大体积混凝土防裂措施

大体积混凝土防裂措施
大体积混凝土防裂措施

1.1大体积混凝土裂缝的可能原因

1.1.1裂缝的类型和形成原因大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素如下:

1.1.1.1收缩裂缝:

混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,混凝土中的用水量和水泥用量越高,混凝土的收缩就越大。选用水泥品种的不同,干缩、收缩的量也不同。收缩量较小的水泥为中低热水泥和粉煤灰水泥。

混凝土的逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力,如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。

人们对收缩给予了很大的关注,但引人关注的并不是收缩本身,而是由于它会引起开裂。混凝土的收缩现象有好几种,比较熟悉的是干燥收缩和温度收缩,这里着重介绍的是自身收缩,还顺便提及塑性收缩问题。自身收缩与干缩一样,是由于水的迁移而引起。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓的自干燥作用,混凝土体的相对湿度降低,体积减小。水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减小,而自身收缩增大。如当水灰比大于0.5时,其自干燥作用和自身收缩与干缩相比小得可以忽略不计;但是当水灰比小于0.35时,体内相对湿度会很快降低到80%以下,自身收缩与干缩则接近各占一半。

自身收缩中发生于混凝土拌合后的初龄期,因为在这以后,由于体内的自干燥作用,相对湿度降低,水化就基本上终止了。换句话说,在模板拆除之前,混凝土的自身收缩大部分已经产生,甚至已经完成,而不像干燥收缩,除了未覆盖且暴露面很大的地面以外,许多构件的干缩都发生在拆模以后,因此只要覆盖了表面,就认为混凝土不发生干缩。

在大体积混凝土里,即使水灰比并不低,自身收缩量值也不大,但是它与温度收缩叠加到一起,就要使应力增大,所以在水工大坝施工时早就将自身收缩作为一项性能指标进行测定和考虑。现今许多断面尺寸虽不很大,且水灰比也不算小的混凝土,如上所述,已“达到必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂影响”,因而也需要像大坝一样,需要考虑将温度收缩和自身收缩叠加的影响,况且在这些结构里,两者的发展速率均要比大坝混凝土中快得多,因此也激烈得多。

还有塑性收缩,在水泥活性大、混凝土温度较高,或者水灰比较低的条件下也会加剧引起开裂。因为这时混凝土的泌水明显减少,表面蒸发的水分不能及时得到补充,这时混凝土尚处于塑性状态,稍微受到一点拉力,混凝土的表面就会出现分布不规则的裂缝。出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。所以在上述情况下混凝土浇注后需要及早覆盖。

1.1.1.2温差裂缝 混凝土内部和外部的温差过大会产生裂缝。温差裂缝的主要影响因素是水泥水化热引起的混凝土内部和混凝土表面的温差过大。特别是大体积混凝土更易发生此类裂缝。

大体积混凝土结构一般要求一次性整体浇筑,浇筑后,水泥因水化引起水化热,由于混凝土体积大,聚集在内部的水泥水化热不容易散发,混凝土内部温度将显著升高,而混凝土表面土则散热较快,形成了较大的温度差,使混凝土内部产生压应力,表面产生拉应力,此时,混凝龄期短,抗拉强度很低。当温差产生的表面抗拉应力超过混凝土极限抗拉强度,则会在混凝土的表面产生裂缝。

大体积混凝土施工,由于混凝土内部与表面散热速率不一样,在其表面形成较大的温度梯度,从而引起较大的表面拉应力。同时,此时混凝土的龄期很短,抗拉强度很低,温差产生的表面拉应力,超过此时的混凝土极限抗拉强度,就会在混凝土表面产生表面裂缝。此种裂缝一般产生在混凝土浇筑后的第3天(升温阶段)。混凝土降温阶段,由于逐渐降温而产生收缩,再加上混凝土硬化过程中,由于混凝土内部拌合水的水化和蒸发以及胶质体的胶凝等作用,促使混凝土硬化时收缩。这两种收缩由于受到基底或结构本身的约束,也会产生很大的拉应力,直至出现收缩裂缝。

1.1.1.3安定性裂缝 安定性裂缝表现为龟裂,主要是因水泥安定性不合格而引起的。

2.1裂缝的防治措施

2.1.1 设计措施

1)精心设计混凝土配合比 混凝土配合比设计时,在保证混凝土具有良好工作性的情况下,应尽可能的降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出“高强、高韧性、中弹、低热和高极拉值”的抗裂混凝土。

2)增配构造筋提高抗裂性能,配筋应采用小直径、小间距。全截面的配筋率应在0.3~0.5%之间。

3)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。

4)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。

5)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,在正常施工条件下,后浇缝间距20~30m,保留时间一般不小于60天。如不能预测施工时的具体条件,也可临时根据具体情况作设计变更。

2.1.2 施工措施

1)严格控制混凝土原材料的的质量和技术标准,选用低水化热水泥,粗细骨料的含泥量应尽量减少(1~1.5%以下)……

优选混凝土各种原材料

在选择大体积混凝土用水泥时,在条件许可的情况下,应优先选用收缩性小的或具有微膨胀性的水泥。因为这种水泥在水化膨胀期(1~5d)可产生一定的预压应力,而在水化后期预压应力可部分抵消温度徐变应力,减少混凝土内的拉应力,提高混凝土的抗裂能力。为此,水泥熟料中的碱含量应低且适宜「3」,熟料中MgO含量在3.0%~5.0%,石膏与C3A的比值尽量大些,C3A、C3S和C2S含量应分别控制在5.0%以内、50.0%左右和20.0%左右,这种熟料比例的水泥具有长期稳定的微膨胀抗裂性能「2」。

骨料在大体积混凝土中所占比例一般为混凝土绝对体积的80%~83%,因此,在选择骨料时,应选择线膨胀系数小、岩石弹模较低、表面清洁无弱包裹层、级配良好的骨料。

砂除满足骨料规范要求外,应适当放宽石粉或细粉含量,这样不仅有利于提高混凝土的工作性,而且可提高混凝土的密实性、耐久性和抗裂性。有研究表明,砂子中石粉比例一般在15%~18%之间为宜。

粉煤灰只要细度与水泥颗粒相当,烧失量小,含硫量和含碱量低,需水量比小,均可掺用在混凝土中使用。混凝土中掺用粉煤灰后,可提高混凝土的抗渗性、耐久性,减少收缩,降低胶凝材料体系的水化热,提高混凝土的抗拉强度,抑制碱骨料反应,减少新拌混凝土的泌水等。这些诸多好处均将有利于提高混凝土的抗裂性能。

高效减水剂和引气剂复合使用对减少大体积混凝土单位用水量和胶凝材料用量,改善新拌混凝土的工作度,提高硬化混凝土的力学、热学、变形、耐久性等性能起着极为重要的作用,也是混凝土向高性能化发展的不可或缺的重要组分。

2)细致分析混凝土集料的配比,控制混凝土的水灰比,减少混凝土的坍落度,合理掺加塑化剂和减少剂。3)采用综合措施,控制混凝土初始温度混凝土温度和温度变化对混凝土裂缝是极其敏感的。当混凝土从零应力温度T2降低到混凝土开裂的温度Tt时,t时刻的混凝土拉应力σt超过了t时刻的混凝土极限拉应力σtu.因此,通过降低混凝土内的水化热温度(主要通过掺用高效减水剂减少用水,减少胶凝材料,多掺粉煤灰和矿物掺和料)和混凝土初始温度(通过骨料水冷和风冷降温、加冰和加冷却水拌和、各生产环节加强保温以免冷量损失等措施,降低混凝土初始温度),减少和避免裂缝风险。

人工控制混凝土温度的措施(如:体内埋设冷却水管和风管、表面洒水冷却、表面保温材料保护)主要是针对后期而言,对早期因热原因引起的裂缝是无助的。比如表面保温材料保护可以减少内外温差,但不可避免的招致混凝土体内温度T1很高,从受约束而导致贯穿裂缝的角度看,是一个潜在恶化裂缝的条件。因为体内热量迟早是要散发掉的。另外人工控制混凝土温度还需注意的问题是防止“过速冷却”和“超冷”,过速冷却不仅会使混凝土温度梯度过大,而且早期的过速超冷会影响水泥—胶体体系的水化程度和早期强度,更易产生早期热裂缝。超冷会使混凝土温差过大,引起温差裂缝浇筑时间尽量安排在夜间,最大限度降低混凝土的初凝温度。白天施工时要求在沙、石堆场搭设简易遮阳装置,或用湿麻袋覆盖,必要时向骨料喷

冷水。混凝土泵送时,在水平及垂直泵管上加盖草袋,并喷冷水。

4)根据工程特点,可以利用混凝土后期强度,这样可以减少用水量,减少水化热和收缩。

5)加强混凝土的浇灌振捣,提高密实度。

6)混凝土尽可能晚拆模,拆模后混凝土表面温度不应下降15℃以上,混凝土的现场试块强度不低于C5. 7)采用两次振捣技术,改善混凝土强度,提高抗裂性。

8)根据具体工程特点,采用UEA补偿收缩混凝土技术。

9)对于高强混凝土,应尽量使用中热微膨胀水泥,掺超细矿粉和膨胀剂,使用高效减水剂。通过试验掺入粉煤灰,掺量15%~50%.

混凝土施工防裂措施方案

混凝土施工防裂措施方案 1、施工工艺流程及操作要点 (1)工艺流程 进行预拌混凝土超长墙体施工期裂缝控制,必须建立全过程控制体系。该体系是在传统混凝土工程工艺流程的基础上,针对施工期裂缝防治完善而成。主要工艺流程如下: 基于裂缝防治的结构及构造措施优化→混凝土原材料优选→配合比体积稳定性优化设计→混凝土拌制及运输→混凝土浇注→混凝土养护及拆模 (2)操作要点 1)基于裂缝防治的结构及构造措施优化 a)要求混凝土具有足够的强度,较小的早期收缩变形及良好的抗裂能力; b)较长的现浇钢筋混凝土墙体是收缩裂缝的高发区,墙体中的钢筋除应满足强度要求外,应充分考虑混凝土收缩而加强,应有足够的配筋率,钢筋布置宜细而密分布。水平构造钢筋宜置于受力钢筋外侧,当置于内侧时,宜在混凝土保护层内加设防裂钢筋网片。 c)配筋率及间距应考虑混凝土收缩变形规律,结合结构计算和工程经验确定。 d)剪力墙中温度、收缩应力较大的部位,水平分布钢筋的配筋率宜适当提高。 e)墙中的预埋管线宜置于受力钢筋内侧,当置于保护层内时,宜在其外侧加置防裂钢筋网片。预留孔、预留洞周边应配有足够的加强钢筋并保证有足够的锚固长度。 2)混凝土原材料优选 为控制预拌混凝土施工期间收缩裂缝的发生,预拌混凝土供应方应对混凝土原材料进行优化选择。 3)配合比体积稳定性优化设计 对要求施工期间不出现早期裂缝的结构(构件),预拌混凝土供应方应在优选原材料和常规配合比设计的基础上,进行抗裂配合比优化设计,使混凝土除具有符合设计和施工所要求的性能外,还具有抵抗收缩开裂所需要的性能。 4)收缩、体积稳定性试验及评价 为提供有良好抗裂性能的混凝土,预拌混凝土供应方应在优选原材料、优化配合比的基础上进行收缩、体积稳定性试验及评价。 5)混凝土拌制及运输

大体积混凝土裂缝产生原因及其预防控制措施(正式)

编订:__________________ 单位:__________________ 时间:__________________ 大体积混凝土裂缝产生原因及其预防控制措施(正 式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-1365-69 大体积混凝土裂缝产生原因及其预 防控制措施(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、前言 随着我国基础建设的快速发展,大体积混凝土施工日益增多(如斜拉桥的索塔、承台及基础、高层建筑的箱型基础或筏型基础),而大体积混凝土施工中普遍会遇到裂缝控制问题,这是因为混凝土体积大,聚集的大量水化热会导致混凝土内外散热不均匀,在受到内外约束的情况下,混凝土内部会产生较大的温度应力并很可能导致裂缝产生,最终为工程结构埋下严重质量隐患。因此,大体积混凝土施工中应严格控制裂缝产生和发展,以保证工程质量。 二、大体积混凝土裂缝类型及裂缝产生原因分析

大体积混凝土结构裂缝主要包括干燥收缩裂缝、塑性收缩裂缝、自身收缩裂缝、安定性裂缝、温差裂缝、碳化收缩裂缝等。 1.收缩裂缝 混凝土在逐渐散热和硬化过程中会导致其体积的收缩,对于大体积混凝土,这种收缩更加明显。如果混凝土的收缩受到外界的约束,就会在混凝土体内产生相应的收缩应力,当产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。影响混凝土收缩的主要因素主要是混凝土中的用水量、水泥用量及水泥品种。混凝土中的用水量和水泥用量越高,混凝土收缩就越大。水泥品种对干缩量及收缩量也有很大的影响,一般中低热水泥和粉煤灰水泥的收缩量较小。

大体积混凝土水化热计算和混凝土抗裂验算(泰康人寿)

大体积混凝土水化热计算和混凝土抗裂验算 工程名称:泰康人寿工程 施工单位:中建一局集团建设发展有限公司 砼供应单位:北京铁建永泰新型建材有限公司 混凝土水化热计算 1 热工计算 1.1混凝土入模温度控制计算 (1)混凝土拌合温度宜按下列公式计算: T0=[0.92(m ce T ce+m s T s+m sa T sa+m g T g)+4.2T w(m w-ωsa m sa-ωg m g)+C w(ωsa m sa T sa+ωg m g T g)-C i(ωsa m sa+ωg m g)] ÷[4.2m w+0.92(m ce+m sa+m s+m g)]…………(1.1)式中T0 —混凝土拌合物温度(℃); m w---水用量(Kg); m ce---水泥用量(Kg); m s---掺合料用量(Kg); m sa---砂子用量(Kg); m g---石子用量(Kg); T w---水的温度(℃); T ce---水泥的温度(℃); T s---掺合料的温度(℃); T sa---砂子的温度(℃); T g---石子的温度(℃); ωsa---砂子的含水率(%); ωg---石子的含水率(%); C w---水的比热容(Kj/Kg.K); C i---冰的溶解热(Kj/Kg); 当骨料温度大于0℃时, C w=4.2, C i =0; 当骨料温度小于或等于0℃时,C w=2.1, C i=335。

(2)C40P6混凝土配比如下: 根据我搅拌站的设备及生产、材料情况,取T w =16℃,T ce=40℃,T s=35℃,ωsa=5.0%,ωg=0%, T sa=10℃,T g=10℃,C1=4.2,C i =0 则T0=[0.92(280×40+175×35+723×10+1041×10)+4.2×16(165- 5.0%×723-0%×1041)+4.2(5.0%×723×10+0%×1041×0)-0 (ωsa m sa+ωg m g)]÷[4.2×165+0.92(280+175+723+1041)]=[0.92*(11200+6125+7230+10410)+67.2*(165-36.2-0)+4.2*(361.5+0)-0]/[693+ 0.92*2219] =[0.92*34965+67.2*128.8+4.2*361.5]/2734 =[32167.8+8655.4+1518.3]/2730=42341.5/2734=15.5℃ (3)混凝土拌合物出机温度宜按下列公式计算: T1=T0-0.16(T0-T i) 式中T1—混凝土拌合物出机温度(℃); T i—搅拌机棚内温度(℃)。 取T i =16℃,代入式1.2得 T1=15.5-0.16(15.5-16) =15.4℃ (4)混凝土拌合物经运输到浇筑时温度宜按下列公式计算: T2=T1-(αt1+0.032n)(T1-T a)(1.3) 式中T2—混凝土拌合物运输到浇筑时的温度(℃); t1—混凝土拌合物自运输到浇筑时的时间(h); n—混凝土拌合物运转次数; T a—混凝土拌合物运输时环境温度(℃); α—温度损失系数(h-1) 当用混凝土搅拌车输送时,α=0.25; 取t1=0.3h,n=1,α=0.25 ,T a =15℃,代入式1.3得: T2=15.4-(0.25×0.3+0.032×1)×(15.4-15) =15.4-0.107*(-0.4)≈15.4℃

大体积混凝土裂缝分析及措施(通用版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 大体积混凝土裂缝分析及措施 (通用版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

大体积混凝土裂缝分析及措施(通用版) 摘要:混凝土是以胶凝材料、水、细骨料、粗骨料、需要时掺入外加剂和矿物掺合料,按适当比例配合,经过均匀拌制、密实成型及养护硬化而成的人工石材。在施工过程中,经常发现混凝土结构在成型后,出现各种裂缝。本文对大体积混凝土的裂缝成因与措施做如下论述。 关键词:混凝土裂缝措施 1混凝土裂缝产生的主要原因 1.1混凝土结构的宏观裂缝产生的原因主要有三种: 1.1.1由外荷载引起的裂缝,这是发生最为普遍的一种情况,即按常规计算的主要应力引起的; 1.1.2结构次应力引起的裂缝,这是由于结构的实际工作状态与计算假设模型的差异引起的;

1.1.3变形应力引起的裂缝,这是由温度、收缩、膨胀、不均匀沉降等因素引起的结构变形,当变形受到约束时便产生应力,当此应力超过混凝土抗拉强度时就产生裂缝。 1.2当混凝土结构物产生变形时,在结构的内部,结构与结构之间,都会受到相互影响.相互制约,这种现象称为约束。当混凝土结构截面较厚时,其内部温度和湿度分布不均匀,引起内部不同部位的变形相互约束,这样的约束称之为内约束;当一个结构物的变形受到其他结构的阻碍所受到的约束称为外约束。外约束又可分为自由体、全约束和弹性约束。建筑工程中的大体积混凝土结构所承受的变形,主要是温差和收缩而产生的。 1.3建筑工程中的大体积混凝土结构中,由于结构截面大,水泥用量多,水泥水化所释放的水化热会产生较大的温度变化和收缩作用,由此形成的温度收缩应力是导致钢筋混凝土产生裂缝的主要原因。这种裂缝有表面裂缝和贯通裂缝两种。表面裂缝是由于混凝土表面和内部的散热条件不同,温度外低内高,形成了温度梯度,使混凝土内部产生压应力,表面产生拉应力,表面的拉应力超过混凝

大体积混凝土裂缝产生原因分析及处理措施

大体积混凝土裂缝产生原因分析及处理措施 发表时间:2016-07-26T14:56:41.743Z 来源:《基层建设》2016年10期作者:李鼎安 [导读] 本文就裂缝产生的原因以及补救措施展开了讨论。 广西环江宏盛建设工程有限责任公司 摘要:随着基础设施的快速发展,大体积混凝土广泛应用于桥梁和基础中。在施工与管理措施中,由于预防养护措施不到位,处理方法不正确就很容易产生裂缝,但是根本原因在于大体积混领土的自身特殊情况,混领土本身就是不良的导热体,在水泥水化过程释放的大量热量使其内部温度要比表面温度高,并且内部的降温时间比表面缓慢,热胀冷缩内部产生应力从而出现裂缝。本文就裂缝产生的原因以及补救措施展开了讨论。 关键词:大体积混凝土;混凝土裂缝;开裂原因;补救措施 根据《大体积混凝土施工规范》(GB50496- 2009),大体积混凝土是指混凝土结构物实体最小几何尺寸不小于 1m的大体量混凝土,或预计会因混凝土中胶凝材料水化引起的温度变化和收缩而导致有害裂缝产生的混凝土。日本建筑学会标准(JASS5)规定“:结构断面最小厚度在 80cm以上,同时水化热引起混凝土内部的最高温度与外界温度之差预计超过 25℃的混凝土,称为大体积混凝土”。 1 大体积混凝土裂缝的种类 根据混凝土裂缝产生的原因,可分为结构性裂缝与非结构性裂缝两大类。 1.1 结构性裂缝。也称为荷载裂缝,它包括由外荷载的直接应力引起的裂缝和在外荷载作用下结构次应力引起的裂缝。在大体积混凝土工程中,这类的裂缝长得比例较小。 1.2 非结构性裂缝。也称为材料裂缝,包括温差,干缩湿胀和不均匀沉淀等因素引起的裂缝。这类裂缝是在结构的变形受到限制时引起的内应力造成的。从国内外的研究资料以及大量的工程实践看,非结构性裂缝约占到八成以上,其中以收缩裂缝(包括干缩裂缝、自收缩裂缝和塑性收缩裂缝)为主导:(1)温差裂缝;(2)沉陷裂缝;(3)自收缩裂缝;(4)干缩裂缝;(5)塑形收缩裂缝。 2 大体积混凝土裂缝成因分析 混凝土的裂缝成因复杂繁多,并且往往不是由一种原因直接导致的,是多种因素混合互相叠加相互影响,但是裂缝的产生都有一条或是几条的主要原因。大概可以归结与设计、施工、材料、环境和后期的养护等有关。 2.1 施工工艺质量因素 在混凝土的结构浇筑,构建制作、起模、堆放、拼装及吊装的过程中,如果是施工工艺的不合理、施工质量得不到保障,很容易产生纵向、横向的等等各种裂缝主要包括:违章施工造成了裂缝、振捣方式不当引起裂缝、养护不当引起的裂缝。 2.2 外界环境变化引起的裂缝 a.内外温差的形成:混凝土是一种不良的导热材料。由于其自身的特点,混凝土表面和内部的散热条件大不相同,使得水泥水化时放出大量的水化热积聚在混凝土内部不易散发,形成较高的水化热升温。而混凝土表面由于直接和空气接触,散热条件好,表面温度上升较少,这样就在混凝土内部形成不均匀的温度分布,进而形成外低内高的温差。 b.外部约束条件造成的:大体积混凝土在浇筑几天后(一般不少于5d),水泥的水化热基本就释放完毕了,大体积混凝土开始降温,最直接的影响就是引起混凝土的收缩,产生温度应力。环境中的其他构件对大体积混凝土进行约束,不让其自由变形,自然就会使得温度应力超过混凝土当时承受的抗拉强度,就会在约束面产生裂缝。 c.外界气温变化引起的裂缝:大体积混凝土结构在施工阶段,外界气温的变化对裂缝的产生有很大的影响,外界气温越高,混凝土的浇筑温度也就越高,如果内外温降过大,形成内外温差,极易引发混凝土的开裂。 3 大体积混凝土裂缝的预防控制措施 大体积混凝土出现裂缝较为普遍,往往破坏又都是从裂缝开始的,所以了解了裂缝的主要成因前提下,对产生裂缝进行有目的性的预防控制措施是十分有必要的。可以从设计和施工两个方面着手防止裂缝的产生。 3.1.优化设计 a.采取合理的结构形式和合理的分块。大体积混凝土工程施工中如果允许设置水平施工缝,应根据温度裂缝的要求进行分块,且设置必要的连接方式。 b.设计中的大体积混凝土宜选用中低强度混凝土,强度等级宜在C20~C35 范围内,不宜选用高强混凝土。 c.合理增配构造钢筋,提高抗裂能力。适当的增配构造钢筋,使其能够起到温度筋的作用,构造筋应该尽可能的选用小直径、密间距布置尽量的钢筋。全断面的配筋率不小于0.3%。 d.避免出现应力集中的情况。出现构造断面产生应力集中,可以通过增配构造加固钢筋或是护边角钢,防止出现边缘应力集中而产生的裂缝。 3.2 合理的选择混凝土原材料,优化混凝土配合比 原材料对施工质量起到关键性的作用。选用好的混凝土材料可以从根源上有效的减少裂缝的产生。根据国内外的经验主要可以从以下几条入手:a.水泥的选择。采用早期水化放热量较低、低收缩量、质量稳定的水泥。b.粗、细骨料的选择。合理的选择粗、细骨料可以大大的减少水泥的用量,也就减小了因水泥水化反应产生的水化热。c.粉煤灰的掺加。大体积混凝土中使用粉煤灰来取代部分的水泥,不仅可以推迟水化热峰值的出现,还可以降低成本,具有较为明显的经济效益。d.配合比的优化。 4 大体积混凝土裂缝的处理或者补救措施 裂缝不仅影响混凝土结构的美观、影响结构的耐久性,严重的会危及到结构的安全性,影响结构的整体性和刚度,还会导致或是加速钢筋的锈蚀、混凝土的抗疲劳性能和抗渗性能。因此,对于已经出现的裂缝必须加以高度重视,具体问题具体分析,采取及时合理的补救措施,保证整个结构和工程的正常使用及安全性能,把损失降到最低。目前,对于裂缝是修补方法很多并且技术上都已经很成熟了,比如表面修补法、灌浆、结构加固法、混凝土置换法、电化学法等。 5 结论 众所周知裂缝是大体积混领土的普遍现象,有的裂缝不仅会影响混凝土表面的美观、并且减小混凝土对钢筋的保护层厚度,直接加速

浅论关于建筑施工的大体积混凝土温控与防裂技术的研究

浅论关于建筑施工的大体积混凝土温控与防裂技术的研究摘要:众所周知,现在的高层建筑使用的混凝土越来越多,随之而来的就是一个混凝土结构开裂的技术问题。尤其是在建筑工程主要结构部分出现裂缝问题,如果不能及时预防开裂的形成,那么将对整个工程结构形成致命危害。这不是危言耸听,我们要在建筑施工中将大体积混凝土温控和防裂技术应用到实际工程施工中,找到防裂最好的措施。 关键字:建筑施工;混凝土;温控;裂缝;防裂;措施 abstract: as we all know, the concrete is increasingly used in high-rise buildings, followed by a technical problem of concrete structure cracking, especially in the main structure part of the building. if the cracks can not be prevent timely, it will cause deadly hazard to the whole project structure, which is not alarmist. therefore, we should apply thetemperature control and crack prevention technique of large volume of concrete into practical construction to find the best measures to prevent crack. key words: engineering construction; concrete; temperature control; cracks; crack prevention; measures 中图分类号:tu377文献标识码:a 文章编号:2095-2104(2012)改革开放三十多年以来,我国的国民经济不断发展,取得了世人瞩目的成绩。而作为我们国家经济的主要支柱产业---房地产行

大体积混凝土裂缝控制分析

大体积混凝土裂缝控制分析 随着我国现代化需求的发展,建筑工程中,以混凝土为基础的土建工程越来越多,混凝土甚至占据了我国现代建筑中材料的主导地位,因此,对混凝土的质量的控制,是提高建筑工程安全性和耐久性的重要保障。根据混凝土的材料属性和已有的现代建筑工程的施工缺陷中,混凝土出现裂缝的现象非常普遍,这一点尤其在大体积混凝土上表现的更为明显。但随着近年来我国对混凝土的质量控制,掌握了一些预防混凝土质量缺陷的核心技术,致使这以大体积混凝土开裂的情况有所缓解。因混凝土裂缝所导致的工程缺陷,轻则影响工程的美观性,重则影响工程的安全性和耐久性。因此,本文以大体积混凝土的裂缝为核心问题,从混凝土材料的选择、工艺的控制、后期的维护及大体积产生裂缝的原因进行了分析,通过论证,可以有效地避免大体积混凝土产生裂缝,对混凝土的裂缝问题提出了一系列切实可行的补救措施。 1.1研究的意义 当代建筑工程中,容易导致质量问题和安全事故的主要原因之一便是工程结构的不稳定。而一个建筑工程,如果工程结构不稳定,势必和混凝土的质量息息相关。时代在进步,人类在进化过程中,随着进化程度的不断优化,社会不断发展,学习能力和创造力也在不断的提升,在一次次实践过后,人类对与自身生存环境息息相关的建筑工程要求越来越科学,越来越严谨,但是,受传统思维的局限,目前在建筑工程行业对混泥土结构建筑普遍缺乏事先预防的措施,这样一来很容易造成目标单位结构性的损伤甚至不得不提早结束使用寿命,这不但浪费了国家资源,也会对周边环境造成很恶劣的影响。所以,我们对待大体积混凝土裂缝的问题要引起重视,为了满足安全要求,必须提前预防,以此避免造成毁灭性的损失。因为建筑工程的特殊性,所以它的好坏直接决定着国家社会秩序的稳定与否,对一个国家的发展都有非常重要的作用。 1.2大体积混凝土裂缝的研究现状 混泥土结构的建筑体是人类文明发展到一定程度的社会行为,是科技进步的重要体现,但是实践证明,因为受各种因素的影响,混泥土建筑在施工前后产生裂缝是不可避免的,但是开裂的程度可以通过施工方案和施工方法进行有效的控制,可以很大程度上减少影响。以裂缝的危害大小,大体可以分成:表层与深层

大体积混凝土结构裂缝成因及预防措施示范文本

大体积混凝土结构裂缝成因及预防措施示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

大体积混凝土结构裂缝成因及预防措施 示范文本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1. 大体积混凝土简述 现代建筑中时常涉及到大体积混凝土施工,如高层楼房 基础、大型设备基础、水利大坝等。 它主要的特点就是体积大:混凝土浇注量大于100平 方米;长、宽、高任意一边不小于1米。 大体积混凝土水泥水化热释放比较集中,内部温升比 较快。混凝土内外温差较大时,会使混凝土产生温度裂 缝。其他因素也会导致大体积混凝土出现裂缝,影响结构 安全和正常使用。所以必须从根本上分析它,来保证施工 的质量。 2. 大体积混凝土结构裂缝的概念

混凝土结构在建设和使用过程中出现不同程度、不同形式的裂缝,这是一个相当普遍的现象。大体积混凝土结构出现裂缝更普遍。在全国调查的高层建筑地下结构中,底板出现裂缝的现象占调查总数的20%左右,地下室的外墙混凝土出现裂缝的现象占调查总数的80%左右。所以,混凝土结构的裂缝是建筑工程长期困扰的一个技术难题,一直未能很好地解决。 国内外工程技术界都认为,规定钢筋混凝土结构的最大裂缝宽度主要是为了保证钢筋不产生锈蚀。不同的规范中有关允许最大裂缝宽度的规定虽不完全一致,但基本相同。如在正常的空气环境中裂缝允许宽度为0.3~0.4mm;在轻微腐蚀介质中,裂缝允许宽度为0.2~0.3mm;在严重腐蚀介质中,裂缝允许宽度为0.1~0.2mm。但对建筑物的抗裂缝要求过严,必将付出巨大的经济代价。科学的要求是将其有害程度控制在允许范围

大体积混凝土裂缝的原因及裂缝处理措施

大体积混凝土裂缝的原因及裂缝处理措施 2.4.1.1裂缝的类型和形成原因 大体积混凝土墩台身或基础等结构裂缝的发生是由多种因素引起的。各类裂缝产生的主要影响因素如下: 2.4.1.2收缩裂缝: 混凝土的收缩引起收缩裂缝。收缩的主要影响因素是混凝土中的用水量和水泥用量,混凝土中的用水量和水泥用量越高,混凝土的收缩就越大。 选用水泥品种的不同,干缩、收缩的量也不同。收缩量较小的水泥为中低热水泥和粉煤灰水泥。 混凝土的逐渐散热和硬化过程引起的收缩,会产生很大的收缩应力,如果产生的收缩应力超过当时的混凝土极限抗拉强度,就会在混凝土中产生收缩裂缝。 人们对收缩给予了很大的关注,但引人关注的并不是收缩本身,而是由于它会引起开裂。混凝土的收缩现象有好几种,比较熟悉的是干燥收缩和温度收缩,这里着重介绍的是自身收缩,还顺便提及塑性收缩问题。自身收缩与干缩一样,是由于水的迁移而引起。但它不是由于水向外蒸发散失,而是因为水泥水化时消耗水分造成凝胶孔的液面下降,形成弯月面,产生所谓的自干燥作用,混凝土体的相对湿度降低,体积减小。水灰比的变化对干燥收缩和自身收缩的影响正相反,即当混凝土的水灰比降低时干燥收缩减小,而自身收缩增大。如当水灰比大于0.5时,其自干燥作用和自身收缩与干缩相比小得可以忽略

不计;但是当水灰比小于0.35时,体内相对湿度会很快降低到80%以下,自身收缩与干缩则接近各占一半。自身收缩中发生于混凝土拌合后的初龄期,因为在这以后,由于体内的自干燥作用,相对湿度降低,水化就基本上终止了。换句话说,在模板拆除之前,混凝土的自身收缩大部分已经产生,甚至已经完成,而不像干燥收缩,除了未覆盖且暴露面很大的地面以外,许多构件的干缩都发生在拆模以后,因此只要覆盖了表面,就认为混凝土不发生干缩。在大体积混凝土里,即使水灰比并不低,自身收缩量值也不大,但是它与温度收缩叠加到一起,就要使应力增大,所以在施工时早就将自身收缩作为一项性能指标进行测定和考虑。现今许多断面尺寸虽不很大,且水灰比也不算小的混凝土,如上所述,已“达到必须解决水化热及随之引起的体积变形问题,以最大限度减少开裂影响”,因此需要考虑将温度收缩和自身收缩叠加的影响,况且在这些结构里,两者的发展速率均要比大坝混凝土中快得多,因此也激烈得多。还有塑性收缩,在水泥活性大、混凝土温度较高,或者水灰比较低的条件下也会加剧引起开裂。因为这时混凝土的泌水明显减少,表面蒸发的水分不能及时得到补充,这时混凝土尚处于塑性状态,稍微受到一点拉力,混凝土的表面就会出现分布不规则的裂缝。出现裂缝以后,混凝土体内的水分蒸发进一步加快,于是裂缝迅速扩展。所以在上述情况下混凝土浇注后需要及早覆盖。 2.4.1.3温差裂缝

混凝土防裂技术措施(2021版)

Safety is the goal, prevention is the means, and achieving or realizing the goal of safety is the basic connotation of safety prevention. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 混凝土防裂技术措施(2021版)

混凝土防裂技术措施(2021版)导语:做好准备和保护,以应付攻击或者避免受害,从而使被保护对象处于没有危险、不受侵害、不出现事故的安全状态。显而易见,安全是目的,防范是手段,通过防范的手段达到或实现安全的目的,就是安全防范的基本内涵。 本标段混凝土以常态混凝土为主,由于工期要求,进水塔等大体积混凝土结构需在高温季节浇筑,结合工程实际情况和,对混凝土的具体施工浇筑过程、施工分层方法、养护过程、拆模时间、施工间歇时间、层间施工间歇时间、养护方法、表面保温方法(保温材料材质、保温材料厚度、复合保温方法、保温时间、保温拆除时间)制定了具体的施工方案。 混凝土产生裂缝的原因有许多种,实践证明,大体积混凝土产生裂缝的主要原因为收缩裂缝。大体积混凝土浇筑后,由于水泥在水化凝结过程中,要散发大量的水化热,因而使混凝土体积膨胀,此时,混凝土产生较小压应力。待达到最高温度以后,随着热量向外部介质散发,温度将由最高温度降至一全稳定温度或冷稳定温度场,将产生一个温差。如果浇筑温度大于稳定温度(准稳定温度场),这个温差就更大。这时,混凝土因为降温,将发生体积收缩,由于受周围约束将出现拉应力,当产生的拉应力大于此时混凝土材料本身所能提供的

混凝土温控及防裂措施

8.11 混凝土温控防裂措施 8.11.1 基本条件及要求 8.11.1.1 混凝土允许最高温度 根据招标文件要求,坝后厂房混凝土允许设计最高温度见表8.11-1。 表8.11-1坝后厂房工程混凝土设计允许最高温度单位:℃ 注:L为浇筑块长边尺寸。 8.11.1.2 控制浇筑层最大高度和间歇时间 基础和老混凝土约束部位浇筑层高控制为 1.5m~2.0m,基础约束区以外最大浇筑高度控制在2.0m~3.0m以内,上、下层浇筑间歇时间为5d~7d,对混凝土浇筑层较厚、温控要求较严部位可适当延长2d~3d。在高温季节,可采用表面流水冷却的方法进行散热。应严格按施工图纸所示或经监理人批准的分层分块图进行浇筑。 8.11.2 混凝土出机口温度控制 (1)混凝土拌制过程中,降低混凝土的水化热温升 1) 尽量选用水化热低的水泥。 2) 在保证混凝土质量满足设计、施工要求的前提下,改善混凝土骨料级配,掺加优质的掺和料和外加剂以适当减少单位水泥用量。 (2)根据招标文件要求,在高温季节或较高温季节浇筑混凝土时,应采用预冷混凝土浇筑,在计算混凝土浇筑温度时应充分考虑混凝土运输过程中的温度回升。各月、分部位混凝土浇筑温度及出机口温度控制指标见表8.11-2。

8.11.3.1 混凝土运输温控 (1)采用搅拌车运输时,在运输混凝土前对机械运输设备喷雾或冲洗预冷,采取隔热遮阳措施。 (2)通过汽车运输的混凝土,根据拌和楼和建筑塔机、布料杆、混凝土泵等的生产能力,以及仓面浇筑的情况,合理安排汽车数量及拌和强度,一般每车运输混凝土不少于3.0m3,运输车辆安装遮阳棚,运输途中拉上遮阳棚,拌和楼前安装喷雾装置,对回程的车辆喷雾降温。 (3)运输道路优选最短路径,以使混凝土在最短时间内到达浇筑地点。 (4)在条件允许的施工现场搭设遮阳棚,启动冷却水降温系统,所有待料搅拌车进行待料洒水降温。 8.11.3.2 浇筑过程温控 (1)高温季节浇筑时,在下料的间歇期,用聚乙烯卷材覆盖仓面,防止温度倒灌。 (2)夏季浇筑仓内配备喷雾设施,喷雾设备有轴流风机、摆动式喷雾机雾化管等,根据仓面特点来配置喷雾设备,考虑摆动式喷雾机降温效果较好,一般情况下,选择用摆动式喷雾机,局部不宜用喷雾机的部位用雾化管。 (3)混凝土浇筑前,配置足够的施工设备,加快入仓强度和浇筑强度,缩短运输时间和混凝土浇筑时间,减少太阳对运输混凝土的辐射。 (4)为缩短坯层覆盖时间,加大入仓强度,可减少坯层厚度,每坯层厚调整为35~40cm。 8.11.4 混凝土冷却通水 8.11.4.1 冷却水管的布置及埋设 (1)埋设部位:有初期通水、中期通水和后期冷却要求的部位均需埋设冷却水管。冷却水管采用1英寸(直径2.54cm)黑铁管,也可采用塑料、高密聚乙烯类管材。 (2)冷却水管及供水管的规格、类型、间距长度、通水量等应满足初期、中期通水降温的要求。 (3)冷却水管的布置要求:冷却水管一般按1.5m×1.5m布置,当层厚大于2.0m时,应在浇筑层中间埋设一层冷却水管。冷却水管单根水管长度不得超过250m。中间埋设的冷却水管一般采用高密聚乙烯类管材,随仓位浇筑到高程埋设。 (4)冷却水管宜预先加工成弯段和直段两部分,在仓内拼装成蛇形管圈。

大体积混凝土裂缝控制

大体积混凝土裂缝控制 摘要:为有效控制大体积混凝土裂缝问题,在原材料选择时,按照配合比设计选用低水化热水泥、级配良好的砂石和合理的掺合料等原材料,并严格控制好原材料的使用。施工时采用有效合理的混凝土浇筑施工工艺、方法和后期测温保温养护等技术质量控制措施。文章分析了大体积混凝土裂缝产生的原因,提出了防止产生裂缝的措施,并提及大体积混凝土裂缝控制的发展方向。 关键词:大体积混凝土;裂缝;原因;控制 0 引言 美国混凝土学会116委员会把大体积混凝土定义为在大体积结构中的混凝土,即某一梁、柱、墩、船闸或坝由于体积巨大,需要采取专门的方法以对付产生的热量与伴随着体积的变化。国内的规范规定基础边长大于20m,厚度大于1m,体积大于400m3时,必须采取措施处理所发生的温差,解决变形所引起的应力集中和裂缝开展,这样的混凝土称为大体积混凝土[1]。 大体积混凝土常常出现温度裂缝,影响结构的整体性和耐久性[2]。大体积混凝土的特点决定了其裂缝控制的难度将很大,必须从设计、施工、材料、温控技术、养护等多方面采取措施预防、检测和控制。大体积混凝土温度裂缝的成因主要有三方面:(1)水泥水化热;(2)混凝土的收缩;(3)外界气温的变化[3]。 1 大体积混凝土裂缝原因 1.1 水泥水化热的影响 大量的热量在水泥水化过程中产生,混凝土及水泥用量与混凝土内部的温度有关,温度应力会随混凝土结构尺寸增大变得更高,引起的裂缝的可能性也越大,裂缝在这种温度应力超过混凝土内外的约束力时就 会产生[4]。 1.2 混凝土收缩的影响 混凝土中约80℅的水分要蒸发,多余水分的蒸发会引起混凝土体积的收缩。混凝土收缩的主要原因是内部水蒸发引起混凝土 收缩。如果混凝土收缩后,再处于水饱和状态,还可以恢复膨胀并几乎达到原有的体积。干湿交替会引起混凝土体积的交替变化,这对混凝土很不利 [5]。 如果水泥的活性较大,混凝土的温度较高或者水灰比较低的情况下,其泌水会减少,表面会蒸发大量的水分,无法及时获得补充,此时的混凝土尚处于塑性状态,一点拉力都会导致裂缝的出现,裂缝出现后,其体内的水分蒸发迅速加快,裂缝扩大,这就需要在进行混凝土浇筑后及时覆盖[6]。 1.3 外界气温、湿度变化的影响 在大体积混凝土的施工过程中,经常会受到例如寒潮来临、暴雨袭击等外界气温变化的影响。这些突如其来的天气变化使混凝土内部的温度迅速的变化。大体积混凝土内部的温度指的是水泥水化热的绝热温度、浇筑温度以及混凝土散热温度三者相叠加而产生的温度,其中,浇筑温度和外界气温有着直接的联系。一般来说,外部环境的气温值越高,混凝土的浇筑温度也相应越高,反之,当气温下降时,特别是在气温骤降时,会大大增加外部混凝土与混凝土内部的温度梯度。这就引起混凝土外部环境与内表面产生温度差,从而引起温度应力的产生,直接导致大体积混凝土外表面产生裂缝[7]。另外外界的湿度对混凝土的裂缝也有很大的影响,外界的湿度降低会加速混凝土的干缩也会导致混凝土裂缝的产生。 1.4 安定性影响 安定性裂缝表现为龟裂,主要是因水泥安定性不合格而引起的[8]。 1.5 温度影响 大体积混凝土施工阶段所产生的温度裂缝,一方面是由于内外温差而产生的;另一方面是结构的外部约束和混凝土各质点间的约束,阻止混凝土收缩变形,混凝土抗

大体积混凝土浇筑养护和防裂问题

现代物业?新建设 2012年第11卷第6期 大体积混凝土的施工工艺和材料准备的要求比普通的混凝土要求更加严格,尤其是需要的坍落度比现场自己搅拌的传统施工工艺大得多,而且大体积混凝土一般运用在柱基础等重要部位或者是地下室等面积比较大的地方,防止混凝土的变形裂缝和开裂极为重要。本文所针对的工程中的大体积混凝土分为两种:基础,独立基础高度有800mm~2,000mm,最大平面尺寸为9,200mm×8,500mm (塔楼核心基础),基础砼钢筋保护层为40;基础砼等级C30。底板,底板厚度300mm(只有一层地下室的底板)、400mm(有两层地下室的),一次浇筑量大,按后浇带划分,每次浇筑混凝土量超过400m3。混凝土等级C30,防水要求P8。要求采用补偿收缩混凝土,在水中14天限制膨胀率大于0.02%。 一、大体积混凝土出现裂缝的原因和影响 大体积混凝土的施工要求比较高,但是由于很多工程只是一味地追求进度,导致在很多地方产生了裂缝,这些裂缝可能是表面的裂缝也可能是贯穿性裂缝,会影响结构的整体性,从而影响建筑的结构,存在很大的安全隐患。根据对一些工程的分析,现总结出大体积混凝土开裂原因:混凝土的塑性收缩变形,在混凝土硬化之前,整个混凝土处于塑性状态,产生裂缝主要是因为上部的混凝土沉降受到限制,如钢筋或者大的混凝土骨料或者是混凝土本身的平面面积比较大,这样就会使沉降的程度不一样,从而产生裂缝。由于用来固定混凝土的模板发生变形或者断裂等,造成混凝土整个体积的变形,可能是收缩也可能是膨胀。比如冬天和夏天施工的时候所采用的混凝土原料的配比是不一样的。再次是混凝土在固化的过程中因为胶状水凝材料进行固化的时候混凝土表面没有维持一定的湿润度,及干燥的过程中没有按照规定来,导致干燥不均匀进而产生裂缝。混凝土的匀质性有问题,是原材料的问题,在施工一开始没有得到好的质量检测。基础混凝土出现裂缝的原因主要有:①温度变化,在施工的过程中基础的内外温度不一样,会造成收缩程度不一样。②浇筑时基础的模板固定不牢,导致混凝土出现变性裂缝。 底板混凝土出现裂缝的原因主要是:地下室的混凝土在固化的过程中会产生大量的水化热,而混凝土又是热的不良导体,再加上地下室混凝土的几何板块一般比较大,这些热量很不容易被及时地排出而聚集在一起,导致内部温度迅速升高(最高可达80℃)。而表面构件散热条件好,这样就对水泥表面产生拉应力,当超过拉伸极限的时候就会产生裂缝。 二、大体积混凝土养护和防裂的方法 (一)控制大体积混凝土质量的措施 (1)控制原料的质量 在大体积混凝土施工过程中,由于要满足结构的要求,配筋比较密实,为了保证混凝土的密实度,在配料中应该确保粗细集料的配置,碎石的粒径5mm~25mm,选用粒径较大、级配良好的石子配制混凝土,这些碎石的和易性较好,抗压度较高。另外水泥的质量很重要,不同品牌水泥的组织是不一样的,配置出来的混凝土的性质也是不一样的,比如:普通的硅酸盐水泥早期的强度比较高,但是水化热反应较大很容易产生裂缝。一般采用普通的硅酸盐水泥及矿渣硅酸盐水泥,需要用细骨料和粗骨料混合。其中细骨料一般为2.66mm~3.0mm,含量不能超过2%,粗骨料:5mm~25mm或1mm~30mm碎石,含泥量不大于1%,用水一定要用低温水,为了减少水泥的运用降低内部的温度,可以添加10%~15%的二级粉煤灰,并符合《GB1596-91》的规定。 (2)强化施工准备和施工技术 在进行大体积混凝土浇筑之前应该先做好准备工作, 工程施工 Engineering Construction 大体积混凝土浇筑养护和防裂问题 杜丽君 [深圳市越众(集团)股份有限公司,广东 深圳 518036] 摘 要:随着国家经济的发展,建筑行业的发展也日新月异,大体积混凝土的运用越来越普遍。但大体积混凝土在施工过程中具有很大的难度,而且在施工完成之后很容易因为混凝土中胶凝材料的变化引起温度变化导致裂缝的产生。 大体积混凝土开裂问题一直是工程界密切关注的问题,本文将对裂缝产生的原因和材料取得的有效方法进行一定的总结。 关键词:大体积混凝土;浇筑;养护和防裂 中图分类号:TU37 文献标识码:A 文章编号:1671-8089(2012)06-0084-02 – 84 –

大体积混凝土施工裂缝控制分析

大体积混凝土施工裂缝控制分析 摘要:裂缝问题是混凝土结构中普遍存在的一种现象,它的存在特别是危害裂 缝的存在,不仅会降低建筑物的抗渗能力,降低其耐久性,而且会影响建筑物的 承载能力和使用功能。在施工阶段,混凝土强度低,又是水泥水化热大量释放的 阶段,混凝土裂缝预防与控制举足轻重。预防和控制措施必须严格落实,同时也 要根据具体情况进行改进、完善,才能有效地预防和控制混凝土裂缝的产生。 关键词:大体积混凝土;施工;裂缝;防治;控制 1 大体积混凝土概况 大体积混凝土指的是最小断面尺寸大于1m以上,施工时必须采取相应的技 术措施妥善处理水化热引起的混凝土内外温度差值,合理解决温度应力并控制裂 缝开展的混凝土结构。 大体积混凝土结构的施工特点:一是整体性要求较高,往往不允许留设施工缝,一般都要求连续浇筑;二是结构的体量较大,浇筑后混凝土产生的水化热量大,并积聚在内部不易散发,从而形成内外较大的温差,引起较大的温差应力。 大体积混凝土尤其在高层和超高层建筑中应用广泛,其基础工程大多数都属于大 体积混凝土工程,例如,高层建筑的箱形基础、筏式基础、桩基厚大的承台等, 都属于体积较大的混凝土工程。这些大体积混凝土工程具有结构厚,体形大、钢 筋密,混凝土数量多(有的混凝土量已超过10000m3),施工条件复杂和施工技 术要求高等特点,除了必须满足强度、刚度、整体性和耐久性要求外,还存在如 何控制和防止温度应力,变形裂缝产生等问题。 2 混凝土裂缝的危害 宏观裂缝可以避免,但不是所有裂缝都是有害的,一般出现裂缝的主要危害:(1)损害建筑物的功能,如造成贮水构筑物漏水。 (2)引进破坏因素,因此会缩短使用时间,如钢筋锈蚀、碳化等。 (3)降低混凝土的强度、密实度等性能。 (4)降低结构刚度。 (5)损坏表面性能(如不美观等)。 (6)发生安全事故。 3 裂缝的防治控制措施 3.1 精心设计 (1)精心设计混凝土配合比。在保证混凝土具有良好工作性的情况下,应尽可能地降低混凝土的单位用水量,采用“三低(低砂率、低坍落度、低水胶比)二掺(掺高效减水剂和高性能引气剂)一高(高粉煤灰掺量)”的设计准则,生产出高强、高韧性、中弹、低热和高极拉值的抗裂混凝土。 (2)增配构造筋提高抗裂性能。配筋应采用小直径、小间距。全截面的配筋率应在0.3%~0.5%之间。 (3)避免结构突变产生应力集中,在易产生应力集中的薄弱环节采取加强措施。 (4)在易裂的边缘部位设置暗梁,提高该部位的配筋率,提高混凝土的极限拉伸。 (5)在结构设计中应充分考虑施工时的气候特征,合理设置后浇缝,保留时间一般不小于60d。如不能预测施工时的具体条件,也可临时根据具体情况作设 计变更。

混凝土防裂控制措施(最新)

混凝土防裂控制措施 混凝土开裂后,其性能与原状混凝土性能相差很大,尤其是对耐久性的影响更大,而混凝土渗透反过来又会加速和促使混凝土的进一步恶化,严重影响结构的长期安全和耐久运行。而裂缝大多又是在早期产生的,因此,探讨裂缝产生的原因和防止裂缝的出现就显得格外重要。 混凝土产生裂缝风险的原因很多,归纳起来主要包括三类:结构设计不合理引起的裂缝;混凝土自身性能(力学、变形及热学性能)引起的裂缝;外部环境因素和约束条件引起的裂缝,三者既相互关联又相互影响。 那么混凝土防裂控制措施有哪些呢? 1、从不同的方面选择混凝土原材料 (1)掺和料的选择。为了更好地改善混凝土的抗裂性能,在混凝土的掺和料中优先选用I级或Ⅱ级粉煤灰。如果使用硅灰作为掺和料,其掺量不宜大于3%,并应采取可靠的防治裂缝的技术措施。 (2)水泥的选择。现在个体企业增多,小厂水泥也不乏存在。为了保证质量,应选择既能保证产品质量稳定、又具有大批生产能力的大型水泥厂生产的水泥。其品种优先选择的顺序是低碱水泥、硅酸盐水泥、普通硅酸盐水泥。对于不同用途、不同环境所使用的水泥,应根据设计要求来决定,例如浇筑大体积混凝土就应选择低热水泥。

(3)外加剂的选择。外加剂的选择与气温的高低、场地的远近以及混凝土运用的地方等有关系。选择的外加剂一定要与水泥的化学性能相适应,如选择多种外加剂时,要看各种外加剂之间的化学性能是否相匹配。总之,一定要选择合适的外加剂,否则适得其反。 (4)细骨料的选择。混凝土中细骨料的选择即为砂的选择,一定要选择泥量、泥块含量符合要求以及颗粒级配良好的细骨料。当细骨料级配较差时,应用几种粒径不同的细骨料进行颗粒级配,从而达到良好的级配效果。对于抗裂要求较高的混凝土,宜选取含泥量小于1.5%、含泥块量小于0.5%的中砂。 (5)粗骨料的选择。粗骨料的选择即为碎石等骨料的选择,要根据设计要求来决定。无论选择何种骨料,都应选择粒形好、空隙率小、针片状含量少、级配良好的粗骨料。 (6)经过有关技术人员的多次试验,结果表明:在混凝土中掺入一定量的纤维和(或)阻裂的有机聚合物(如聚丙希、尼龙类纤维等),可提高混凝土的抗裂性能。 2、混凝土配合比主要参数的选择 (1)水泥用量。在我们的潜意识里认为水泥加得越多越好,其实并非如此。在配置混凝土时,宜尽量降低水泥用量,只要其满足混凝土设计强度即可。通常水泥含量应符合这样一个范围:普通强度等级的混凝土水泥用量为150kg/m3-450kg/m3,高强混凝土中水泥及掺和料总量应不大于550kg/m3。

相关文档
最新文档