方程组?? ?=+=-3 51 3y x y x 的解 ………( ) 11、若|a +5|=5,a +b =1则3 2-的值为b a ………( ) 12、在方程4x -3y =7里,如果用x 的代数式表示y ,则4 37y x +=( ) 二、选择: 13、任何一个二元一次方程都有( ) (A )一个解; (B )两个解;

初一下数学讲义 -《二元一次方程组》全章复习与巩固(基础)知识讲解

《二元一次方程组》全章复习与巩固(基础)知识讲解 【学习目标】 1.了解二元一次方程组及其解的有关概念; 2.掌握消元法(代入或加减消元法)解二元一次方程组的方法; 3.理解和掌握方程组与实际问题的联系以及方程组的解; 4.掌握二元一次方程组在解决实际问题中的简单应用; 5.通过对二元一次方程组的应用,培养应用数学的理念. 【知识网络】 【要点梳理】 要点一、二元一次方程组的相关概念 1. 二元一次方程的定义 定义:方程中含有两个未知数(一般用x 和y ),并且未知数的次数都是1,像这样的方程叫做二元一次方程. 要点诠释: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 2.二元一次方程的解 定义:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解. 要点诠释: 二元一次方程的每一个解,都是一对数值,而不是一个数值,一般要用大括号联立起来, 即二元一次方程的解通常表示为? ??b a ==y x 的形式.

3. 二元一次方程组的定义 定义:把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 此外,组成方程组的各个方程也不必同时含有两个未知数.例如,二元一次方程组3452 x y x +=??=?. 要点诠释: (1)它的一般形式为111222 a x b y c a x b y c +=??+=?(其中1a ,2a ,1b ,2b 不同时为零). (2)更一般地,如果两个一次方程合起来共有两个未知数,那么它们组成一个二元一次方程组. (3)符号“{”表示同时满足,相当于“且”的意思. 4. 二元一次方程组的解 定义:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)方程组中每个未知数的值应同时满足两个方程,所以检验是否是方程组的解,应把数值代入两个方程,若两个方程同时成立,才是方程组的解,而方程组中某一个方程的某一组解不一定是方程组的解. (2)方程组的解要用大括号联立; (3)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组???=+=+6 252y x y x 无 解,而方程组? ??-=+-=+2221y x y x 的解有无数个. 要点二、二元一次方程组的解法 1.解二元一次方程组的思想 转化消元 一元一次方程 二元一次方程组 2.解二元一次方程组的基本方法:代入消元法和加减消元法 (1)用代入消元法解二元一次方程组的一般过程: ①从方程组中选定一个系数比较简单的方程进行变形,用含有x (或y )的代数式表示 y (或x ) ,即变成b ax y +=(或b ay x +=)的形式; ②将b ax y +=(或b ay x +=)代入另一个方程(不能代入原变形方程)中,消去y (或x ),得到一个关于x (或y )的一元一次方程; ③解这个一元一次方程,求出x (或y )的值; ④把x (或y )的值代入b ax y +=(或b ay x +=)中,求y (或x )的值; ⑤用“{”联立两个未知数的值,就是方程组的解.

函数综合练习题及解析

1.设函数f(x)和g(x)分别是R上的偶函数和奇函数,则下列结论恒成立的是( ) (A)f(x)+|g(x)|是偶函数 (B)f(x)-|g(x)|是奇函数 (C)|f(x)|+g(x)是偶函数 (D)|f(x)|-g(x)是奇函数 2.已知函数f(x)=2|x-2|+ax(x∈R)有最小值. (1)求实数a的取值范围. (2)设g(x)为定义在R上的奇函数,且当x<0时,g(x)=f(x),求g(x)的解析式. 3.函数y=f(x)(x∈R)有下列命题: ①在同一坐标系中,y=f(x+1)与y=f(-x+1)的图像关于直线x=1对称; ②若f(2-x)=f(x),则函数y=f(x)的图像关于直线x=1对称; ③若f(x-1)=f(x+1),则函数y=f(x)是周期函数,且2是一个周期; ④若f(2-x)=-f(x),则函数y=f(x)的图像关于(1,0)对称,其中正确命题的序号是. 4.已知f(x)=(x≠a). (1)若a=-2,试证f(x)在(-∞,-2)上是增加的. (2)若a>0且f(x)在(1,+∞)上是减少的,求a的取值范围. 5.已知函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y)(x€R,y€R),且f(0) ≠0,试证f(x)是偶函数 6.判断函数y=x2-2|x|+1的奇偶性,并指出它的单调区间 7.f(x)=的图像和g(x)=log2x的图像的交点个数是( ) (A)4 (B)3 (C)2 (D)1

8. 已知函数f(x)=|x+1|+|x-a|的图像关于直线x=1对称,则a 的值是 . 9. 若直线y=2a 与函数y=|a x -1|(a>0且a ≠1)的图像有两个公共点,a 的取值范围为______ 10. 求函数2()23f x x ax =-+在[0,4]x ∈上的最值 11. 求函数2()23f x x x =-+在x ∈[a,a+2]上的最值。 12. 已知函数22()96106f x x ax a a =-+--在1 [,]3 b -上恒大于或等于0,其中实数[3,)a ∈+∞,求实数b 的范围. 13. 函数f(x)= 的定义域是 ( ) (A)(-∞,-3) (B)(- ,1) (C)(- ,3) (D)[3,+∞) 14. 已知a=log 23.6,b=log 43.2,c=log 43.6,则( ) (A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b 15. 函数y=log a (|x|+1)(a>1)的图像大致是( )

一次函数综合测试卷试题及含答案.docx

精品文档 一次函数测试题 一、填空(10× 3′=30′) 1、已知一个正比例函数的图象经过点(- 2, 4),则这个正比例函数的表达式 是。 2、若函数y= - 2x m+2是正比例函数,则m 的值是。 3、已知一次函数y=kx+5的图象经过点( - 1,2),则 k=。 4、已知 y 与 x 成正比例,且当 x=1 时, y=2,则当 x=3 时, y=____。 5、点 P(a,b)在第二象限,则直线y=ax+b 不经过第象限。 6、已知一次函数 y=kx-k+4 的图象与 y 轴的交点坐标是 (0 , -2) ,那么这个一次函 数的表达式是 ______________。 7、已知点 A(-1 , a), B(2 ,b) 在函数 y=-3x+4 的象上 , 则 a 与 b 的大小关系是 ____。 8、地面气温是 20℃,如果每升高 1000m,气温下降 6℃,则气温(t℃)与高度 h(m) 的函数关系式是 __________。 9 、一次函数y=kx+b与y=2x+1平行,且经过点(-3,4),则表达式 为:。 10 、写出同时具备下列两个条件的一次函数表达式(写出一个即可)。 ( 1) y 随着 x 的增大而减小,( 2)图象经过点( 1,-3 )。 二、选择题 (10×3′=30′) 11、下列函数( 1)y=πx (2)y=2x-1(3)y=1(4) y=2-1-3x中,是一次 x y 函数的有() ( A) 4 个( B) 3 个(C)2 个( D) 1 个 1 12、下面哪个点不在函数 y 2 x 3 的图像上() O2x ( A)(-5 ,13)(B)( 0.5 ,2)( C)(3,0)(D)(1,1) 13、直线 y=kx+b 在坐标系中的位置如图,则 ()(第

二元一次方程基本概念及基本解法讲解

二元一次方程 一、二元一次方程的概念: 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 注意:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 练习1:已知下列方程,其中是二元一次方程的有________. (1)2x -5=y ; (2)x -1=4; (3)xy =3; (4)x+y =6; (5)2x -4y =7; (6)102x + =;(7)2 51x y +=;(8)132x y +=;(9)280x y -=;(10)462x y +=. 【变式1】下列方程中,属于二元一次方程的有( ) A .71xy -= B .2131x y -=+ C .4535x y x y -=- D . 2 31x y - = 二、二元一次方程的解: 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 注意: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:2, 5. x y =?? =?. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这个二元一次方程. 如:10x y +=的解可以是241 ,,869x x x y y y ===?????? ===??? 等等 练习2:二元一次方程x -2y =1有无数多个解,下列四组值中不是该方程解的是( ) A .0 12 x y =?? ?=-?? B .11x y =??=? C .10x y =??=? D .11x y =-?? =-? 【变式2】若方程24ax y -=的一个解是2 1 x y =?? =?,则a= . 三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 注意:组成方程组的两个方程不必同时含有两个未知数,例如? ??=-=+520 13y x x 也是二元一次方 程组. 练习3:下列方程组中,是二元一次方程组的是( )

必修一函数的综合测试题.doc

函数的综合练习 一(选择,每题5分,共60分) 1.设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与() 223f a a -+(a R ∈)的大小关系是 ( ) A .()2f -<( ) 223f a a -+ B .()2f -≥() 223f a a -+ C .()2f ->()2 23f a a -+ D .与a 的取值无关 2.知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 3.已知函数 为偶函数,则 的值是( ) A. B. C. D. 4.若偶函数在 上是增函数,则下列关系式中成立的是( ) A . B . C . D . 5.设{}01|>-=x x A ,{}0log |2>=x x B ,则B A ?等于………………( ) A .}1|{>x x B .}0|{>x x C .}1|{--> B .c a b >> C .c b a >> D .a b c >> 7.中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =,l g d y o x =的图象,,,,a b c d 的关系是( ) A. 0

(人教版)归类整理的的一次函数单元测试题(含答案)

第十四章 一次函数测试题 (时间:90分钟 总分120分) 一、相信你一定能填对!(每小题3分,共30分) 知识点:求自变量的取值范围 1.下列函数中,自变量x 的取值范围是x ≥2的是( ) A .y=2x - B .y=2 x - C .y=24x - D .y=2x +·2x - 知识点:由一次函数的特点来求字母的取值 5.若函数y=(2m+1)x 2+(1-2m )x (m 为常数)是正比例函数,则m 的值为( ) A .m>12 B .m=12 C .m<12 D .m=-1 2 11.已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,?该函数的解析式为_______ 知识点:函数图像的意义 2.下面哪个点在函数y= 1 2 x+1的图象上( ) A .(2,1) B .(-2,1) C .(2,0) D .(-2,0) 15.已知一次函数y=-x+a 与y=x+b 的图象相交于点(m ,8),则a+b=_________. 18.已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______. 17.已知直线y=x-3与y=2x+2的交点为(-5,-8),则方程组30 220 x y x y --=??-+=?的解是________. 知识点:判断是否为一次函数或正比例函数 3.下列函数中,y 是x 的正比例函数的是( ) A .y=2x-1 B .y= 3 x C .y=2x 2 D .y=-2x+1 知识点:k.、b 定位 4.一次函数y=-5x+3的图象经过的象限是( ) A .一、二、三 B .二、三、四 C .一、二、四 D .一、三、四 6.若一次函数y=(3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是( ) A .k>3 B .0

二元一次方程组的相关概念基础知识讲解

二元一次方程(组)的相关概念(基础)知识讲解 【学习目标】 1.理解二元一次方程、二元一次方程组及它们的解的含义; 2.会检验一组数是不是某个二元一次方程(组)的解. 【要点梳理】 要点一、二元一次方程 含有两个未知数,并且含有未知数的项的次数都是1,像这样的方程叫做二元一次方程. 要点诠释:二元一次方程满足的三个条件: (1)在方程中“元”是指未知数,“二元”就是指方程中有且只有两个未知数. (2)“未知数的次数为1”是指含有未知数的项(单项式)的次数是1. (3)二元一次方程的左边和右边都必须是整式. 要点二、二元一次方程的解 一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的一组解. 要点诠释: (1)二元一次方程的解都是一对数值,而不是一个数值,一般用大括号联立起来,如:. (2)一般情况下,二元一次方程有无数个解,即有无数多对数适合这

个二元一次方程. 要点三、二元一次方程组 把具有相同未知数的两个二元一次方程合在一起,就组成了一个二元一次方程组. 要点诠释:组成方程组的两个方程不必同时含有两个未知数,例如也是二元一次方程组. 要点四、二元一次方程组的解 一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解. 要点诠释: (1)二元一次方程组的解是一组数对,它必须同时满足方程组中的每一个方程,一般写成的形式. (2)一般地,二元一次方程组的解只有一个,但也有特殊情况,如方程组无解,而方程组的解有无数个. 【典型例题】 类型一、二元一次方程 1.已知下列方程,其中是二元一次方程的有. (1)25=y;(2)1=4;(3)=3;(4)=6;(5)24y=7; (6);(7);(8);(9);(10).【思路点拨】按二元一次方程满足的三个条件一一检验.

三角函数综合测试题(含答案)

三角函数综合测试题 (本试卷满分150分,考试时间120分) 第Ⅰ卷(选择题 共40分) 一.选择题(本大题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的) 1、若点P 在3 2π的终边上,且OP=2,则点P 的坐标( ) A .)3,1( B .)1,3(- C .)3,1(-- D .)3,1(- 2、已知=-=-ααααcos sin ,4 5cos sin 则( ) A .47 B .169- C .329- D .32 9 3、下列函数中,最小正周期为 2 π的是( ) A .)32sin(π-=x y B .)32tan(π-=x y C .)62cos(π+=x y D .)6 4tan(π+=x y 4、等于则)2cos(),,0(,31cos θππθθ+∈=( ) A .924- B .924 C .97- D .9 7 5、将函数x y 4sin =的图象向左平移 12π个单位,得到)4sin(?+=x y 的图象,则?等于( ) A .12π- B .3π- C . 3π D .12π 6、 50tan 70tan 350tan 70tan -+的值等于( ) A .3 B .33 C .33- D .3- 7.在△ABC 中,sinA >sinB 是A >B 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.ABC ?中,3 π=A ,BC =3,则ABC ?的周长为( ) A .33sin 34+??? ??+πB B .36sin 34+??? ? ?+πB C .33sin 6+??? ?? +πB D .36sin 6+??? ? ?+πB

一次函数单元测试卷含答案

一次函 数单元测试卷 班级___________座号___________姓名___________评分___________ 一、选择题(每小题5分,共25分) 1、下列函数(1)y =πx (2)y =2x -1 (3)y =1x (4)y =2-1-3x (5)y =x 2-1中,是一次函数的有( ) A 、4个 B 、3个 C 、2个 D 、1个 2、下列哪个点在一次函数43-=x y 上( ). A 、(2,3) B 、(-1,-1) C 、(0,-4) D 、(-4,0) 3、若一次函数y =kx -4的图象经过点(–2,4),则k 等于 ( ) A 、–4 B 、4 C 、–2 D 、2 4、点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x + 3 图象上的两个点,且 x 1<x 2,则y 1与y 2的大小关系是( ). A 、y 1>y 2 B 、y 1>y 2 >0 C 、y 1<y 2 D 、y 1=y 2 5、2012年“国际攀岩比赛”在重庆举行.小丽从家出发开车前去观看,途中发现忘了带门票,于是打电话让妈妈马上从家里送来,同时小丽也往回开,遇到妈妈后聊了一会儿,接着继续开车前往比赛现场.设小丽从家出发后所用时间为t ,小丽与比赛现场的距离为S .下面能反映S 与t 的函数关系的大致图象是( ) 二、填空题(每小题5分,共50分) 6、当k =________时,y =(k +1)x 2k +k 是一次函数;当m =_______时,y =(m -1)x 2 m 是正比例函数。

7、若一次函数y =(m -3)x +(m -1)的图像经过原点,则m = ,此时y 随x 的增 大而 . 8、一个函数的图象经过点(1,2),且y 随x 的增大而增大,则这个函数的解析式是(只需写一个) 9、一次函数y =-3x -1的图像经过点(0, )和( ,-7). 10、一次函数y = -2x +4的图象与x 轴交点坐标是 ,与y 轴交点坐标是 , 图象与坐标轴所围成的三角形面积是 . 11、一次函数y =-2x +3的图像不经过的象限是_________ 12、若三点)1,0(),,2(),0,1(-P 在一条直线上,则P 的值为_________ 13、已知函数4-=+-=mx y m x y 与的图象的交点在x 轴的负半轴上,则=m ______. 14、某市出租车的收费标准是:3千米以内(包括3千米)收费5 元,超过3千米,每增加1千米加收1.2元,则路程x (x ≥3) 时,车费y (元)与路程x (千米)之间的关系式 为: . 15、我市某出租车公司收费标准如图所示,如果小明只有19元钱, 那么他乘此出租车最远能到达 公里处 三、解答题(每小题9分,共45分) 16、某移动通讯公司开设两种业务.“全球通”:先缴50元月租费,然后每通话1分钟,再 付0.4元,“神州行”:不缴纳月租费,每通话1分钟,付话费0.6元。若设一个月内通话x 分钟,两种方式的费用分别为y 1和y 2元。 (1)写出y 1、y 2与x 之间的函数关系式. (2)一个月内通话多少分钟,两种费用相同. (3)某人估计一个月内通话300分钟,应选择哪种合算?

二元一次方程组经典例题及答案

一、工程问题 1、公式:工作量=工作时间×工作效率 公式变形:工作时间=工作量÷工作效率 工作效率=工作量÷工作时间 一般把总工作量看作单位“1” 2、例题: 例1、某工人原计划在限定时间内加工一批零件.如果每小时加工10个零件,就可以超额完成3 个;如果每小时加工11个零件就可以提前1h完成.问这批零件有多少个?按原计划需多少小时完成? 解:设这批零件有x个,按原计划需y小时完成, 根据题意,得 10y=x+3 x=77(个) 11·(10-1)=x y=8(小时) 答:这批零件有77个,按计划需8 小时完

二、银行存款问题 1、公式:本息和=利息+本金 利息=本金×年利率×年数 例1、小敏的爸爸为了给她筹备上高中的费用,在银行同时用两种方式共存了4000元钱.第一种,一年期整存整取,共反复存了3次,每次存款数都相同,这种存款银行利率为年息2.25%;第二种,三年期整存整取,这种存款银行年利率为2.70%.三年后同时取出共得利息303.75元(不计利息税),问小敏的爸爸两种存款各存入了多少元? 解:设x为第一种存款的方式,y第二种方式存款,则 x+y=4000 x=1500(元) 2.25%* x+2.7%* 3* y=30 3.75 y=2500(元) 解得:第一种存款的金额为1500元,第二种存款的金额为2500元 例2、某企业向商业银行申请了甲、乙两种贷款,共计35万元,每年需付出利息4.4万元。甲种贷款每年的利率是12%,乙种贷款的利率是13%。求这两种贷款的金额分别是多少? 解:设这两种贷款的金额分别x万元、y万元 由题意得: x+y=35 x=15(万元) 12%x+13%y=4.4 y=20(万元) 答:这甲种贷款的金额为15万元、乙种贷款的金额为20万元

函数与不等式综合测试题

函数与不等式综合测试题

函数与不等式综合测试题 班级 姓名 得分 一、选择题(每小题5分,满分60分) 1.已知集合{}=1,2,3,4A ,{}2 B=log ,x y y x A =∈,则A B ?=( ) A . {}0,1,2 B . {}1,2 C . ? D . {}1,2,4 2.命题:2,0x R x x a ?∈-+>的否定是真命题,则( ) A . 0a < B . 14 a ≤ C . 1 4a ≥ D . 104 a << 3.已知()f x 是定义在R 上的增函数,则命题: “()()()()f a f b f a f b +>-+-”是命题:“0a b +>”成立的 ( ) A .充分不必要条 件 B .必要不充分条件 C .既不充分有不必要条件 D .充要条件 4.已知0a b <<且1a b +=,则( ) A . 22212a b ab a b +>>> B . 22212a b ab a b +>>> C . 22212a b a b ab +>>> D .

22212a b ab a b >+>> 5.正实数,x y 满足:31x y +=,则123x y +的最小值为( ) A .4 B . 322+ C .326+ D . 6 6.实数,x y 满足 333010x y x y x y +≤??+-≥??-+≥?,z ax y =+的最大值为6,则( ) A . 2a = B . 4a = C . 3a = D . 4a =或2a =- 7.已知函数 (1)y f x =+的定义域为[]1,2,则函数(21)y f x =-的定义域为( ) A . 3,22?????? B . 1,12?????? C . []2,3 D . []4,5 8.函数221x y x =+的图象大致是( ) A B C D y x o y x o y x o y x o

一次函数综合提高测试题

一次函数综合测试题 一、选择题。(3分×10) 1、已知一次函数k kx y -=,若y 随着x 的增大而减小,则该函数的图像经过: A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限 2、若函数132 -+=m x y 是一次函数,则m 的值为: A .1±=m B .1±≠m 的全体实数 C .全体实数 D .不能确定 3、如图,有一个装有进、出水管的容器,单位时间内进、出的水量都是一定的,已知容器的容积为600L ,又知单开进水管10min 可以把容器注满,若同时打开进、出水管,20min 可以把满容器的水放完,现已知水池内有水200L ,先打开进水管5min ,再打开出水管,两管同时开放,直 到把容器中的水放完,则正确反映这一过程中容器的水量Q (L )随时间t (min )变化的图像是 A B C D 4、无论m 为何实数,直线m x y 2+=与直线4+-=x y 的交点不可能在: A .第三象限 B .第四象限 C .第一象限 D .第二象限 5、1+=mx y 与12-=x y 的图像交于x 轴上一点,则m 为: A .2 B .2- C . 21 D .2 1-

6、已知两个一次函数a x a y x b y 1 1,42+=-- =的图像重合,则一次函数b ax y +=的图像所经过的象限为: A .第一、二、三象限 B .第二、三、四象限 C .第一、三、四象限 D .第一、二、四象限 7、两个物体A 、B 所受的压强分别为)(P P A 与B P (P) (A P 、B P 为常数),它们所受压力F(N)与受 力面积S (㎡)的函数关系图像分别是射线A I 、B I ,(公式S F P =),如图所示,则: A .A P >B P B .A P <B P C . A P ≥B P D .A P ≤B P 8 9、若 abc <0,且a c x a b y -= 的图像不过第四象限,则点(,b a + c )所在象限为 A 、一 B 、二 C 、三 D 、四 10、如果一次函数当自变量x 的取值范围是-1<x <3时,函数y 的取值范围是-2<y <6,那么此函数解析式为: A 、x y 2= B 、42+-=x y C 、x y 2=或42+-=x y D 、x y 2-=或42-=x y 二、填空题。(3分×8) 11、某种储蓄的月利率是0.2%,存入100元本金后,则本息和y (元)与储存月数x 之间的函数关系为:________________ 12、已知正比例函数3 )1(--=m x m y 的图象经过第二、四象限,则m=_____________ 13、直线x y 2-=向上平移3个单位,再向左平移2个单位后直线解析式为:_____________ 14、已知函数32-= x y ,则自变量x 的取值范围是:_____________ 15、某风景区集体门票的收费标准是:20人以内(含20人),每人25元;超过20人,超

七年级数学二元一次方程组经典练习题及答案(最新整理)

? ? ? ? ? 4x +10 y = 8 ? ? ? ? ? x -y = 9m ? ? ? ? 2 一、判断 ?x = 2二元一次方程组练习题 100 道(卷一) (范围:代数:二元一次方程组) ?x - y = 5 1、? 1 y =- 是方程组 ?3 2 x y 6 的解…………() 10 ??3 ?-= ??2 3 9 2、方程组 ?y = 1-x ?3x + 2 y = 5 的解是方程3x-2y=13 的一个解() 3、由两个二元一次方程组成方程组一定是二元一次方程组() ?x + 3 + y + 5 = 7 ? 4、方程组,可以转化为 ?3x + 2 y =-12 () ? x + 4 + 2 y - 3 = 2 ? ?5x - 6 y =-27 ?? 3 5 5、若(a2-1)x2+(a-1)x+(2a-3)y=0 是二元一次方程,则a 的值为±1() 6、若x+y=0,且|x|=2,则y 的值为2 …………() 7、方程组 ?mx +my =m - 3x 有唯一的解,那么m 的值为m≠-5 …………() ? ?1 x + 1 y = 2 8、方程组?3 3 有无数多个解…………() ??x +y = 6 9、x+y=5 且x,y 的绝对值都小于5 的整数解共有5 组…………() 10、方程组 ?3x -y = 1 的解是方程x+5y=3 的解,反过来方程x+5y=3 的解也是方程组 ?3x -y = 1 的? x + 5 y= 3 解………() 11、若|a+5|=5,a+b=1 则 a 的值为- 2 ………() ? x + 5 y = 3 b 3 12、在方程4x-3y=7 里,如果用x 的代数式表示y,则x = 7 + 3y () 4 二、选择: 13、任何一个二元一次方程都有() (A)一个解;(B)两个解; (C)三个解;(D)无数多个解; 14、一个两位数,它的个位数字与十位数字之和为6,那么符合条件的两位数的个数有()(A)5 个(B)6 个(C)7 个(D)8 个 15、如果 ?x -y =a ?3x + 2 y = 4 的解都是正数,那么a 的取值范围是() (A)a<2;(B) a >- 4 ;(C)- 2

北师大版八年级数学二元一次方程组知识总结及训练讲解学习

二元一次方程组知识总结及训练 ◆知识讲解 1.二元一次方程组的有关概念 二元一次方程:含有两个未知数,并且含有未知数的项的次数都是1?的整式方程叫做二元一次方程. 二元一次方程的解集:适合一个二元一次方程的每一对未知数的值,叫做这个二元一次方程的一个解.对于任何一个二元一次方程,令其中一个未知数取任意一个值,都能求出与它对应的另一个未知数的值.因此,任何一个二元一次方程都有无数多个解.由这些解组成的集合,叫做这个二元一次方程的解集. 二元一次方程组及其解:两个二元一次方程合在一起就组成了一个二元一次方程组.一般地,能使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解. 2.二元一次方程组的解法 代入消元法:在二元一次方程组中选取一个适当的方程,将一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,消去一个未知数得到一元一次方程,求出这个未知数的值,进而求得这个二元一次方程组的解,这种方法叫做代入消元法.加减消元法:两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相差,从而消去这个未知数,得到一个一元一次方程,这种求二元一次方程组的解的方法叫做加减消元法,简称加减法. 3.二元一次方程组的应用 对于含有多个未知数的问题,利用列方程组来解,一般比列一元一次方程解题容易得多.列方程组解应用问题有以下几个步骤: (1)选定几个未知数; (2)依据已知条件列出与未知数的个数相等的独立方程,组成方程组; (3)解方程组,得到方程组的解; (4)检验求得未知数的值是否符合题意,符合题意即为应用题的解.

◆例题解析 例1 已知21x y =??=?是方程组2(1)21 x m y nx y +-=??+=?的解,求(m+n )的值. 【分析】由方程组的解的定义可知21x y =??=?,同时满足方程组中的两个方程,将21x y =??=? 代入两个方程,分别解二元一次方程,即得m 和n 的值,从而求出代数式的值. 【解答】把x=2,y=1代入方程组2(1)21 x m y nx y +-=??+=?中,得 22(1)12211m n ?+-?=??+=? 由①得m=-1,由②得n=0. 所以当m=-1,n=0时,(m+n )=(-1+0)=-1. 【点评】如果是方程组的解,那么它们就能满足这个方程组中的每一个方程. 例2 (2008,长沙市)“5.12”汶川大地震后,灾区急需大量帐篷.?某服装厂原有4条成衣生产线和5条童装生产,工厂决定转产,计划用3天时间赶制1000?顶帐篷支援灾区.若启用1条成衣生产线和2条童装生产线,一天可以生产帐篷105顶;?若启用2条成衣生产线和3条童装生产线,一天可以生产帐篷178顶. (1)每条成衣生产线和童装生产线平均每天生产帐篷各多少顶? (2)工厂满负荷全面转产,是否可以如期完成任务?如果你是厂长,你会怎样体现你的社会责任感? 【解答】(1)设每条成衣生产线和童装生产线平均每天生产帐篷各x ,y 顶,则210523178x y x y +=??+=? 解得:x=41;y=32 答:每条成衣生产线平均每天生产帐篷41顶,每条童装生产线平均每天生产帐篷32顶. (2)由3×(4×41+5×32)=972<1000知,即使工厂满负荷全面转产,也不能如期完成任务. 可以从加班生产,改进技术等方面进一步挖掘生产潜力,或者动员其他厂家支援等,想法尽早完成生产任务,为灾区人民多做贡献.

必修一函数的综合测试题

必修一函数的综合测试 题 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

函数的综合练习 一(选择,每题5分,共60分) 1.设()f x 是定义在R 上的偶函数,且在(-∞,0)上是增函数,则()2f -与 ()223f a a -+(a R ∈)的大小关系是 ( ) A .()2f -<()223f a a -+ B .()2f -≥()223f a a -+ C .()2f ->()223f a a -+ D .与a 的取值无关 2.知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数,则实数a 的取值范围是 ( ) A .a ≤3 B .a ≥-3 C .a ≤5 D .a ≥3 3.已知函数为偶函数,则的值是( ) A. B. C. D. 4.若偶函数在上是增函数,则下列关系式中成立的是( ) A . B . C . D . 5.设{}01|>-=x x A ,{}0log |2>=x x B ,则B A ?等于………………( ) A .}1|{>x x B .}0|{>x x C .}1|{--> B .c a b >> C .c b a >> D .a b c >> 7.中曲线分别表示l g a y o x =,l g b y o x =,l g c y o x =, l g d y o x =的图象,,,,a b c d 的关系是( ) A. 0

一元一次函数单元测试卷含答案

2015-2016学年八年级上数学一元函数单元测试卷 一、选择题 1.若函数y=(k+1)x+k2﹣1是正比例函数,则k的值为() A.0 B.1 C.±1 D.﹣1 2.(4分)下列函数中y随x的增大而减小的是() A.y=x﹣m2B.y=(﹣m2﹣1)x+3 C.y=(|m|+1)x﹣5 D.y=7x+m 3.(4分)已知一次函数y=kx﹣k,y随x的增大而减小,则函数图象不过第()象限. A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.(4分)要由直线得到直线,直线应() A.向上平移5个单位 B.向下平移5个单位 C.向上平移个单位D.向下平移个单位 5.若直线y=kx+b经过A(0,2)和B(3,0)两点,那么这个一次函数关系式是() A.y=2x+3 B.C.y=3x+2 D.y=x﹣1 6.张大伯出去散步,从家走了20分钟,到一个离家900米的阅报亭,看了10分钟报纸后,用了15分钟返回到家,下面哪个图形表示张大伯离家时间与距离之间的关系() A.B. C.D. 7.要从的图象得到直线,就要将直线() A.向上平移个单位B.向下平移个单位 C.向上平移2个单位 D.向下平移2个单位 8.如图一次函数y1=ax+b和y2=cx+d在同一坐标系内的图象,则的解中()

A.m>0,n>0 B.m>0,n<0 C.m<0,n>0 D.m<0,n<0 9.两个一次函数y1=mx+n,y2=nx+m,它们在同一坐标系中的图象可能是图中的() A.B. C.D. 10.如图,一次函数y=kx+b的图象与正比例函数y=2x的图象平行,且经过点A(1,﹣2),则 kb=. A.6 B.8 C.-6 D.﹣8 二、填空题 11.如果直线y=kx+b经过第一、三、四象限,那么直线y=﹣bx+k经过第象限. 12.通过平移把点A(2,﹣3)移到点A′(4,﹣2),按同样的平移方式,点B(3,1)移到点B′,则点B′的坐标是. 13.要把直线y=3x﹣2向上平移,使其图象经过点(2,10),需要向平移个单位. 14.已知一次函数y=﹣2x+3中,自变量取值范围是﹣3≤x≤8,则当x=时,y有最大 值. 15.已知点A(3,0)、B(0,﹣3)、C(1,m)在同一条直线上,则m=. 16.已知直线y=2x﹣4,则此直线与两坐标轴围成的三角形面积为. 17.已知一次函数y=(m+2)x+1,函数y的值随x值的增大而增大,则m的取值范围是.18.已知一次函数y=2x+4的图象经过点(m,8),则m=. 19.直线y=3x﹣1与直线y=x﹣k的交点在第四象限,k的取值范围是. 20.若一次函数y=kx+b的图象经过(﹣2,﹣1)和点(1,2),则这个函数的图象不经过 象限. 三、解答题 21.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系.下面是蟋蟀所叫次数与温度变化情况对照表: 蟋蟀叫次数…84 98 119 … 温度(℃)…15 17 20 … (1)根据表中数据确定该一次函数的关系式; (2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?

相关文档
最新文档