600MW汽轮机单阀切顺序阀运行解决方案

600MW汽轮机单阀切顺序阀运行解决方案
600MW汽轮机单阀切顺序阀运行解决方案

一般情况下看缸温来决定顺阀与单阀的切换,或单阀切换顺阀,主要取决于机组汽缸温度及上下缸温差:单阀运行保证机组的全周进汽,保证汽缸均匀加热,但截流损失较大;而顺序阀运行不能达到全周进汽对汽缸加热有一定的限制,但其截流损失较小提高了机组的效率,所以单顺阀切换一般情况下主要看缸温,缸温受到主汽温度的影响,向你厂300MW机组额定温度应该在538度、满负荷时调节级温度应该在450~480度左右,那么单、顺阀切换尽量在450左右进行,尤其停机中一定要早一点进行单、顺阀切换,避免停机过程中上下缸温差增大,以及左右测法兰温度的偏差造成机组振动,及下一次开机的空难!

汽轮机旁路系统

汽轮机旁路系统文献综述 沈启杰3100103300 车伟阳3100103007 金涛3100102964 郑忻坝3100103419 摘要: 汽轮机旁路系统在汽轮机整个运行过程当中是比较重要的一个系统,除了高旁、低旁中的减温、减压作用外,还有其他很多重要的功能。本文通过明确汽轮机旁路系统的定义概述,并阐述旁路系统的具体功能。重点介绍高压旁路系统和低压旁路系统的结构、控制等。最后通过两个实例,汽轮机旁路自启动系统APS和FCB工况下的汽机旁路控制系统来进一步研究汽轮机旁路系统。 关键词:旁路系统功能自启动FCB 定义: 中间再热机组设置的与汽轮机并联的蒸汽减压、减温系统。 概述: 汽机旁路系统采用两级气动高、低压串联旁路,利用压缩空气做为执行器的动力源。可以实现空冷汽轮机的冷态启动、正常停机、最小阀位控制、阀位自动、流量控制以及高、低压旁路快开、快关保护功能。允许主蒸汽通过高压旁路,经再热冷段蒸汽管道进入锅炉再热器,再通过低压旁路而流入空冷凝汽器,满足空冷凝汽器冬季启动及低负荷时的防冻要求。通过DEH汽轮机可以实现不带旁路(旁路切除)启动,即高压缸启动方式,又可以实现带旁路(旁路投入)启动,即高、中压缸联合启动方式。 一、旁路系统的作用、功能以及构成 旁路系统的作用有加快启动速度,改善启动条件;保证锅炉最低设备的蒸发量;保护锅炉的再热器;回收工质与消除噪音等。 旁路系统的主要功能又可分为以下四点: 1、调整主蒸汽、再热蒸汽参数,协调蒸汽压力、温度与汽机金属温度的匹配,保证汽轮机各种工况下高中压缸启动方式的要求,缩短机组启动时间。 2、协调机炉间不平衡汽量,旁路调负荷瞬变过程中的过剩蒸汽。由于锅炉的实际降负

液动抽汽速关阀说明书

使 用 说 明 书 Use specification 版本:A Edition:A 快速逆止阀(液动) Quick check valve(hydraulic) 型号: ESSV-80-25 Type: ESSV-80-25 物号: 5-7310-5108-02 Material No: 5-7310-5108-02 嘉兴爱克斯机械技术有限公司 ZHEJIANG JIAXING EXPERT MACHINE TECHNIQUE CO., LTD

快速逆止阀(液动) 目录 1.基本介绍 1.1说明书的使用 1.2开箱检查 1.3型号说明 1.4技术参数 1.5结构功能 2.安装规范 2.1快速逆止阀(液动)的就位 2.2管道的安装 2.3结构图和外形图 3.操作规程 3.1开启抽汽状态 3.2关闭抽汽状态 3.3原理图 4. 维护指南

1.基本介绍 1.1说明书的使用 ● 在安装和使用本产品前请仔细阅读此安装运行说明书,以免给您造成不必要的损失。 ● 本说明书是针对多个型号和物号的抽气速关阀产品而编写,用户在使用说明书时,必须完全熟悉产品的型号和物号,然后对应自己的产品。 1.2 开箱检查 ● 用户在开箱后,首先应检查文件资料、产品标牌、合格证上所列型号、规格及技术参数是否与订货合同一致,名称、数量与实物是否相符。 ● 检查外观表面有无磕碰、划痕,所配零部件有无损伤。 1.3 型号说明 E S S V—*—* ⑴ ⑵ ⑶ ⑴ 快速逆止阀(液动)代号 ⑵ 止回阀通径 ⑶ 止回阀压力等级 1.4技术参数 ● 阀门材料:一般情况下,当压力等级≤300LB时,阀体材料为WCB;当压力等级≥600LB时,阀体材料为1Cr5Mo,特殊情况除外. ● 阀门压力-温度等级对应表 a.阀体材料:WCB 工作温度(℃) 压力等级 200 250 300350 400 425 435 445 455 最大工作压力(MPa) 150LB/1.6MPa 1.6 1.4 1.25 1.1 1.0 0.9 0.8 0.7 0.64 300LB/4.0MPa 4.0 3.6 3.2 2.8 2.5 2.2 2.0 1.8 1.6 600LB/10.0MPa 10.0 9.0 8.0 7.1 6.4 5.6 5.0 4.5 4.0 900LB/16.0MPa 16.0 14.0 12.5 11.2 10.0 9.0 8.0 7.1 6.4 1500LB/25.0MPa 25.0 22.5 20.0 18.0 16.0 14.0 12.5 11.2 10.0 b.阀体材料:1Cr5Mo 工作温度(℃) 压力等级 200 325 390430450470490500510 530 550 最大工作压力(MPa) 150LB/1.6MPa 1.6 1.4 1.25 1.1 1.00.90.80.70.64 0.50 0.40 300LB/4.0MPa 4.0 3.6 3.2 2.8 2.5 2.2 2.0 1.8 1.6 1.25 1.0 600LB/10.0MPa 10.0 9.0 8.07.1 6.4 5.6 5.0 4.5 4.0 3.2 2.5 900LB/16.0MPa 16.0 14.0 12.511.210.09.08.07.1 6.4 5.0 4.0 1500LB/25.0MPa 25.0 22.5 20.018.016.014.012.511.210.0 8.0 6.4 ● 信号油压力:0.6~0.8MPa

电磁阀原理图解

电磁阀原理图解 电磁阀原理上分为三大类:直动式、分步直动式、先导式。 一、直动式电磁阀 原理:常闭型通电时,电磁线圈产生电磁力把敞开件从阀座上提起,阀门打开;断电时,电磁力消失,弹簧把敞开件压在阀座上,阀门敞开。(常开型与此相反) 特点:在真空、负压、零压时能正常工作,但通径一般不超过25mm。

二、分步直动式电磁阀 原理:它是一种直动和先导式相结合的原理,当入口与出口没有压差时,通电后,电磁力直接把先导小阀和主阀关闭件依次向上提起,阀门打开。当入口与出口达到启动压差时,通电后,电磁力先导小阀,主阀下腔压力上升,上腔压力下降,从而利用压差把主阀向上推开;断电时,先导阀利用弹簧力或介质压力推动关闭件,向下移动,使阀门关闭。 特点:在零压差或真空、高压时亦能可动作,但功率较大,要求必须水平安装。

三、间接先导式电磁阀

原理:通电时,电磁力把先导孔打开,上腔室压力迅速下降,在敞开件周围形成上低下高的压差,流体压力推动敞开件向上移动,阀门打开;断电时,弹簧力把先导孔敞开,入口压力通过旁通孔迅速腔室在关阀件周围形成下低上高的压差,流体压力推动敞开件向下移动,敞开阀门。 特点:体积小,功率低,流体压力范围上限较高,可任意安装(需定制)但必须满足流体压差条件 工作原理 电磁阀里有密闭的腔,在不同位置开有通孔,每个孔连接不同的油管,腔中间是活塞,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过控制阀体的移动来开启或关闭不同的排油孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油缸的活塞,活塞又带动活塞杆,活塞

单阀与顺序阀切换的实实现

单阀和顺序阀的对比 1、单阀控制方式即所有进入汽轮机的蒸汽都经过几个同时启闭的调节阀后进入第一级喷嘴,也称节流配汽方式。节流配汽的汽轮机在工况变动时第一级的进汽度是不变的,因此可以把包括第一级在内的全部级作为级组,也就是说除了工作原理不同外,调节级与其余各级并无其他区别。采用节流配汽的汽轮机在设计工况下调节阀全开,机组的理想焓降到最大值;低负荷时调节阀关小,减少汽轮机的进汽量,主蒸汽受到节流作用使第一级级前压力下降,其值与蒸汽流量成正比。此时,汽轮机的理想焓降减小但并不是很多,可见节流配汽主要是通过减少蒸汽流量来降低负荷。当然,理想焓降的减少虽然不是很多,但仍然使机组的相对内效率降低,且负荷越低,节流损失越大,机组效率也就越低。因此,节流配汽方式的应用范围不太广泛,一般用于小功率机组和带基本负荷的机组。高参数、大容量机组在启动初期为使进汽部分的温度分布均匀,在负荷突变时不致引起过大的热应力和热变形,也经常使用节流配汽方式。 2、顺序阀控制方式即蒸汽经过几个依次启闭的调节阀后再通向第一级喷嘴,也称喷嘴配汽方式。这种配汽方式在运行当中只有一个调节阀处于部分开启状态,而其余的调节阀均处于全开(或全关)状态,蒸汽只在部分开启的调节阀中受到节流作用,因此,在部分负荷时喷嘴配汽方式比节流配汽方式效率高,所以被广泛应用。

采用喷嘴配汽方式时,第一级喷嘴的通流面积随着调节阀的开启数目不同而变化。调节级的变工况特性也和其余各级有很大区别。当调节级通流面积改变时,蒸汽流量将发生变化,达到调节机组负荷的目的。同时,在部分开启的调节阀中蒸汽流量受到节流作用,改变了理想焓降,但因流经该阀的蒸汽流量只占总流量的一部分,因此蒸汽 焓降的改变对机组功率的影响较小。 采用喷嘴配汽方式时,在第一只调节阀刚刚全开时调节级的压力比为最小,调节级的理想焓降为最大,此时,通过第一组喷嘴的蒸汽流量也达到最大值,故第一组喷嘴蒸汽流量和焓降的乘积也达到最大值,工作在其后的动叶片所承受的应力也达到最大值。可见,调节级的危险工况并不是在最大工况下,而是在第一只调节阀刚刚全开时。 3、单阀、顺序阀控制方式的应用 实际生产中,汽轮机在部分负荷下运行时喷嘴配汽方式比节流配汽方式的效率高,且较稳定。但在变工况下采用喷嘴配汽方式会使汽轮机高压部分的金属温度变化较大,调节级所对应的汽缸壁产生较大的热应力,从而降低了机组快速改变负荷的能力。为了发挥两种不同配汽方式的优点,我们采取了节流配汽——喷嘴配汽联合调节的方式,即第一只喷嘴和第二只喷嘴同时开启,使汽缸均匀受热。待第一、二只调节阀全开后再根据机组负荷需要依次开启其他调节阀。这样,就同时发挥了节流配汽和喷嘴配汽两者的优点。

汽轮机速关组件

速关组件 速关组件用于汽轮机遥控启动,就地停机,遥控停机,速关阀联机试验及危急遮断油门自动挂钩。 速关组件适用于采用电液调节系统的汽轮机。 速关组件是将调 节系统中一些操作件 集装在一起的液压件 组合,它不仅使操作便 捷,并且也使得油管路 及电气线路的布置趋 于合理、简化。 速关组件的结构 和外形见图1、图2是 它的工作原理。 1.试验阀 2.溢流阀 3.启动油电磁阀 4.停机电磁阀 5.速关油电磁阀 6.电液转换器 7.支座 8.停机电磁阀 9.本体

10.手动停机阀 A 操作侧 图1 在本体(2)中加工有与原理图相应的内部油路并装入插装阀(图2中DG16、 DG40)等 液压元件,本体的不同侧面装接着实现速关组件功能所需的操作件并留有 外管路接口,操作 件安装位置及各油路接口均有与原理图一致的相应标记。本体与固定在基 础上的支座(7) 用螺栓连接。速关组件的回油由本体的回油口汇入回油管。 速关组件的功能及工作原理: 试验阀(1)位2309,是手动换向阀,用于速关阀联机试验(请见1-2300-)。 图示换向 阀可对两只速关阀进行试验。作试验时,将手柄向操作侧拉动,压力油P 便与试验油H1接通, 即可对汽轮机右侧的速关阀进行试验;推动手柄则使压力油P与试验油H2 接通对左侧速关阀 进行试验。放开手柄,换向阀自动恢复到中间位置,退出试验。由于在H1、 H2油路上有节流 孔,所以手动换向阀投入或退出试验的操作不会影响机组的正常运行。如 汽轮机仅配用一只 速关阀,一般是H2封堵不用。如果2309采用电磁阀,则速关组件具有速关 阀遥控试验功能,

使用说明书速关组件1-2001-04-00 改变电磁阀状态(得电或失电)即可进行速关阀试验,电磁阀复位便退出试验。 启动油电磁阀(3)位号1843,速关油电磁阀(5)位号1842,它们与溢流阀(2位号1853) 一起用于遥控开启速关阀。图2所示1842、1843为不带电状态,启动时使1842和1843同 时得电并开始计时,由于1842的P与B,A与T成通路,于是DG16插装阀关闭切断E1与E2通路, 速关油E2油压为0;同时,1843的P与B成通路,启动油F和开关油M建立压力(若M接至危急 遮断油门,速关组件具有油门自动挂钩功能,若M不用则危急遮断油门须就地手动挂钩复位), 15秒钟后1842断电复位,DG16开启,E1和E2接通,建立速关油E2,借助溢流阀1853的限压 作用,使启动油F的压力比速关油E2的压力低~0.05Mpa,在E2与F的压差作用下速关阀缓慢开 启,60秒钟后1843断电复位,F与T接通,这时速关阀已完全开启。 图2 停机电磁阀(4,8)位号分别是2222和2223,它们用于汽轮机遥控停机。 图2所示电 磁阀为不带电状态,启动和正常运行时,2222和2223的压力油是通路,DG40 插装阀在压力 油作用下关闭。当2222和2223中任一只得电时,DG40上腔与回油接通, 于是DG40开启, 杭州汽轮机股份有限公司第 2 页共3页 使用说明书速关组件1-2001-04-00 速关油迅速排泄,致使速关阀关闭、汽轮机停机。 电磁阀根据用户使用要求,可配用NO型(常开型,正常运行不带电)或NC型(常开型, 正常运行带电),也可配用防爆电磁阀。 电液转换器(6)分别向汽轮机两只调节汽阀输出二次油,电液转换器不属速关组件的 功能元件,只是利用本体的油路集装在速关组件中。 手动停机阀(10)位号2250,用于汽轮机就地停机。2250前方有一块红色防护板,若 要手动停机,先将防护板向操作侧翻下,之后拉动手柄,其结果与2222(2223)得电时一样, 使汽轮机停机。 在速关组件的不同方位有3个带链环的罩帽,它们与图2中接口相对应,在启动 或汽轮机运行时用随机提供的测压工具5-7820-0001-99可检测压力。操作时,拧出罩帽, 旋紧测压工具接头,即可由测压工具的压力表得知测点的压力,测量后按相反步骤恢复原状。 速关组件的运行操作须注意: . 启动之前应确认压力油P及DG40上腔油压正常。 . 启动之前应确认电磁阀状态(带电或不带电)与要求相符。 . 启动时,换向阀1842,1843的复位顺序不得调换。速关阀开启后,1842和1843不

浅谈汽轮机顺序阀门控制

浅谈汽轮机顺序阀门控制 The Discussion About Turbine Sequence Valve Control (江苏太仓环保发电公司 江苏 太仓 215433)刘铁祥 摘要:介绍电厂汽轮机顺序阀门控制原理,列举工程中的实际应用经验,揭示了汽轮机阀门管理设计的科学性以及在调试和应用中需要掌握的知识点。 关键词:电厂 汽轮机DEH 阀门控制 Abstract: This paper intorduces the principle of turbine sequence valve control and lists some application experiences, interprets the scientificity of turbine valve control as well as the knowledge should be know in commission and practice. Key word: power plant; turbine DEH; valve control 1 前言 现代大、中型发电机组中汽轮机均采用数字电液控制系统即DEH进行控制,各进汽阀门是由电信号控制、高压油动机驱动。其中进汽阀门的管理显然是DEH系统的重要功能,特别是顺序阀控制其管理程序更为科学和复杂。在调试和实际应用中顺序阀控制的参数整定同样非常严谨。如果参数整定不当则单阀与顺序阀的切换扰动过大,汽轮机主要运行参数出现异常,影响机组的安全。由此顺序阀门控制的参数整定是DEH调试的一项重要内容。 2 DEH阀门管理功能 新建机组在试运期间一般采取全周进汽的单阀运行方式,使得转子和定子的温差较小,在变负荷运行时温差影响较小,有利于机组初期的磨合。另外在机组启动过程或调峰方式运行时,也同样需要采用单阀控制。但单阀运行,高压调节阀都参与开度调节,且一般高压调门开度不大,蒸汽通过调节阀门时有较大的节流损失。机组运行要求尽量减少调节阀门的节流损失,提高汽轮机的效率。通常阀门的节流损失在阀门接近全关或接近最大流量时达到最小。顺序阀门控制方式下,只有一个高压调节阀进行开度调节,其余的调门保持全开或全关,这样减少了节流损失,提高机组热效率。下图为顺序阀门控制和单阀控制的热效率比较曲线。从中能明显的看出两者之间的差异。 降低 ( 热 效 率 ) 50 60708090100(负荷百分率)

如何对汽轮机的进行单阀和顺序阀进行切换

?如何对汽轮机的进行单阀和顺序阀进行切换在实际的工作中,为了进一步提高汽轮机的使用效率,经常会 需要对汽轮机进行单阀和顺序阀的切换,但是在操作的过程中,经常会发生各种各样的问题,因此本文就简单介绍如何对汽轮机进行单阀和顺序阀的切换。 单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节 流损失较大。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀开度指令与顺序阀系数乘以顺序阀开度指令相加后得到的就是各个阀门实际的开度指令。单阀指令和顺序阀指令是当前负荷指令分别经过单阀曲线和顺序阀曲线转换 后得出的。 在实际的阀门切换过程中,上述分析中的假设条件是难以成立的,所以不可避免地会有负荷扰动;但如果投入闭环控制,负荷扰动在一 定程度上可以得到改善,即如果投入功率闭环回路,当实际功率与负荷设定值相差大于4%时,切换自动中止;当负荷调节精度达到3%以 内时,切换又自动恢复。投入调节级压力控制回路与此类似。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节

流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 电力工作者在实际的工作中,需要不断总结经验,掌握汽轮机单阀和顺序阀间切换的规律,保障汽轮机即高效又安全的运行。

汽轮机单多阀

单阀/顺序阀切换的目的是为了提高机组的经济性和快速性,实质是通过喷嘴的节流配汽(单阀控制)和喷嘴配汽(顺序阀控制)的无扰切换,解决变负荷过程中均匀加热与部分负荷经济性的矛盾。单阀方式下,蒸汽通过高压调节阀和喷嘴室,在360°全周进入调节级动叶,调节级叶片加热均匀,有效地改善了调节级叶片的应力分配,使机组可以较快改变负荷;但由于所有调节阀均部分开启,节流损失较大。顺序阀方式则是让调节阀按照预先设定的次序逐个开启和关闭,在一个调节阀完全开启之前,另外的调节阀保持关闭状态,蒸汽以部分进汽的形式通过调节阀和喷嘴室,节流损失大大减小,机组运行的热经济性得以明显改善,但同时对叶片存在产生冲击,容易形成部分应力区,机组负荷改变速度受到限制。因此,冷态启动或低参数下变负荷运行期间,采用单阀方式能够加快机组的热膨胀,减小热应力,延长机组寿命;额定参数下变负荷运行时,机组的热经济性是电厂运行水平的考核目标,采用顺序阀方式能有效地减小节流损失,提高汽机热效率。 对于定压运行带基本负荷的工况,调节阀接近全开状态,这时节流调节和喷嘴调节的差别很小,单阀/顺序阀切换的意义不大。对于滑压运行调峰的变负荷工况,部分负荷对应于部分压力,调节阀也近似于全开状态,这时阀门切换的意义也不大。对于定压运行变负荷工况,在变负荷过程中希望用节流调节改善均热过程,而当均热完成后,又希望用喷嘴调节来改善机组效率,因此这种工况下要求运行方式采用单阀/顺序阀切换来实现两种调节方式的无扰切换。 假设阀门切换过程中汽机运行工况稳定,即真空和主蒸汽参数不变,不考虑抽汽的影响,汽机的负荷仅由蒸汽流量决定,而各个调节阀所控制的流量也只和阀门开度有关,那么可以认为汽机负荷进仅是阀门开度的单函数。单阀系数乘以单阀

汽轮机旁路阀门

汽轮机旁路阀门 200MW/300MW/600MW/750MW 美国HANOVER汽轮机旁路系统被世界公认为是能快速启动及防止能量损失的最佳系统之一。 它们延长设备使用寿命,并且有更高的性能及可靠性。汽轮机旁路系统的主要职能是蒸汽调节——高压节流减压以及过热蒸汽降温。旁路阀必须执行这些功能并且在没有过度噪音和振动以及阀门内件磨损的情况下达到目标压力和温度。在恶劣温度循环的条件下执行其功 能.高压旁路阀门 ?入端DN公称直径80-400 ?出口DN公称直径250-1000 ?蒸汽雾化喷水 ?流向密封阀塞 ?下游注射 ?喷射水比率可高达蒸汽的30% ?容许低水温 ?只需低喷射水压 ?缩短混合及蒸发路径 阀门规格 ?DN25/1"-1000/40" ?PN150-4500LB ?控制范围:25:1,30:1,按照客户要求 ?控制特性:线性或者百分比线性 ?设计特点:煅钢焊接结构或铸钢,角型-直通,或者Z-型结构. ?连接方式:焊接.法兰. ?执行机构:液压,汽动驱动.

此类蒸汽转换阀工作时, 蒸汽的降压和蒸汽的冷却是分别进行的。降压是通过多级压力缓冲装置来实现。该设计保证了在全部承载范围内的亚临界压力的降低,如图所示,压力缓冲衬套装置被分割成几个独立的腔室,并保证介质只能在指定的压力缓冲室流动( 图2)。压力缓冲装置内的腔室为衬套式构形,从而保证了介质只能在指定压力缓冲装置的截面内自由通过。设计中,在蒸汽压力完全下降到要求的输出压力之前,膨胀的过热蒸汽延伸至减温器(图2),从而保证过热蒸汽一直可用于雾化喷水。 HANOVER控制阀用途广泛,在最恶劣的操作条件下也很可靠,值得信赖。我们的目标是为任何形式的电站工程应用提供主控制和安全阀。这种情况需要为客户特制系统以满足具体的电站运行要求。 美国汉诺威(HANOVER)阀门集团天津代表处 ?电话:86-22-2783 8557/8567/8577 ?传真:86-22-2783 8587 ?网址:https://www.360docs.net/doc/ac468527.html,

汽轮机速关阀

速关阀(N ) 速关阀也称为主汽门,它是主蒸汽管路与汽轮机之间的主要关闭机构,在紧急状态时能立即节断汽轮机的进汽,使机组快速停机。 速关阀水平装配在汽轮机进汽室侧面。按照汽轮机进汽容积流量的不同,一台汽轮机可配置一只或两只速关阀。 汽轮机停机时速关阀是关闭的,在汽轮机起动和正常运行期间速关阀处于全开状态。 图1是用于N 型汽轮机的速关阀,它主要由阀和油缸两部分构成。阀体部分有两种结构形式,图1是无单独阀壳的速关阀,在三系列汽轮机中,大多采用这种阀壳与汽缸进汽室为整体构件的结构形式。 1. 主阀碟 2. 卸载阀 3. 蒸汽滤网 4. 导向套筒 5. 阀盖 6. 汽封套筒 7. 阀杆 8. 专用螺栓 9. 螺母 10. 油缸 11. 压力表接 口 12. 试验活塞 13. 活塞 14. 弹簧 15. 弹簧座 16. 活塞盘 17. 挡盘 18. 阀座 D 蒸汽入口 E 速关油 F 启动油 H 试验油 K 漏汽 T 1 回油 T 2 漏油 图1 速关阀 阀体部分主要由件1~8及18组成,阀盖(5)不仅用于进汽室端面的密封,而且也是阀与油缸间的连接件。 在速关阀末开启时新蒸汽经蒸汽滤网(3)通至主阀碟(1)前的腔室,阀碟在蒸汽力及油缸弹簧(14)关闭力作用下被紧压在阀座(18)上,新蒸汽进入汽轮机通流部分的通路被切断。主阀碟中装有卸载阀(2),由于在速关阀的开启过程中调节汽阀处于关闭状态,所以随着卸载阀的提升,主阀碟前后的压力很快趋于平衡,使得主阀碟开启的提升力大为减小。 在速关阀开启过程中或速关阀关闭后(隔离阀未关)有一部分蒸汽沿着阀杆(7)与导向套筒(4)及汽封套筒(6)之间的间隙向外泄漏,漏汽从接口K 引出。而当速关阀全开后,主阀碟与导向套筒的密封面紧密贴合,阀杆漏汽被阻断。 速关阀中的蒸汽滤网大多是采用不锈钢波形钢带卷绕结构的滤网,也有一些汽轮机的滤网由带孔不锈钢板卷焊而成。 速关阀的油缸部分主要由油缸(10)、活塞(13)、弹簧(14)、活塞盘(16 )及密封件

电动阀门控制原理图

电动阀门控制原理图 对话世界能源巨头让中国每年省出13个核电站 “未来25年,全球能源需求增加的部分中将有近1/4来自于中国。而能效水平低于工业发达国家近20%状况,无疑使中国能源紧张的形势更加严峻。” “意法半导体营造了一个主动的可获益的大环境,数以百计的节能措施被建议并付诸实施,相关的节能投入每年平均为2500万美元。” 电子产品的发展给人类生活带来越来越多便利与美好体验的同时,一些弊端也随之而生,电子垃圾、环境污染、能源消耗速度过快等种种问题开始困扰人们。于是,全球对环保与节能的关注达到了前所未有的高度,如何应对环保指令、开发新的节能产品、充分利用能源逐渐成为一个越来越热门的话题。随着2008年奥运会的临近,中国政府也把环保节能提上日程。节约能源,越来越成为我们时刻关注的大事。为此,本报记者采访了意法半导体公司副总裁兼大中国区总裁柯明远,希望对该公司电子产品的能耗管理经验深入了解,并分析当今的能源管理市场及趋势。 蝶阀>>电动蝶阀>>电动硬密封蝶阀

球阀>>塑料球阀>>电动塑料球阀

产品详细信息 电动塑料球阀特性: 工作温度:0℃至+60℃ 工作压力:见图 流体范围:食品工业、石化和与聚氯乙烯相匹配的各种流体。 连接:内螺纹DIN/ISO228/1;焊接ISO727UNI7442/75 电动塑料球阀材料: 1)轴Shaft 聚氯乙烯PVC 2)O环O-Ring 三元乙丙橡胶EPDM 3)环型螺母Ringnut 聚氯乙烯PVC 4)阀体Body 聚氯乙烯PVC 5)端口End 聚氯乙烯PVC 6)O环O-Ring 三元乙丙橡胶EPDM 7)球体密封Ballsealing 8)球体Ball 聚氯乙烯PVC 9)O环O-Ring 三元乙丙橡胶EPDM 10)球体密封支架Ballsealingsupport 聚氯乙烯PVC 11)环Ring 聚氯乙烯PVC 电动塑料球阀尺寸表 "螺纹"订货号M61116 F03 M61116 F04 M61116 F05 M61116 F06 M61116 F07 M61116 F08 M61116 F09 M61116F 10 “焊接”订货号M61316 F83 M61316 F84 M61316 F85 M61316 F86 M61316 F87 M61316 F88 M61316 F89 M61316F 90 DN mm. 10 15 20 25 32 40 50 65 内螺纹尺寸mm. 3/8" 1/2" 3/4" 1" 1"1/4 1"1/2 2" 2"1/2 焊接管mm. 16 20 25 32 40 50 63 75 通径mm. 10 15 20 25 32 40 50 65 A mm. 207,5 207,5 207,5 207,5 207,5 207,5 207,5 207,5 B mm. 122,5 122,5 122,5 122,5 122,5 122,5 122,5 122,5

汽轮机高调门流量特性优化试验方案

汽轮机高调门流量特性优化 试验方案 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

皖能马鞍山发电有限公司2号机组汽轮机高调门流量特性优化试验方案 2013年4月10日

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 负责单位:安徽科讯电力技术服务中心 协作单位:皖能马鞍山发电有限公司 起日期:2013年4月10日14:00——20:00 负责人:张兴 工作人员:张兴、施壮 编写 ____________ 审阅 ____________ 审核____________ 批准____________

皖能马鞍山发电有限公司2号机组 汽轮机高调门流量特性优化试验方案 1、试验目的 为提高皖能马鞍山发电有限公司2号机组运行的安全性和经济性,根据合同要求,我单位计划于2013年4月10日对2号机组汽轮机高调门进行流量特性测试及优化,并完成2号机组汽轮机进行单/顺阀切换试验。 2、试验条件 (1)、机组在设计的正常工况下稳定运行,负荷能从额定负荷(汽机高调门全开时)至60%左右的额定负荷范围之间变化。 (2)、试验过程中由运行人员手动控制燃料量维持主汽压力稳定。 (3)、信号测量设备应满足精度要求并有效期内的检定合格证书。数据记录通过分散控制系统进行。 (4)、历史数据站工作正常,能完成对主汽压力、调节级压力、给定值、流量指令、阀位指令/开度、功率等参数的采集,并能生成*.csv或*.xls格 式文件,且数据分辨率满足测试要求。 3、试验内容 通过汽轮机高调门流量特性测试及参数优化试验,根据机组实际特性及标准流量参考线对多阀、单阀流量特性进行统一整定。 4、试验方法及步骤 各高调门单个流量特性测试

火电厂汽轮机旁路阀说明及特点

德国BOMAFA旁路说明及结构型式、特点 德国宝马阀介绍 德国宝马阀公司是一家德国家族公司,创建于1919年,该公司在德国阀门领域有着非常好的业绩,公司以极高的产品质量和极优的售后服务而闻名遐迩。BOMAFA的姊妹公司ASFA公司提供与阀门相配的气动或液压执行机构,BOMAFA 与ASFA一起,为用户提供整套的阀门系统。BOMAFA公司总部设在西德,产品出口到世界各地,并为全球用户提供全方位的服务。 宝马阀公司设计、制造特种阀门,在电厂、石油、化工和其他工业领域中已积累了80多年经验,实践证明BOMAFA产品及其服务是真正值得信赖的,她为客户量体裁衣,提供充分考虑客户需求,基于客户的阀门解决方案。 宝马阀公司的产品范围包括蒸汽调节阀门,按客户要求设计的各种规格减温减压器、高低压汽机旁路系统、给水调节阀、汽机专用阀、安全阀、最小流量阀、锅炉启动阀、闸阀、孔板等,总之,宝马阀可提供以蒸汽、气体和水为介质的各种类型特种阀门。 宝马阀公司的宗旨是充分了解客户需求,确保产品设计完全满足客户。因此,宝马阀不仅仅是一个阀门供货商,还是您理想的工程伴侣:与您共同考虑实际运行需要,这必然对运行人员的操作非常有益。 笼式阀芯系列高低压旁路阀体采用超宽的流线形设计: A.减少了介质的流通阻力,避免了介质发生相变时对阀体的侵蚀。阀芯为套 筒(笼式)结构,具有流阻小流通能力大,振动、噪声小的特点。 B、阀门按压差的大小采用不同的多级节流形式,这样,通过多级降压减轻了汽体对阀门的冲击和震动,降低了噪音。同时也避免对阀口的冲蚀。 C、采用了镶装式分体阀座,杜绝了裂纹的产生。阀门开启后温度急剧上升,但整个阀体的温升是不均匀的,阀座温升最快,阀体稍慢,温升后都要产生热变形,由于阀座与阀体的材质不同,热膨胀系数不同,导致变形不同步,传统阀门

电厂汽轮机单阀顺序阀切换的实现

电厂汽轮机单阀/顺序阀切换的实现 作者: 时间: 2010 年 2 月

电厂汽轮机单阀/顺序阀切换的实现 摘要:汽轮机单阀/顺序阀切换的逻辑,是电厂节能降耗的手段之一,本文主要针对汽轮机的单阀/顺序阀切换逻辑的分析、存在问题的提出、分析以及解决过程,及切换功能的实现进行全过程论述。 关键词:单阀顺序阀切换逻辑 一.概述 “十一五”规划明确要求,到2010年我国单位GDP的能耗要比“十五”末期下降20%,衡量一个发电厂经济性的好坏,就是要看它的综合指标——发电成本,即对外供1度电所需的成本费用。火力发电厂汽轮机作为能量转换的中间设备,运行方式的优化是节能降耗的主要手段,对保证机组的安全性和经济性起到关键作用。 **发电厂隶属**,电厂的主要设备是:锅炉采用**锅炉厂高温超高压一次中间再热、单汽包自然循环、****蒸汽锅炉(YG—***/13.74—M),汽轮机采用**汽轮机厂的超高压、单轴、双缸双排汽、一次中间再热、凝汽式汽轮机(N***—**.24/***/***型),发电机是**发电设备厂的WX**Z-073LLT。热控系统主网主要采用DCS集散控制方式,辅网采用PLC控制系统。汽轮机采用DEH控制方式,DEH控制系统为纯电调系统,整套系统采用北京ABB贝利控制有限公司的Symphony控制系统(软硬件由北京ABB贝利控制有限公司提供),液压部分采用常规低压透平油系统。直接由DEH通过电液转换器进行控制调节汽阀油动机,以达到控制汽机转速和负荷的目的。 **积极响应国家的节能降耗的政策,立足于本厂实际,多方面、全方位的实施全厂的节能降耗各项工作。本文重点介绍汽轮机单阀/顺序阀切换功能的实现。 所谓汽机单阀控制方式,是指根据负荷的给定值,经过汽机阀门管理程序的逻辑判断,所有高压调门开启方式相同,且各高调门的开度均一致。因控制汽阀沿汽轮机的径向对称布置,因此这种方式将使汽轮机的高压缸第一级汽室内温度的分布比较均匀,在负荷变化时汽轮机的转子和定子之间的温差最小,减少了机组的热应力,使机组可以承受较大的符合变化率。但是,从机组的运行经济上看,

气动控制阀结构与原理

1.方向控制阀及换向回路 方向控制阀按气流在阀内的作用方向,可分为单向型控制阀和换向型控制阀。 (1)单向型控制阀。 1)单向阀。气动单向阀的工作原理与作用与液压单向阀相同。 在气动系统中,为防止储气罐中的压缩空气倒流回空气压缩机,在空气压缩机和储气罐之间就装有单向阀。单向阀还可与其他的阀组合成单向节流阀、单向顺序阀等。 2)梭阀(或门阀)。梭阀是两个单向阀反向串联的组合阀。由于阀芯像织布梭子一样来回运动,因而称之为梭阀。 图3一25(a)为或门型梭阀的结构图。其工作原理是当P1进气时,将阀芯推向右边,P2被关闭,于是气流从P1进人A腔,如图3-25(b)所示;反之,从P2进气时,将阀芯推向左边,于是气流从几进人P2腔,如图3-25(c)所示;当P1,P2同时进气时,哪端压力高,A就与哪端相通,另一端就自动关闭。可见该阀两输人口中只要有一个输人,输出口就有输出,输人和输出呈现逻辑“或”的关系。 或门型梭阀在逻辑回路中和程序控制回路中被广泛采用,图3-26是梭阀在手动一自动回路中的应用。通过梭阀的作用,使得电磁阀和手动阀均可单独操纵汽缸的动作。 气动调节阀:https://www.360docs.net/doc/ac468527.html,/ 3)双压阀(与门阀)图3-27是双压阀的工作原理图。当P1进气时,将阀芯推向右端,A 无输出,如图3-27(a)所示;当P2进气时,将阀芯推向左端,A无输出,如图3一27(b)所示;只有当P1,P2同时进气时,A才有输出,如图3-27(c)所示;当P1和P2气体压力不等时,则气压低的通过A输出。由此可见,该阀只有两输人口中同时进气时A才有输出,输人和输出呈现逻辑“与”的关系。 自力式压力调节阀:https://www.360docs.net/doc/ac468527.html,/

汽轮机中压缸启动方式下的高低压旁路控制方案分析

汽轮机中压缸启动方式下的高低压旁路控制方案分析 殷建华李民 (内蒙古电力科学研究院热控技术研究所) 摘要:本文主要针对汽轮机的中压缸启动方式下的旁路系统的控制方案做了详尽的分析与阐述,并对其控制方案中的优缺点做了分析。 关键词:中压缸启动高低旁 Analysis Of HP-LP Bypass Control Mode Of IP Cylinders Sart-Up Mode YIN-Jian hua LI-Min (The Thermal Automation Institute of Inner Mongolia Electric Power Research Institute) Abstract: The article elebrate the HP-LP Bypass control mode of ip cylinders start –up mode and analyze advantage&disadvantage of the control mode Keywords: IP Cylinders Sart-Up ; HP-LP Bypass (The Thermal Automation Institute of Inner Mongolia Electric Power Research Institute) 概述 高低压旁路系统作为电厂热力系统的重要组成部分,不但起到了配合机组启动,协调机炉控制,将多余的蒸汽回收至凝汽器的作用,而且当机组发生甩负荷时,能够通过快速开启高压旁路系统,起到防止锅炉超压的作用。 高低压旁路系统在中压缸启动的汽轮机启动过程中起到的至关重要的作用,其不仅能很好的配合锅炉和汽轮机的整个启动过程,同时其具备的快开功能也能起到防止锅炉超压,汽轮机超速等功能。 1 中压缸启动方式下的高低压旁路系统设置 中压缸启动方式的汽轮机与其配套的高低压系统旁路为高、低压两级串联旁路系统。高低压旁路由减压阀,减温阀及其油站系统组成。较为常见的是由瑞士SULZER公司设计制造的高低压旁路系统。本文着重以瑞士SULZER公司设计制造的高低压旁路系统为例,分析中压缸启动方式的高低压旁路控制方案的特点及优缺点。 中压缸启动过程简介 冷态启动时,主蒸汽经高压旁路进入再热器,冷段再热蒸汽经高压缸排汽逆止门旁路阀(倒暖阀)进入高压缸加热,高压缸处于暖缸阶段;低压旁路开启,调节再热器压力。由于设置有高低压旁路,汽轮机在盘车阶段(高速盘车,盘车转速为54r/min)即可预暖,当达到冲转参数时,由中压调门控制汽轮机进汽冲转升速,至1020转/分转速闭锁升速,进行低速暖机;当加热到一定程度时(高压缸外下缸法兰温度≥185℃),高压缸排汽逆止门旁路阀关闭,高压缸抽真空阀开启,高压缸处于抽真空状态;当带到一定负荷(约15%额定负荷),切缸条件满足后,抽真空阀关闭,高压缸主汽门、调速汽门打开,高压缸排汽逆止门打开,机组切换为高压缸运行,高低压旁路为维持设定压力而逐渐关闭。 高旁在机组冷态启动过程中的自动控制 高低压旁路系统包括一个高旁压力控制阀,一个高旁温度调节阀,一个高旁喷水隔离阀,两个低旁压力控制阀和两个低旁温度调节阀。 高压旁路控制系统包括:高旁压力控制,高旁温度控制,快开和紧急关以及喷水隔离阀的控制 低压旁路控制系统包括:低旁压力控制,温度控制,快开、紧急关控制。 锅炉冷态启动时,高压旁路系统即可投入自动控制。随着机组的启动,高旁压力控制器经历

浅析660MW汽轮机组高低压旁路阀内漏治理

浅析660MW汽轮机组高低压旁路阀内漏治理 摘要:河北国华定州发电有限责任公司3、4号机高低压旁路阀长期以来存在内 漏问题,虽经多次维修,都未能根除。而长期内漏会造成发电厂发电效率降低, 还会为机组的运行带来安全隐患。于是在2016、2017年机组检修的机会,分别 对两台机组的高低压旁路阀进行改造。机组运行后,相关技术指标及参数都达到 设计要求。说明高低压旁路阀长期内漏这一难题已经彻底解决了。 关键词:高低压旁路阀;内漏;设计;改造 一、前言 目前,在各大火力发电机组中,高低压旁路阀无论是进口还是国产设备,都 普遍存在长期内漏问题,并且随着使用时间的增长,泄漏量越来越大。由于阀门 内漏,阀后温度升高,为了保证机组安全可靠运行,就必须投入减温水。而此时 减温水量很少,根本不能雾化,流到阀后高温高压管道的焊缝上,而使管壁和焊 缝产生裂纹,给机组带来严重的安全隐患(某电厂曾出现类似情况从而造成管道 爆管的情况)。此外,阀门内漏还会造成发电厂的效率降低。机组启动时,高低 压旁路阀出现振动和噪音现象更是普遍。虽然要求上对噪音作明确规定,等级不 大于85分贝,但实际运行时远远大于。如某电厂#5机(1000MW超超临界机组),因高压旁路阀在运行时产生剧烈振动而停机,设备解体发现,4套高压旁 路阀阀套均出现裂纹,其中3个因裂纹严重而更换。由于高压旁路阀振动剧烈, 造成液压缸与油管连接件松动而漏油,险些引发火灾。 为了消除内漏,将阀门解体检修,对密封面进行处理,重新堆焊、加工后再 进行研磨。在回装前,需仔细地检查密封面的吻合度,达到检修要求;回装时, 更换密封件,履行安装工艺,调试定位准确。然而,机组启动后,高低压旁路阀 依然内漏。有时漏流量较小,有时漏流量较大,有时甚至比修前更大。检修质量 波动很大,根本无法保证。花费了大量的人力、物力和财力,而问题还是没有得 到解决。 二、各公司阀门结构分析比较 高低压旁路阀使用中内漏-修理-内漏不断重复的这种情况在大多数电厂普遍存在,不是个别现象。各电厂及请来的阀门检修公司,甚至原高低压旁路阀的制造 厂家,都把重点工作放在确定检修方案和工艺、控制检修过程、以及修后阀门的 调试定位方面,没有谁去怀疑这些国外知名品牌的技术和所提供的设备自身是否 存在问题。在人们的心目中,这些国外知名品牌(如:美国CCI(苏尔寿)公司、德国霍拉公司、博普公司等)所提供的设备应该是完美无缺、无可挑剔的,出现 问题的原因在于自己检修工作没做好,设备调试不到位等等。同时,生产厂家也 认为所提供的产品是无可挑剔的(如果他们认为自己的产品有问题,在设计和生 产制造时就会改进)。 带着问题,我们联系、走访、调研了数家电厂,希望找出问题存在的根源。 在过程中了解到,目前进口和国产的高低压旁路阀在国内各电厂的分布情况为: 美国CCI(苏尔寿)公司的高低压旁路阀数量最多、分布最广、使用时间最长, 德国霍拉公司次之,西门子公司相对较少。600MW及以上机组基本上都是进口 产品;600MW以下机组有进口产品,也有国产产品;机组容量越小,用国产的 越多。 以前各国生产的高低压旁路阀,其结构相互间相差很大,而最近几年渐趋一 致(如:美国CCI(苏尔寿)公司、德国霍拉公司)。最早的苏尔寿公司高低压

汽轮机旁路系统的布置设计

汽轮机旁路系统的布置设计 发表时间:2019-05-17T09:36:47.053Z 来源:《电力设备》2018年第33期作者:黄晓琳 [导读] 摘要:就目前的情况来看,汽轮机路旁系统的设计具有非常重要的意义,不仅对旁路系统的功能产生影响,同时也会不适应正常发展需求,因此在实际应用中需要不断提高汽轮机工作状态下的安全性以及可靠性等。 (中国能源建设集团广西电力设计研究院有限公司) 摘要:就目前的情况来看,汽轮机路旁系统的设计具有非常重要的意义,不仅对旁路系统的功能产生影响,同时也会不适应正常发展需求,因此在实际应用中需要不断提高汽轮机工作状态下的安全性以及可靠性等。同时重点分析旁路系统中存在的问题,并针对问题采取有效针对性的措施进行优化,结合具体情况和经验进行分想,从而能够更好的保证合理性和高效性,更好的保证汽轮机的正常运行。基于此本文分析了汽轮机旁路系统的布置设计。 关键词:汽轮机;旁路系统;布置设计 1、旁路系统的组成及优点 旁路系统是指汽轮机并联形成的降温减压系统,最为主要的功能是能够进一步排放余热锅炉中所产生的温度压力,进一步对其进行冷却,这个过程中是不需要冷凝器进行做功的。旁路系统主要包括蒸汽旁通阀、旁通阀控制系统、液压执行器、旁通蒸汽管和喷水减温系统等部分。 在常规的燃气电厂中,为了适应汽轮机组频繁的启停,目前汽轮机旁路系统主要分为了3个系统,即高压、中压和低压旁路系统,而容量是达到了联合循环机组余热锅炉的最大蒸汽产量。M701F蒸汽机组高压旁路系统由高压旁路阀减压后的高压主蒸汽管道连接至再热冷段管道;中压旁路系统由再热冷段连接至减压后的冷凝器。低压旁路系统由低压旁路阀减压后由低压主蒸汽管路与冷凝器连接。旁通阀的工作由液压控制,高压给水泵中水龙头采用高压侧减温水,从冷凝水泵出口冷凝水系统获得中低压旁路减温水。燃气-蒸汽循环机组旁路控制系统具有很多优点,主要结果如下:1)在机组的整个启动过程中,不合格的蒸汽可以排放到凝汽器,使汽轮机的正常工作温度与余热锅炉的蒸汽温度一致,从而缩短了机组的启动时间,进一步控制工质的流体损失。2)采用旁路控制系统,可有效降低或减小机组启动过程中管路和转子的热应力,从而进一步控制设备损失,进一步降低工程造价。(3)在燃气轮机正常运行条件下,可以实现机组的自动调节功能,主蒸汽压力和主蒸汽压力可有效控制温度,提高机组运行效率。同时在不正常的工作条件下能够有效的保护自己,确保机组运行的安全性。 2、汽轮机旁路系统中的问题 2.1 旁路阀的布置位置不合理 如果没有合理的设置旁通阀的位置,可能会导致两个问题:1、阀与管道不能有效结合。高压旁通阀与冷顶之间的距离过长,导致它们难以有效结合。2、如果旁通阀与管道之间的距离较大,则旁通管在启动时很难使管充分加热,从而抑制了机组的启动速度。 2.2 旁路系统热备用中存在问题 在机组发生事故时,旁路系统的热备随时可以打开,并可以通过流量,提高了机组处理事故的能力,能够更好的确保整体的运行能力。但是需要注意的是如果是使用设备管理,会造成很大的问题,影响到整体的蒸汽,从而使得整体的负荷产生影响,影响到设备的运行。 2.3旁路系统泄漏 所谓“旁路系统泄漏”,即旁路系统内部泄漏,目前其也是非常常见的一种故障。如果阀体内有泄漏,会使得具有高品质的蒸汽不能进行正常工作,同时通过使用旁通阀的内泄漏点进入再热冷却段或冷凝器,从而会直接影响到整体机组的运行,影响整体的经济性和效率。 2.4喷水减温系统中存在问题 对于高压、中压、低压来说,旁路喷水减温系统的设计非常重要。高压旁路系统从高压泵中抽头减温水;中压和低压旁路水从冷凝水泵出口管道。在喷水灭火系统中,很容易出现管道设计流量和减温水调节门喷水不足的问题。如果冷却水不足,将导致旁通管路温度过高,导致管路破裂。 3、汽轮机旁路系统的布置设计 3.1增加启动及运行过程中自动控制功能 只要高、低压旁路线路的热备状态良好,机组才能够运行正常,机组在运行的过程中会使得低压旁路处于自动的状态,而如果主要蒸汽或者再热蒸汽发生一定的升高,就能使得低压旁路直接进入到运行状态,更好的确保整体安全运行。较为成熟的自动旁路控制逻辑是:在锅炉点火之前,高压旁路调节阀可以预设较低的开度,当主蒸汽压力低于Pmin时,主蒸汽压力被设置为Pmin。高侧调节阀的开启保持不变(最小开启模式)。当主蒸汽压力高于Pmin时,高侧调节阀的开启度增加,主蒸汽压力保持不变,这是最小压力控制方式。一旦预置阀达到预置的开口,阀位置将保持在预置位置或在预置位置之上,并且主蒸汽压力将被控制(压力上升模式)。当主蒸汽压力达到冲洗压力时,高压旁路保持主蒸汽压力不变,直到高压侧关闭。当高侧关闭时,旁路在滑动压力下运行。根据启动曲线,控制高压旁路。当主蒸汽压力达到额定压力时,获得高压旁路。变为恒压运行,控制压力为额定主蒸汽压力 P0+ΔP。低压旁路也可用于机组的启动类似控制。 3.2优化机组甩负荷有关旁路系统逻辑 机组甩负荷后,对低压旁路注水调节阀和蒸汽调节阀进行保护和实施。根据机组甩负荷后高压旁路开度和主蒸汽压力的变化,高压旁路可快速开启到50%左右,喷水阀可快速开启到100%左右,然后根据高温后温度的变化实现自动控制。为了防止阀门的异常运行,高低压旁通蒸汽调节阀应该在阀门后面增加高温保护。 3.3系统处理 (1)采取保护措施,确保系统线路清洁。(2)在具有节流孔的阀门中,在保持架底部开孔的方法可用于在密封表面的周边产生更多的空隙,并减少管道中的杂质,由固体颗粒、氧化物层等破坏密封表面。(3)蒸汽过滤器安装在旁路进气管道的适当位置。三通管件用蒸汽过滤器,进出口管焊接,配有过滤器可拆卸,可定期清洗。采用蒸汽过滤器可有效防止杂质和颗粒对密封面的损伤。(4)在一些发电机组的旁路设计中,为了改善旁通阀的工作环境,在旁通阀的前面安装隔离阀。(5)对高低压侧系统的控制参数进行了优化。(6)旁路阀修复。对缺陷进行了分析,并对阀内件密封面的表面质量、尺寸、硬度和表面粗糙度进行了校核。同时根据相关缺陷的特点进行修改或者

相关文档
最新文档