拉格朗日中值定理教育教学设计

拉格朗日中值定理教学设计

作者: 日期:

教学段计

第六章微分中值定理及其应用

§1拉格朗日定理和函数的单调性

题目:罗尔定理与拉格朗日定理

一、教学目的:

1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推论。

2?能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗F1定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格朗H定理,培养

学生分析、抽象、概括和迁移的学习能力。

3. 情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养敎形结合的思想,以及

严密的思维方法,从而亲近数学,爱上数学。

二、教学重点与难点:

1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢周,大厦才能建的高。

2.难点:罗尔定理和拉格朗F)定理的应用与推广,以及这两个定理之间的区别与联

系。

三、教学方法:教师启发讲授和学生探究学习的教学方法

四、教学手段:板书与课件相结合

五、教学基本流程:

知识回顾引出定理,探究案例——> 类比学习,理解定理

____ ?升华、理解新知______ ?课堂小结作业

六、教学情境设计(1学对):

1v知识回顾

费马定理:设函数/(X)在心的某领域内有定义,且在兀可导。若兀为/ 的极值点,则必有/(x0y = Oo它的几何意义在于:若函数/(M在J=x o可导,那么在该点的切线平行于X轴。

2、引出定理,探究案例

微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。

定理6.1 (罗尔(心川小中值定理) 若函数f满足如下条件:

(i)/在闭区间[“上]上连续;

(ii)/在开区间仏方)内可导;

(ii !)/(?)=/(/.),

则在(a,Z?)内至少存在一点使得

厂(沪0 ?(1)

罗尔定理的几何意狡是说:在每一点都可字的一段连续曲线上,如呆曲线的两端点高度相等,则至少存在一条水平切线(图6—1).

证因为/在[“上]上连续,所以有最大值与最小值,分别用M与加表示,现分两种情况来讨论:

⑴若m = M ,则,/在[“,闰上必为常数,从而结论显然成立.

(2)若m < M ,则因/(")=/(”),使得最大值M与最小值川至少有一个在("")内

某点纟处取得,从而§是/的极值点.由条件(ii), /在点§处可导,故由费马定理推知

/W=o-

注定理中的三个条件缺少任何一个,结论将不一定成立(图6—2)o

ffl 6 — 2

设/为R上可导函数,证明:若方程广(0 = 0没有实根,则方程

/W=o至多有一个实根.

证这可反证如下:倘若f(x)= 0有两个实根旺和勺(设Al < X2),则函数/在[坷,七]上满足罗尔定理三个条件,从而存在

3、类比学习,理解定理

定理6. 2 (拉格朗日(Sgwge)中值定理)若函数满足如下条件:

(彷在闭区间[("]上连续;

(〃”在开区间仏b)内可导,

则在(sb)内至少存在一点纟,使得

显然,特别当f(a)= f(b)时,本定理的结论(2)即为罗尔定理的结论(1).这表明罗尔定理是拉格朗日定理的一个特殊情形.

证作辅助函数

F(x) = f(x)~/ ⑷一少匕儿"(X -a).

显然,F(a)= /0X= 0),且F在[d,b]上满足罗尔定理的另两个条件.故存在§ e @,b),使

化)=广(纟)一/气)7⑺)=o

b-a

移项后即得到所要证明的(2)式。

拉格郎日中值定理的几何意义是:在满足定理条件的曲线y = /(x)上至少存在一点该曲线在该点出的切线平行于曲线两端点的连线AB,(如图6—3所示)o

定理的结论称为拉格朗日公式。

4、升华、理解新知

?注解

Note 1.定理的几何意义:在y = f(x)±至少存在一点,该曲线在该点出的切线平行于曲线两端点的连线AB。

Note 2.定理只论证了§的存在性,不知道纟的准确数值,但并不妨碍它的应用.

Note 3.拉格朗日公式还有下而几种等价表示形式:

/0)= -a\a<^

f ⑹ _ f (a) = f\a + 0{b - a))(b -a),o<0 < 1; (4)

f(a + /?) - f(a) = f\a + 6T?)/?,0 < & v 1; (5)

值得注意的是,拉格朗日公式无论对于ab都成立,而纟则是介于a与b之间的某一定数,而(4)、(5)两式的特点,在于把中值点§表示成了“ + &(b-“),使得不论为何值,&总可为小于1的某一正数。

?例题讲解

例2证明对一切〃 >-1 ,力h0成立不等式

----- < ln(l + /?) < h o

1 + /1

证设f(x) = ln(l + x),则

ln(l + /?) = ln(l + /?) - In 1 = —-— .0 < ^ < 1.

1 +品

当力>0时,由0<6><1可推知

1<1+/7<1+/L—<—^—

1+力1+创

当一1

1 > 1 + 0? > 1 + 力 > 0, —^― < —-— < h?

l + /i 1 +处从而得到所要证明的结论。?推论

推论1若函数/在区间/上可导,且广(x)H0,xeZ,则/为/上一个常量

函数.

证任取两点X,, x2 e I (设Xj < x2),在区间[Xj,x2] X应用拉格朗日定理,存在

^e(x p x2)c /,使得

f(x2) - /(%))=化)匕2 -^) = 0.

这就证得/在区间/上任何两点之值相等.

由推论1又可进一步得到如下结论:

推论2 若函数/和g均在区间/上可导,且广(X)三g,(x),, xw/,则在区间

/上/(X)与g(x)只相差某一常数,即

f(x) = g(x) + C(C 为某一常数).

推论3 (导数极限定理)设函数/在点筍的某邻域UC")内连续,在

U°(x0)内可导,且极限lim /\A)存在,则/在点%可导,且

广(勺)=lim f\x ). XT”

■i 正 分别按左右导数来证明(6)式成立.

(1)任取xeU ;(x 0) , /心)在[心‘]上满足拉格朗日定理条件,则存在

^e (x 0,x ),使得

由于人V 《vx,因此当XTX ;时,随之有 对(7)式两边取极限,得到

(2)同理可得 /工5)=广(兀。_0)?

因为Um f\x ) = k 存在,所以广(心+0)=广(兀0-0)=匕 从而 f :g = f :M = k,即f (X 。) = k.

导数极限定理适合于用来求分段函数的导数

?例题讲解

例3求分段函数

的导数。

解首先易得

1 + 2xcosx

2 x < 0,

进一步考虑/在x = 0处的导数?在此之前,我们只能依赖导数定义来处理,现在则可 以利用导数极限定理?由于

lim / (x) = lim ln(l + x) = 0 = /(0), lim /⑴7凤)

?f “ X _ 心

= iim^r?)=r (x o +o ) XfY 。

fM = <

x + sinx 2,x< 0,

/V )=

1 .TT7 > 0.

lim f(xO = lim (x + sin x2 ) = 0= f (0),

因此/在%= 0处连续,又因

厂(0-0) = lim (1 + 2xcosx2 ) = 1, X-MJ"

广(0 + 0)= lim 丄=1,

?K)T + x

所以lim广0) = 1.依据导数极限定理推知/在x = 0处可导,且770) = 1. .V-M)

5、课堂小结与作业

K罗尔中值定理的条件及几何意艾。

2、拉格朗日中值定理的条件及几何意义。

3、加深定理理解的几个注解。

4、三个推论。

5、预习函数的单调性。

作业:习题2, 4

《圆周角定理的证明》优秀教学设计(教案)

《圆周角定理的证明》教学设计 一、创设情境,引入新课 师生活动:教师演示课件或图片:展示一个圆柱形的海洋馆.并出示海洋馆的横截面示意图,提出问题.学生通过观察分析和理解问题. 设计意图:从生活中的实际问题入手,使学生认识到数学总是与现实问题密不可分.引导学生对图形的观察和发现,激发学生的好奇心和求知欲. 二、任务驱动,探究规律 学生动手画圆,在圆上任取一条劣弧,作这条劣弧所对的圆心角和圆周角,然后用量角器测量这些角。回答下列问题: (1)同弧(弧AB)所对的圆心角∠AOB与圆周角∠ACB的大小关系是怎样的? (2)同弧(弧AB)所对的圆周角∠ACB与圆周角∠ADB的大小关系是怎样的? 师生活动: 学生利用度量工具(量角器或几何画板)动手实验,进行度量,发现结论.教师再利用几何画板从动态的角度进行演示,验证学生的发现. 设计意图:让学生亲自动手,利用度量工具(如量角器、几何画板)进行实验、观察、猜想、分析、验证,得出结论: 同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半. 三、动手操作,验证猜想 拿出课前准备的圆形纸片,在⊙O上任取一个圆周角∠BAC,将圆对折,使折痕经过圆心O 和∠BAC的顶点A.回答问题: (1)在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? (2)当圆心在圆周角的一边上时,如何证明活动2中所发现的结论? (3)另外两种情况如何证明,可否转化成第一种情况呢? 师生活动:教师演示圆心与圆周角的三种位置关系.学生写出已知、求证,完成证明. 具体做法:1.学生分组讨论三类图形的已知、求证。2.要求其中的四个小组证明第二类图形,另外的四个小组证明第三类图形。3.师生归纳总结出圆周角定理,并且几何符号表示圆周角定理。 设计意图:让学生对所发现的结论进行证明.培养学生严谨的治学态度.问题(1)的设计是让学生通过动手探索,学会运用分类讨论的数学思想研究问题.问题(2)、(3)的提出是让学生学会运用化归思想将问题转化,并启发培养学生创造性的解决问题. 四、巩固练习,学以致用

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3)()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0'=ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理

若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --= ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中值定理. 换句话说,罗尔中值定理是拉格朗日中值定理的一个特殊情形.正因为如此,我们只须对函数()x f 作适当变形,便可借助罗尔中值定理导出拉格朗日中值定理. 3 证明拉格朗日中值定理 3.1 教材证法 证明 作辅助函数 ()()()()f b f a F x f x x b a -=-- 显然,函数()x F 满足在闭区间[]b a ,上连续,在开区间()b a ,内可导,而且 ()()F a F b =.于是由罗尔中值定理知道,至少存在一点ζ()b a <<ζ,使 ()()()()0''=--- =a b a f b f f F ζζ.即()()()a b a f b f f --=ζ'. 3.2 用作差法引入辅助函数法 证明 作辅助函数 ()()()()()()?? ???? ---+-=a x a b a f b f a f x f x ? 显然,函数()x ?在闭区间[]b a ,上连续,在开区间()b a ,内可导,()()0==b a ??,因此,由罗尔中值定理得,至少存在一点()b a ,∈ζ,使得 ()()()()0''=---=a b a f b f f ζζ?,即 ()()()a b a f b f f --=ζ' 推广1 如图3过原点O 作OT ∥AB ,由()x f 与直线OT 对应的函数之差构成辅助函数()x ?,因为直线OT 的斜率与直线AB 的斜率相同,即有:

《圆周角与圆心角的关系》教学设计详案

《圆周角与圆心角的关系》教学设计 秭归县郭家坝中学颜昭英 教学目标: (一)教学知识点 (1)理解圆周角的概念,掌握圆周角的两个特征; (2)理解圆周角与圆心角的关系,并能熟练地运用它们进行论证和计算,,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想。 (二)能力训练要求 通过圆周角概念的形成,渗透数学建模的思想,使学生经历数学建模的过程,形成建模的方法; 引导学生主动地通过:观察、实验、猜想、验证“圆周角与圆心角的关系”,培养学生的合情推理能力、实践能力与创新精神,从而提高数学素养; 通过圆周角定理的证明,有机渗透的“由特殊到一般”思想、“分类”思想、“化归”思想、使学生了解分类、转化、归纳等数学思想方法。 (三)情感态度与价值观 运用实例分析,使学生认识到数学与实际生活有着紧密的联系,学会用数学的眼光看待生活中的实际问题。 在证明圆周角定理的过程中,通过小组讨论、展示各自所画图形这一环节,在合作探究中培养学生的协作意识,体现交流的价值; 通过“观察——测量——证明”这三个环节的活动,让学生意识到,观察测量发现的规律只是建立在统计的基础上,而定理的形成须严谨的数理论证。 教学重点: 圆周角的概念和圆周角定理 经历探索“圆周角与圆心角的关系”的过程,了解“圆周角与圆心角的关系” 教学难点: 了解圆周角的分类、用化归思想合情推理验证“圆周角与圆心角的关系” 圆周角定理的证明中由“一般到特殊”的数学思想方法和完全归纳法的数学思想。

教学方法: 以学生的活动为主线,以突出重点、突破难点、发展学生数学素养为目的,采用以“探究式教学法”为主,讲授法、发现法、分组交流合作法、启发式教学法、多媒体辅助教学等多种方法相结合。 学法 在动手实践、自主探索、合作交流活动中发现新知和发展能力,使观察、实验、猜想、验证、归纳、推理贯穿整个学习过程。 教具 圆规、直尺、投影仪、课件 教学过程: 一、视频分析,导入新课 师:大家对足球比赛一定不陌生,现在我们就一起来看一段足球射门的片段。 播放“小角度射门”的视频片段,引导学生注意解说员强调的“小角度射门”。 师:这是一个精彩的进球,以至于解说员最后特别强调“小角度射门得手”,大家知道他为什么要强调“小角度”吗? 学生讨论,给出解释: 射门的角度越小,进球的难度就越大。 师:可见,数学知识能够解释生活中的很多现象,也能解决生活中的很多问题。比如说,人眼看物体有个特点,“远小近大”,通过物理知识的学习,大家也一定知道,这是因为同一个物体离人眼越远,它对人眼所成的视角越小,离人眼越近,对人眼所成的视角越大。 现在我们尝试利用角的知识来分析一下,歌剧院中座椅摆放的问题。 二、图片展示,引入圆周角的概念 (一)、展示歌剧院的图片 师:首先让我们欣赏几张著名歌剧院的室内图片,请同学们注意观察一下,

拉格朗日中值定理的证明

拉格朗日中值定理是微分学中最重要的定罗尔定理来证明。理之一,它是沟通函数与其导数之间的桥梁,也是微分学的理论基础。一般高等数学教材上,大都是用罗尔定理证明拉朗日中值定理,直接给出一个辅助函数,把拉格朗日定理的证明归结为用罗尔定理,证明的关键是给出—个辅助函数。 怎样构作这一辅助函数呢?给出两种构造辅助函数的去。 罗尔定理:函数满足在[a,b止连续,在(a,b)内可导,且f(a)=f(b),则在(a,b)内至少存在一点∈,使f(∈)==o (如图1)。 拉格朗日定理:若f(x)满足在『a,b』上连续,在(a,b)内可导,则在(a,b)内至少存在_ ∈,使(如图2). 比较定理条件,罗尔定理中端点函数值相等,f ,而拉格朗日定理对两端点函数值不作限制,即不一定相等。我们要作的辅助函数,除其他条件外,一定要使端点函数值相等,才能归结为: 1.首先分析要证明的等式:我们令 (1) 则只要能够证明在(a,b)内至少存在一点∈,使f(∈ t就可以了。 由有,f(b)-tb=f(a)-ta (2) 分析(2)式,可以看出它的两边分别是F(X)=f(x)-tx在b,a观点的值。从而,可设辅助函数F(x)=f(x)-tx。该函数F(x)满足在{a.b{上连续,在(a,b)内可导,且 F(a)=F(b) 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F。(∈)=O。也就是f(∈)-t=O,也即f(∈ )=t,代人(1 )得结论 2.考虑函数

我们知道其导数为 且有 F(a)=F(b)=0. 作辅助函数,该函数F(x)满足在[a,b]是连续,在(a,b)内可导,且f F 。根据罗尔定理,则在(a,b)内至少存在一点∈,使F’ 从而有结论成立.

拉格朗日中值定理教学设计

教学设计 第六章微分中值定理及其应用 §1 拉格朗日定理和函数的单调性 题目:罗尔定理与拉格朗日定理 一、教学目的: 1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推 论。 2.能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗 日定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格 朗日定理,培养学生分析、抽象、概括和迁移的学习能力。 3.情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养数形结合的 思想,以及严密的思维方法,从而亲近数学,爱上数学。 二、教学重点与难点: 1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢固,大厦才能建的 高。 2.难点:罗尔定理和拉格朗日定理的应用与推广,以及这两个定理之间的区别 与联系。 三、教学方法:教师启发讲授和学生探究学习的教学方法 四、教学手段:板书与课件相结合 五、教学基本流程:

六、教学 情境设计(1学时): 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)(0='x f 。它的几何意义在于:若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。 2、引出定理,探究案例 微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括 四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。 定理 6.1 (罗尔(Rolle )中值定理) 若函数f 满足如下条件: (i)f 在闭区间[]b a ,上连续; (ii)f 在开区间()b a ,内可导; (iii)()()b f a f =, 则在()b a ,内至少存在一点ξ,使得 ()0='ξf . ()1 罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图6—1).

拉格朗日中值定理

一拉格朗日中值定理 拉格朗日中值定理,又被称为有限增量定理,是微积分中的一个基本定理。拉格朗日中值公式的形式其实就是泰勒公式的一阶展开式的形式。在现实应用当中,拉格朗日中值定有着很重要的作用。拉格朗日中值定理是所有的微分中值定理当中使用最为普遍的定理。 拉格朗日中值定理的形成和发展过程都显示出了数学当中的一个定理的发展是一个推翻旧,出现创新的一个进程。发现一些新的简单的定理去替代旧的复杂的定理,就是由初级走向高级。 用现代的语言来描述,在一个自变量x从x变为x+1的过程中,如果函数f(x)本身就是一个极限值,那么函数f(x+1)的值也应该是一个极限值,其值就应该和f(x)的值近似相等,即 这就是非常著名的费马定律,当一个函数在x=a处可以取得极值,并且函数是可导函数,则。著名学者费马再给出上述定理时,此时的微积分研究理论正处于初始阶段,并没有很成熟的概念,没有对函数是否连续或者可导作出限制,因此在现代微积分理论成熟阶段这种说法就显得有些漏洞。 在所有的微分中值定理中,最重要的定理就是拉格朗日中值定理。最初的拉格朗日中值定理和现在成熟的拉格朗日中值定理是不一样的,最初的定理是函数f(x)在闭区间[a,b]任取两点,并且函数在此闭区间是连续的,的 最大值为A,最小值为B,则的值必须是A和B之间的一个值。这是拉格朗日定理最初的证明。 下述就是拉格朗日中值定理所要求满足的条件。 如果存在一个函数满足下面两个条件,(1)函数f 在闭区间[a,b]上连续;(2)函数f 在开区间(a,b)可导;那么这个函数在此开区间至少存在着一点,使得. 拉格朗日中值定理是导数的一个延伸概念,在导数运算中是的很基本概念。 例1:函数

拉格朗日中值定理

拉格朗日中值定理 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,可导;(3) ()()b f a f =,则在()b a ,至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0' =ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理 若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,可导;则在 ()b a ,至少存在一点ζ ,使()()()a b a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧

初中数学九年级《圆周角定理及推论》公开课教学设计

(1) (2)(3)(4) (5) A 24.1.4圆周角定理及推论 教学目标:1.了解圆周角的概念,掌握圆周角定理并学会运用. 2.掌握圆周角定理的推论,并会熟练运用这些知识进行有关的计算和证明; 教学重难点:有关圆周角定理及推论 教学内容和程序: 知识点一: 1.顶点在______,并且__________________的角叫做圆周角. 2.圆周角定理:在同圆或等圆中,_______ _相等,都等于______ ____.【活动一】判断下列各图形中的角是不是圆周角,如不是请说明理由. 例1已知:如图,AB是⊙O直径,证明圆周角定理, 即∠A= 1 2 ∠BOC. 如下图,依照例1证明∠A= 1 2 ∠BOC. 练习:1.如图,已知圆心角∠BOC=100°,求圆周角∠BAC、∠BDC的度数. 2.若弦AB把圆周分成2:3的两部分,那么弦AB所对的圆周角的度数为. 知识点二: 1.圆周角定理的推论1:半圆(或直径)所对的圆周角,是直径. (注意:这个推论是圆中的一个很重要的性质,为在圆中确定直角、成垂直关系创造了条件.) 2.如果一条边的中线等于这条边的一半,那么这个三角形是 3.推论2:在同圆或等圆中,如果两个圆周角相等,它们相等.【活动二】例2如图,⊙O的直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D, 求BC、AD和BD的长. B A

【练习】1.如图,已知AB 是⊙O 的直径,点C 为AB 的一个三等分点,则BC ∶AC ∶AB = . 2.如图,已知AB 为⊙O 的直径,AC 为弦,OD //BC 交AC 于点D DC = cm . 3.如图,AB 是⊙O 的直径,∠CAB=60°,则∠D= °. 【活动三】 例3 如图,AB ,AC 是⊙O 的两条弦,且AB =AC ,延长CA 到点D ,使AD = AC ,连结DB 并延长,交⊙O 于点E .求证:CE 是⊙O 的直径. 练习 如图,⊙C 经过原点且与两坐标轴分别交于点A 与点B ,点A 的坐标为(0,4 ), M 是圆上一点,∠BMO =120°.求⊙C 的半径和圆心C 的坐 标. 【检测反馈】 1. 如图,已知AB 是⊙O 的直径,CD 与AB 相交于点E ,∠ACD =60°,∠ADC =50°, 求∠AEC 的度数. 2.已知圆的直径是23cm ,求3cm 长的一条弦所对的圆周角. 第1题 B

拉格朗日中值定理证明中辅助函数构造及应用

分类号 编号 本科生毕业论文(设计) 题目拉格朗日中值定理证明中的辅助函数的构造及应用 作者姓名常正军 专业数学与应用数学 学号 2 9 1 0 1 0 1 0 2 研究类型数学应用方向 指导教师李明图 提交日期 2 0 1 3 - 3 - 1 5

论文原创性声明 本人郑重声明:所呈交毕业论文,是本人在指导教师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用的内容外,本论文不包含任何其他人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 论文作者签名:年月日

摘要拉格朗日中值定理是微积分学三大基本定理中的主要定理,它在微积分中占据极其重要的地位,有着广泛地应用。关于它的证明,绝大多数教科书采用作辅助函数的方法,然后利用罗尔中值定理的结论证明拉格朗日中值定理来证明。罗尔中值定理是其的特殊形式,而柯西中值定理是其的推广形式,鉴于微分中值定理的广泛地应用,笔者将从以下几个不同的角度探讨拉格朗日中值定理中辅助函数的构造,以及几个方面的应用加以举例。 关键词:拉格朗日中值定理辅助函数的构造证明及应用 Abstract Lagrange mean value theorem is the main theorem of calculus three basic theorem, It occupies an important status and role in the calculus, has wide application. Proof of it, the vast majority of textbooks by using the method of auxiliary function, and then use the conclusion of Rolle's theorem to prove the Lagrange mean value theorem. Rolle mean value theorem is a special form of it, and Cauchy's theorem is extended form of it, given the widely application of the differential mean value theorem. This paper will discuss the construction of auxiliary function of the Lagrange mean value theorem from several following different angles, and several applications for example. Keyword: Lagrange mean value theorem The construction of auxiliary function Proof and Application

拉格朗日中值定理

拉格朗日中值定理

————————————————————————————————作者: ————————————————————————————————日期: ?

拉格朗日中值定理 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔()Rolle 中值定理 如果函数()x f 满足条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;(3) ()()b f a f =,则在()b a ,内至少存在一点ζ ,使得()0'=ζf 罗尔中值定理的几何意义:如果连续光滑曲线()x f y =在点B A ,处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ,使得()0' =ζf . 这就是说定理的条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理 若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间()b a ,内可导;则在 ()b a ,内至少存在一点ζ ,使()()()a b a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧

微分中值定理教案

微分中值定理 【教学内容】 拉格朗日中值定理 【教学目的】 1、熟练掌握中值定理,特别是拉格朗日中值定理的分析意义和几何意义; 2、能应用拉格朗日中值定理证明不等式。 3、了解拉格朗日中值定理的推论1和推论2 【教学重点与难点】 1、拉格朗日中值定理,拉格朗日中值定理的应用 2、拉格朗日中值定理证明中辅助函数的引入。 3、利用导数证明不等式的技巧。 【教学过程】 一、背景及回顾 在前面,我们引进了导数的概念,详细地讨论了计算导数的方法。这样一来,类似于求已知曲线上点的切线问题已获完美解决。但如果想用导数这一工具去分析、解决复杂一些的问题,那么,只知道怎样计算导数是远远不够的,而要以此为基础,发展更多的工具。 另一方面,我们注意到:(1)函数与其导数是两个不同的函数;(2)导数只是反映函数在一点的局部特征;(3)我们往往要了解函数在其定义域上的整体性态,需要在导数及函数间建立起联系――搭起一座桥,这个“桥”就是微分中值定理。 由此我们学习了极值点的概念、费马定理、特别是罗尔定理,我们简单回忆一下罗尔定理的内容:若 函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 ③)()(b f a f = 则在()b a ,内至少存在一点c ,使得0)(' =c f 二、新课讲解 1797年,法国著名的数学家拉格朗日又给出一个微分中值定理,史称拉格朗日中值定理或微分中值定理, 但未证明.拉格朗日中值定理具有根本的重要性,在分析中是许多定理赖以证明的工具,是导数若干个应用的理论基础, 我们首先看一下拉格朗日中值定理的内容: 2.1拉格朗日定理 若函数)(x f 满足下列条件: ①在闭区间[]b a ,连续 ②在开区间()b a ,可导 则在开区间()b a ,内至少存在一点c ,使 ()()a b a f b f c f --= )(' 注:a 、深刻认识定理,是两个条件,而罗尔定理是三个条件。 b 、若加上)()(b f a f =,则()()00 )(' =-=--= a b a b a f b f c f 即:0)('=c f ,拉格朗日定理变为罗尔 定理,换句话说罗尔定理是拉格朗日定理的特例。 c 、形象认识(几何意义),易知()()a b a f b f --为过A 、B

拉格朗日中值定理教育教学设计

拉格朗日中值定理教学设计

————————————————————————————————作者:————————————————————————————————日期:

教学设计 第六章微分中值定理及其应用 §1 拉格朗日定理和函数的单调性 题目:罗尔定理与拉格朗日定理 一、教学目的: 1.知识目标:分别掌握罗尔定理和拉格朗日定理及对应的几何意义,掌握三个推 论。 2.能力目标:首先让同学们知道微分中值定理包括四大定理(罗尔定理、拉格朗 日定理、柯西定理、泰勒定理),然后通过学习罗尔定理,类比学习理解拉格 朗日定理,培养学生分析、抽象、概括和迁移的学习能力。 3.情感目标:在教学过程中,让学生发现数学知识的融会贯通,培养数形结合的 思想,以及严密的思维方法,从而亲近数学,爱上数学。 二、教学重点与难点: 1.重点:罗尔定理和拉格朗日定理,定理是基石,只有基石牢固,大厦才能建的 高。 2.难点:罗尔定理和拉格朗日定理的应用与推广,以及这两个定理之间的区别 与联系。 三、教学方法:教师启发讲授和学生探究学习的教学方法 四、教学手段:板书与课件相结合 五、教学基本流程: 知识回顾引出定理,探究案例类比学习,理解定理

六、教学 情境设计(1学时): 1、知识回顾 费马定理:设函数)(x f 在0x 的某领域内有定义,且在0x 可导。若0x 为f 的极值点,则必有0)(0='x f 。它的几何意义在于:若函数)('x f 在=x 0x 可导,那么在该点的切线平行于x 轴。 2、引出定理,探究案例 微分中值定理是微分学的重要组成部分,在导数的应用中起着桥梁作用,它包括 四大定理,分别是罗尔定理、拉格朗日定理、柯西定理和泰勒定理,先学习拉格朗日定理的预备定理——罗尔定理。 定理 6.1 (罗尔(Rolle )中值定理) 若函数f 满足如下条件: (i)f 在闭区间[]b a ,上连续; (ii)f 在开区间()b a ,内可导; (iii)()()b f a f =, 则在()b a ,内至少存在一点ξ,使得 ()0='ξf . ()1 罗尔定理的几何意义是说:在每一点都可导的一段连续曲线上,如果曲线的两端点高度相等,则至少存在一条水平切线(图6—1). 升华、理解新知 课堂小结作业

圆周角教学设计

新人教版初中数学九上圆周角教学设计 湖北省谷城县城关镇中心学校宋光艳一、内容和内容解析 本节教学内容源于人教版九年级上册“24.1.4圆周角”,属于“空间与图形”领域中“圆”的内容。 圆心角、圆周角是与圆有关的角,圆周角是在垂径定理、圆心角及弧、弦、圆心角的关系定理的基础上学习的。圆周角定理及其推论对于角的计算、证明角相等、弧、弦相等以及证明圆中三角形相似等数学问题提供了十分便捷的方法和思路。 圆周角定理的证明,采用完全归纳法,通过分类讨论,把一般问题转化为特殊情况来证明,渗透了分类讨论和一般到特殊的化归思想,使学生学会化未知为已知、化复杂为简单、化一般为特殊或化特殊为一般的思考方法,提高学生分析问题和解决问题的能力,进一步发展学生的逻辑思维能力和演绎推理能力。 教学过程中,应注意积极创设问题情境,突出图形性质的探索过程,垂视直观操作和逻辑推理的有机结合,通过多种手段,如观察度量、实验操作、图形变换、逻辑推理等来发现和探索圆心角与圆周角、圆周角之间的数量关系,同时还要求学生能对发现的性质进行证明,使直观操作和逻辑推理有机的整合在一起,使推理论证成为学生观察、实验、探究得出结论的自然延续。 基于上述分析,确定本节教学重点是: 直观操作与推理论证相结合,探索并论证圆周角定理及其推论,发展推理能力,渗透分类讨论和化归等数学思想和方法。 二、目标和目标解析 1.理解圆周角的定义。通过与圆心角的类比,明确圆周角的两个特征:①顶点在圆上; ②两边都与圆相交,会在具体情景中辨别圆周角。 2.掌握圆周角定理及其推论。经历操作、观察、猜想、分析、交流、论证等数学活动,体验圆周角定理的探索过程,发展学生的逻辑思维能力和推理论证以及用几何言语表达的能力;提高运用数学解决实际问题的意识和能力,同时对学生进行辩证唯物主义的教育。 3.通过对圆周角定理的论证,渗透分类讨论、化归等数学思想和方法。 4.引导学生对图形进行观察、研究、添加辅助线,激发学生的好奇心和求知欲,并在运用数学知识解答问题的活动中获取成功的体验,培养学习的自信心。 三、问题诊断分析 教师教学可能存在的问题:(1)创设问题情景,以具体的实际问题为载体,引导学生对概念和性质的学习是新课程倡导的教学方法,在本课中要求列举一些典型的、贴近学生生活实际的例子是不容易做到的;(2)不能设计有效的数学问题,使学生通过有思维含量的数学问题,展开有效的数学教学活动,引导学生积极地探索圆周角的性质,发展学生的教学思维;(3)过分强调知识的获得,忽略了数学思想和方法的渗透;(4)对学生学习过程中所体现出来的态度和情感关注不够,以至于不能很好地激发好奇心和求知欲,体验成功的乐趣,培养自信心。 学生学习中可能出现的问题:(1)对圆柱形海洋馆的构造缺乏了解,致使不能很好地理解视角、圆周角等概念;(2)对完全归纳法、分类讨论等数学思想和方法理解有困难;(3)一般到特殊的转化、辅助线的添加、论证过程的书写等都将是学生学习过程中的弱点。

第三章 微分中值定理与导数应用教案教学设计

第三章 微分中值定理与导数应用 第一节 微分中值定理 教学目的:理解并会用罗尔定理、拉格朗日中值定理,了解柯西中值定理和泰勒 中值定理。 教学重点:罗尔定理、拉格朗日中值定理。 教学难点:罗尔定理、拉格朗日中值定理的应用。 教学内容: 一、罗尔定理 1. 罗尔定理 几何意义:对于在],[b a 上每一点都有不垂直于x 轴的切线,且两端点的连线与x 轴平行的不间断的曲线 )(x f 来说,至少存在一点C ,使得其切线平行于x 轴。 从图中可以看出:符合条件的点出现在最大值和最小值点,由此得到启发证明罗尔定理。为应用方便,先介绍费马(Fermat )引理 费马引理 设函数 )(x f 在点0x 的某邻域)(0x U 内有定义, 并且在0x 处可导, 如果对任 意)(0x U x ∈, 有)()(0x f x f ≤ (或)()(0x f x f ≥), 那么0)(0'=x f . 证明:不妨设)(0x U x ∈时,)()(0x f x f ≤(若)()(0x f x f ≥,可以类似地证明). 于是对于)(00x U x x ∈?+,有)()(00x f x x f ≤?+, 从而当0>?x 时, 0 ) ()(00≤?-?+x x f x x f ; 而当0

根据函数 )(x f 在0x 处可导及极限的保号性的得 ==+)()(0'0'x f x f 0)()(lim 000≤?-?++ →?x x f x x f x ==-)()(0'0'x f x f 0)()(lim 000≥?-?+- →?x x f x x f x 所以0)(0'=x f , 证毕. 定义 导数等于零的点称为函数的驻点(或稳定点,临界点). 罗尔定理 如果函数)(x f 满足:(1)在闭区间],[b a 上连续, (2)在开区间),(b a 内可导, (3)在区间端点处的函数值相等,即)()(b f a f =, 那么在),(b a 内至少在一点)(b a <<ξξ , 使得函数)(x f 在该点的导数等于零,即 0)('=ξf . 证明:由于)(x f 在],[b a 上连续,因此必有最大值M 和最小值m ,于是有两种可能的情形: (1)m M =,此时)(x f 在],[b a 上必然取相同的数值M ,即.)(M x f = 由此得.0)(='x f 因此,任取),(b a ∈ξ,有.0)(='ξf (2)m M >,由于)()(b f a f =,所以M 和m 至少与一个不等于)(x f 在区间],[b a 端点处 的函数值.不妨设)(a f M ≠(若)(a f m ≠,可类似证明),则必定在),(b a 有一点ξ使M f =)(ξ. 因此任取],[b a x ∈有)()(ξf x f ≤, 从而由费马引理有0)(='ξf . 证毕 例1 验证罗尔定理对32)(2--=x x x f 在区间]3,1[-上的正确性 解 显然 32)(2--=x x x f )1)(3(+-=x x 在]3,1[-上连续,在)3,1(-上可导,且 0)3()1(==-f f , 又)1(2)(-='x x f , 取))3,1(1(,1-∈=ξ,有0)(='ξf . 说明:1 若罗尔定理的三个条件中有一个不满足, 其结论可能不成立; 2 使得定理成立的ξ可能多于一个,也可能只有一个. 例如 ]2,2[,-∈=x x y 在]2,2[-上除)0(f '不存在外,满足罗尔定理的一切条件, 但在区间]2,2[-内找不到一点能使0)(='x f . 例如 ?? ?=∈-=0 ,0]1,0(,1x x x y 除了0=x 点不连续外,在]1,0[上满足罗尔定理的一切条

最新数学湘教版初中九年级下册2.2.2第1课时圆周角定理与推论1公开课教学设计

2.22 圆周角 第1课时圆周角定理与推论1 1.理解圆周角的概念,学会识别圆周角; 2.在实际操作中探索圆的性质,了解圆周角与圆心角的关系,并能应用其进行简单的计算与证明;(重点) 3.在探索过程中,体会观察、猜想的思维方法,在定理的证明过程中,体会化归和分类讨论的数学思想和归纳的方法. 一、情境导入 你喜欢看足球比赛吗?你踢过足球吗?第十九届世界杯决赛于2014年在巴西举行,共有自世界各地的32支球队参加赛事,共进行64场比赛决定冠军队伍. 比赛中如图所示,甲队员在圆心O处,乙队员在圆上处,丙队员带球突破防守到圆上处,依然把球传给了甲,你知道为什么吗?你能用数学知识解释一下吗? 二、合作探究 探究点一:圆周角的概念 下列图形中的角是圆周角的是( ) 解析:观察可以发现只有选项B中的角的顶点在圆周上,且两边都和圆相交.所以它是圆周角.故选B 变式训练:见《学练优》本课时练习“课堂达标训练”第1题 探究点二:圆周角定理与推论1 【类型一】利用圆周角定理求角 如图,AB是⊙O的直径,,D为圆上两点,∠AO=130°,则∠D等于( ) A.25° B.30°

.35° D .50° 解析:本题考查同弧所对圆周角与圆心角的关系.∵∠AO =130°,∠AOB =180°,∴∠BO =50°,∴∠D =25°故选A 变式训练:见《学练优》本课时练习“课堂达标训练”第2题 【类型二】 利用圆周角定理的推论1求角 (2015·莆田中考)如图,在⊙O 中,(AB ︵)=(A ︵ ),∠AOB =50°,则∠AD 的度数是( ) A .50° B .40° .30° D .25° 解析:∵连接O ,在⊙O 中,(AB ︵ )=(A ︵ ),∴∠AO =∠AOB ∵∠AOB =50°,∴∠AO =50°,∴∠AD =错误!∠AO =25°故选D 方法总结:本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 变式训练:见《学练优》本课时练习“课堂达标训练”第6题 三、板书设计 教学过程中,强调圆周角定理得出的理论依据,使学生熟练掌握并会学以致用

拉格朗日中值定理讲课稿

尊敬的评委老师: 大家下午好! 我们知道,导数是研究函数以及曲线的某些形态的重要工具,而微分中值定理则是导数应用的理论基础,因此对微分中值定理的理解和掌握是非常必要的。 下面请同学们回忆一下我们上一节课所学的罗尔定理的基本内容和数学意义,罗尔定理有三个条件分别是在闭区间上连续、在开区间内可导和区间端点的函数值相等,结论是至少存在一点属于开区间,使得函数在这个点的导数值等于零,它的代数意义是方程函数的导数等于零在开区间内至少有一个实根;几何意义是,在曲线段AB上有平行于弦AB的切线存在,那么请大家思考这样一个问题:如果罗尔定理中第三个条件(也就是函数在区间端点的函数值不相等)不成立的话,在曲线段AB上还会有平行于弦AB的切线存在吗?带着这个问题,让我们走进今天的新课:拉格朗日中值定理及其应用。 首先我们来认识一下数学家拉格朗日,拉格朗日是一位法国数学家,他在方程论、解析函数论以及数论等方面做出了重要贡献,是对分析数学产生全面影响的数学家之一。拉格朗日中值定理就是他的诸多成果中的一个。 下面我们来看一下拉格朗日中值定理的条件和结论,定理的条件是函数满足在闭区间上连续、在开区间内可导,结论是在开区间内至少存在一点,使得函数在该点的导数值等于……,该式也称为拉格朗日中值公式或微分中值公式。 我们来分析一下拉格朗日中值定理的数学意义,首先来看几何意义,通过图示可以看到弦AB的斜率为……,设曲线上两个点……处的切线分别为……,对应的横坐标为……,那么对应切线的斜率分别为……,如果满足……,可以直观的看到两条切线是和弦AB平行的,也就是说拉格朗日中值定理的几何意义是在曲线弧AB上有平行于弦AB的切线存在,这就回答了我们最初提出的问题,很容易知道,罗尔定理就是拉格朗日中值定理在区间的两个端点的函数值相等时的特殊情形。 这个定理的代数意义是方程在开区间内至少有一个实根。 下面我们来证明一下这个定理,首先来看一下该定理的证明思路,我们可以从它的代数意义出发,假设存在一个函数……,那么要证明的结论就化为证明方程……在开区间内至少有一个实根,而这恰恰与罗尔定理的结论不谋而合,因此

圆周角定理教案

圆周角定理教案 一、复习: 1.什么叫圆心角? 2.圆心角、弦、弧之间有什么内在联系呢? (1)我们把顶点在圆心的角叫圆心角. (2)在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,?那么它们所对的其余各组量都分别相等. 二、探索新知,合作探究 (活动一)创设情景,提出问题 教师演示课件或图片:展示一个圆柱形 的海洋馆.教师解释:在这个海洋馆里,人 们可以通过其中的圆弧形玻璃窗观看窗内 的海洋动物.教师出示海洋馆的横截面示意 图,提出问题. 活动任务:圆周角定义 教师引导语预设: (1)角的顶点在什么地方 (2)角的两边和圆什么关系? (活动二)探索同弧所对的圆周角与圆心角的关系、同弧所对的圆周角之间的关系 (1):如图:同学甲站在圆心的位置,同学乙站在正对着玻璃窗的靠墙的位 置,他们的视角(和)有什么关系? 同弧上的圆周角是圆心角的一半. 教师抛出问题:可以给同弧所对的圆周角分类吗? 问题1:在圆上任取一个圆周角,观察圆心与圆周角的位置关系有几种情况? 问题2:当圆心在圆周角的一边上时,如何证明探究中 所发现的结论? 问题3:(2)如图,圆周角∠ABC的两边AB AC在圆心0的两侧,那么∠BAC= 1/2∠BOC吗?

(3)如上图,圆周角∠ABC的两边AB、AC在圆心O的同侧,那么∠BAC= ∠BOC 吗? 从(1)、(2)、(3),我们可以总结归纳出圆周角定理: 在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.(板书) 三、课堂巩固 如图,点A、B、C、D在同一个圆上,四边形的对角线把4个内角分成8个角,这些角中哪些是相等的角? 补充练习:(要求独立完成) (1)如图,已知圆心角∠AOB=100°,求圆周角∠ACB、∠ADB的度数? 学生预设:1:学生能发现∠ACB、∠ADB与∠AOB的关系 教师引导语预设:如果不画图,结果又怎样? (2)一条弦分圆为1:4两部分,求这弦所对的圆周角的度数? 四、课堂小结 问题:本节课你学到了什么知识?从中得到了什么启发? (1)从知识、探索过程及方法上总结。 (2)从练习上总结解题方法。

谈谈拉格朗日中值定理的证明(考研中的证明题)

谈谈拉格朗日中值定理的证明 引言 众所周至拉格朗日中值定理是几个中值定理中最重要的一个,是微分学 应用的桥梁,在高等数学的一些理论推导中起着很重要的作用. 研究拉格朗日中值定理的证明方法,力求正确地理解和掌握它,是十分必要的. 拉格朗日中值定理证明的关键在于引入适当的辅助函数. 实际上,能用来证明拉格朗日中值定理的辅助函数有无数个,因此如果以引入辅助函数的个数来计算,证明拉格朗日中值定理的方法可以说有无数个. 但事实上若从思想方法上分,我们仅发现五种引入辅助函数的方法. 首先对罗尔中值定理拉格朗日中值定理及其几何意义作一概述. 1罗尔() Rolle中值定理 如果函数()x f满足条件:()1在闭区间[]b a,上连续;()2在开区间()b a,内可导;(3)()()b f a f=,则在()b a,内至少存在一点ζ ,使得()0 '= ζ f 罗尔中值定理的几何意义:如果连续光滑曲线()x f y=在点B A,

处的纵坐标相等,那么,在弧 ? AB 上至少有一点()(),C f ζζ ,曲线在C 点的切线平行于x 轴,如图1, 注意 定理中三个条件缺少其中任何一个,定理的结论将不一定成立;但不能认为定理条件不全具备,就一定不存在属于()b a ,的ζ, 使得()0'=ζf . 这就是说定理的 条件是充分的,但非必要的. 2拉格朗日()lagrange 中值定理 若函数()x f 满足如下条件:()1在闭区间[]b a ,上连续;()2在开区间 ()b a ,内可导;则在()b a ,内至少存在一点ζ,使()()()a b a f b f f --=ζ' 拉格朗日中值定理的几何意义:函数()x f y =在区间[]b a ,上的图形是连续光滑曲线弧 ? AB 上至少有一点C ,曲线在C 点的切线平行于弦 AB . 如图2, 从拉格朗日中值定理的条件与结论可见,若()x f 在闭区间[]b a ,两端点的函数值相等,即()()b f a f =,则拉格朗日中值定理就是罗尔中

相关文档
最新文档