对线性系统理论发展及应用的一些个人认识

对线性系统理论发展及应用的一些个人认识
对线性系统理论发展及应用的一些个人认识

对线性系统理论发展及应用的一些个人认识

系统控制的理论和实践被认为是20世纪对人类生产活动和社会发生重大影响的科学领域之一。在系统和控制科学领域内,线性系统是基本的研究对象,并在过去几十年中取得了众多结果和重要进展,已经形成和发展为相当完整和相当成熟的线性系统理论。线性系统理论的重要性首先在于它的基础性,其大量的概念、方法、原理和结论,对于系统与控制理论的许多学科分支,诸如最优控制、非线性控制、鲁棒控制、随机控制、智能控制、系统辨识和参数估计、过程控制、数字滤波和通信系统等,都具有重要和基本的作用。

从上个世纪三十年代以来,人们就对线性系统进行了广泛的研究,起初主要是频域方法;而且,几乎所有的工作都是针对单输入单输出系统的。这种经典的控制方法一旦推广到多输入多输出系统立即显现出一系列重大缺陷,所设计出的系统甚至不能保证系统的稳定性。

五十年代后期,多变量、时变系统在航空航天、过程控制、计量经济学等的应用中已经变得日益重要,特别是航空航天控制中对时变系统以及相关的时域分析的研究,促使以美国科学家Bellman和Kalman为代表的研究人员对有限维线性系统的状态空间描述方法进行了深入的研究,导致了可控性、可观测性等概念的提出。此后,又进一步在极点配置、二次型调节器设计、状态观测器和估计器、等价系统、解耦、实现等方面先后取得了进展。

1968年左右,人们发现这一领域的工作没有协调起来,很零散,一些重要的问题被忽视,于是要求对线性系统各方面工作进行统一处理。这就形成了“线性系统”这门学科。此后,线性系统理论不断得到发展,成为系统科学的基础。它的方法、概念体系己为许多学科领域所运用,是控制理论、网络理论、通讯理论以及一般系统理论的基础。

进入70年代以后,深入的工程实践凸显出了基于模型的线性系统的局限性,即系统缺乏对参数不确定性、干扰及未建模动态等的鲁棒性(Robustness)。众多的科学工作者在这个领域进行了长时间、艰苦的研究,到80年代初,在若干领域取得了一系列激动人心的突破,最典型的是加拿大学者 Zames 提出的H-infinity鲁棒控制理论,以及以前苏联数学家Kharitonov在微分方程上的贡献为基础发展起来的区间系统理论。这些都极大丰富了人们对线性系统的认识。

线性系统理论着重于研究线性系统状态的运动规律和改变这种运动规律的可能性和方法,以建立和揭示系统结构、参数和性能间的确立和定量的关系。通常,研究系统运动规律的问题称为分析问题,研究改变运动规律的可能性和方法的问题则为综合问题。从哲学的角度而言,前者属于认识系统的范畴,后者属于改造系统的范围。

回顾线性系统几十年的发展历程可以看到,它的每一个进步几乎都反映了航空航天等尖端技术对控制的更高要求,它是那样的基本和如此的深刻。很多实际系统(工程系统、生物系统、经济系统、社会系统等)都可用线性系统模型近似地描述,而线性系统理论和方法又比较成熟,因此它的应用范围十分广泛。除上述提到的航天领域外,在化工、机械、电机等技术领域中,线性系统理论都有应用实例。在科学领域中,线性系统理论的研究不但为控制理论的其他分支提供了理论基础,而且对数学研究也提出了一些有实际意义的新问题。

所以毫无疑问,在今后一个可以预见的长时间内,线性系统仍将是人们继续研究的对象”。

基于神经网络的非线性自适应控制研究毕业设计论文

摘要 神经网络自适应控制是基于自适应的基本原理,利用神经网络的特点设计而成的。它发挥了自适应与神经网络的各自长处,为非线性控制的研究提供了一种新方法。 本文基于Lyapunov稳定性理论,采用神经网络直接自适应控制的思想设计控制器,研究了一类带干扰的不确定非线性系统的控制问题。控制器主要是针对不确定非线性系统中存在的两类未知项——未知函数和未知外界干扰而设计,其中未知函数利用径向基函数神经网络来近似,外界干扰利用非线性阻尼项来抑制,这样可以充分利用神经网络的逼近特性,克服复杂系统难以建模等困难,并且系统稳定性和收敛性在给出的假设的条件下均能得到保证。最后设计程序进行仿真验证,在程序设计中,以高斯函数作为基函数,仿真结果表明在权值和控制的有界性方面取得了一定的效果。 本文第一章到第三章详细介绍了人工神经网络及神经网络控制的发展和研究现状;第四章主要介绍了径向基函数神经网络,并对其逼近能力进行仿真; 在结束语中展望了神经网络控制的发展前景,提出以后的研究方向。 关键词:RBF神经网络,自适应控制,不确定非线性系统 Abstract Neural network adaptive control is proposed combining adaptive control's advantages with neural network's characters and provides a new method for nonlinear control. Based on Lyapunov stability theorem and neural network direct adaptive control idea the control problem of a class of uncertain nonlinear system with disturbance is researched. The controller is designed arming at two kinds of uncertainties existing in nonlinear system--the unknown functions and the uncertain disturbance. In controller. the radial basis function neural network is used as approximation model for the unknown functions. and nonlinear damping term is used to counteract the disturbances. so neural network's better approximation capabilities can be utilized richly and the modeling difficulties can be avoided. Meanwhile. the controlled system's stability and convergence can be guaranteed under some assumptions. At last the program is designed to verify the effectiveness of the controller. In presented programs. Guassian function is used as basis function. Simulation results show that

线性系统理论

Linear Systems Theory: A Structural Decomposition Approach 线性系统理论: 结构分解法 Ben M. Chen (陈本美) 新加坡国立大学 Zongli Lin(林宗利) 美国弗吉尼亚大学 Yacov Shamash (雅科夫 司马诩) 美国纽约州立大学石溪分校

此书献给我们的家人 前两位作者谨以这中译版献给他们的母校 厦门大学

目录 绪论 1 导论和预览 1.1 背景 1.2 各章预览 1.3 符号和术语 2 数学基础 2.1 导论 2.2 矢量空间和子空间 2.3 矩阵代数和特性 2.3.1 行列式、逆和求导 2.3.2 秩、特征值和约当型 2.3.3 特殊矩阵 2.3.4 奇异值分解 2.4 范数 2.4.1 矢量范数 2.4.2矩阵范数 2.4.3 连续时间信号范数 2.4.4 离散时间信号范数 2.4.5 连续时间系统范数 2.4.6 离散时间系统范数 3 线性系统理论复习 3.1 导论 3.2 动态响应 3.3 系统稳定性 3.4 可控性和可观性 3.5 系统可逆性 3.6 常态秩、有限零点和无限零点3.7 几何子空间 3.8 状态反馈和输出馈入的特性3.9 练习

4 无驱动和/或无检测系统的分解 4.1 导论 4.2 自治系统 4.3 无驱动系统 4.4 无检测系统 4.5 练习 5. 正则系统的分解 5.1 导论 5.2 SISO系统 5.3 严格正则系统 5.4 非严格正则系统 5.5 结构化分解特性的证明 5.6 系统矩阵的Kronecker型和Smith型5.7 离散时间系统 5.8 练习 6 奇异系统的分解 6.1 导论 6.2 SISO奇异系统 6.3 MIMO描述系统 6.4 定理6.3.1的证明和性质 6.5 离散时间奇异系统 6.6 练习 7 双线性变换的结构化映射 7.1 导论 7.2 连续到离散时间系统的映射 7.3 离散时间到连续时间系统的映射7.4 定理7.2.1的证明 7.5 练习 8 系统因子分解 8.1 导论 8.2 严格正则系统 8.3 非严格正则系统 8.4 离散时间系统 8.5 练习 9 通过选择传感器/执行器实现的结构配置9.1 导论 9.2 同时有限和无限零点结构配置 9.2.1 SISO系统 9.2.2 MIMO系统

计算机模拟控制系统 建模设计

1绪论 1.1计算机控制系统 计算机控制系统是在自动化控制技术和计算机技术的飞速发展的基础上产生的,20世纪50年代中期,经典控制理论已经发展成熟,并在不少工程技术领域得到了成功的应用。随着复杂系统的设计和复杂控制规律的实现上很难满足更高的要求。现代控制理论的发展为自动控制系统的分析、设计与综合增添了理论基础,而计算机技术的发展为新型控制方法的实现提供了非常有效的手段,两者的结合极大的推动了自动控制技术的发展。进而计算机控制系统广泛的应用于工厂生产,逐渐融入于生产中,各类大型工厂均离不开计算机控制系统。 1.1.1系统的分类 按系统性能分:线性系统和非线性系统;连续系统和离散系统;定常系统和时变系统;确定系统和不确定系统。 1、线性连续系统:用线性微分方程式来描述,如果微分方程的系数为常数,则为定常系统;如果系数随时间而变化,则为时变系统。今后我们所讨论的系统主要以线性定常连续系统为主。 2、线性定常离散系统:离散系统指系统的某处或多处的信号为脉冲序列或数码形式。这类系统用差分方程来描述。 3、非线性系统:系统中有一个元部件的输入输出特性为非线性的系统。 1.1.2系统的数学模型 在线性系统理论中,一般常用的数学模型形式有:传递函数模型(系统的外部模型)、状态方程模型(系统的内部模型)、零极点增益模型和部分分式模型等。这些模型之间都有着内在的联系,可以相互进行转换。 1.2计算机模拟控制系统 模拟控制系统由给定输入、模糊控制器、控制对象、检测变送装置、反馈信号与给定输入的相加环节等组成。模拟控制系统的各处均为连续信号,在模拟系统中,给定值与反馈值经过比较器比较产生偏差,控制器对偏差进行调节计算,产生控制信号驱动执行机构,从而被控参数的值达到预期值。其典型结构如下图所示:

线性系统理论历年考题

说明: 姚老师是从07还是08年教这门课的,之前的考题有多少参考价值不敢保证,也只能供大家参考了,重点的复习还是以课件为主,把平时讲的课件内容复习好了,考试不会有问题(来自上届的经验)。 祝大家考试顺利! (这个文档内部交流用,并感谢董俊青和兰天同学,若有不足请大家见谅。) 2008级综合大题 []4001021100101 1 2x x u y x ???? ????=-+????????-????= 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定; 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵2 14161 24,() 2.0 0M B AB A B rank M ?? ?? ??==-=???????? 系统不完全可控,不能任意配置极点。

2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1 1 401200 1P -?? ??=-?????? ,求得120331 1066 00 1P ?? ????? ?=-????????? ? 进行变换[] 1 1 20831112,0,2 2 26000 1 A PAP B PB c cP --? ? ?? ???? ????=-====???? ??????????? ? 所以系统不可简约实现为[]08112022x x u y x ?????=+???????????=? 3. 1 2(1)(1)2(1)()()(4)(2)(1) (4)(2) s s s G s c sI A B s s s s s --+-=-= = -++-+ 4. det()(4)(2)(1)sI A s s s -=-++, 系统有一极点4,位于复平面的右部,故不是渐近稳定。 1 2(1)()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11 228,12T k k k k A Bk k +???? =+=??? ??? ?? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程* 2 ()(2)(3)56f s s s s s =++=++

弹簧 质量 阻尼系统的建模与控制系统设计

分数: ___________ 任课教师签字:___________ 华北电力大学研究生结课作业 学年学期:第一学年第一学期 课程名称:线性系统理论 学生姓名: 学号:

提交时间:目录

弹簧-质量-阻尼系统的建模与控制系统设计 1 研究背景及意义 弹簧、阻尼器、质量块是组成机械系统的理想元件。由它们组成的弹簧-质量-阻尼系统是最常见的机械振动系统,在生活中具有相当广泛的用途,缓冲器就是其中的一种。缓冲装置是吸收和耗散过程产生能量的主要部件,其吸收耗散能量的能力大小直接关系到系统的安全与稳定。缓冲器在生活中处处可见,例如我们的汽车减震装置和用来消耗碰撞能量的缓冲器,其缓冲系统的性能直接影响着汽车的稳定与驾驶员安全;另外,天宫一号在太空实现交会对接时缓冲系统的稳定与否直接影响着交会对接的成功。因此,对弹簧-质量-阻尼系统的研究有着非常深的现实意义。 2 弹簧-质量-阻尼模型 数学模型是定量地描述系统的动态特性,揭示系统的结构、参数与动态特性之间关系的数学表达式。其中,微分方程是基本的数学模型,不论是机械的、液压的、电气的或热力学的系统等都可以用微分方程来描述。微分方程的解就是系统在输入作用下的输出响应。所以,建立数学模型是研究系统、预测其动态响应的前提。通常情况下,列写机械振动系统的微分方程都是应用力学中的牛顿定律、质量守恒定律等。 弹簧-质量-阻尼系统是最常见的机械振动系统。机械系统如图所示,

图2-1弹簧-质量-阻尼系统机械结构简图 其中、表示小车的质量,表示缓冲器的粘滞摩擦系数,表示弹簧的弹性系数,表示小车所受的外力,是系统的输入即,表示小车的位移,是系统的输出,即,i=1,2。设缓冲器的摩擦力与活塞的速度成正比,其中,, ,,,。系统的建立 由图,根据牛顿第二定律,分别分析两个小车的受力情况,建立系统的动力学模型如下: 对有: 对有:

RC有源带通滤波器设计与仿真

RC 有源带通滤波器设计与仿真 摘要:简要介绍Pspice10.5的特点以及其实现有源滤波器仿真的基本方法,实现了带通滤波器设计,用仿真软件Pspice 对设计结果进行了仿真。 关键词:有源模拟滤波器;Pspice;仿真;设计 引言 随着数字化进程的不断推进,数字滤波器越来越广泛的应用在各个领域之中。但是模拟滤波器凭借自身的优势仍然有很高的研究价值。所有数字系统的前端,一般需要一个对微弱信号预处理的部分;在抽样量化之前,还需要一个对信号最高频率进行限制的处理。这些都只能使用模拟滤波器。RC 有源滤波器是模拟滤波器中最实用、应用范围最广泛的滤波器。其标准化电路的种类很少,仅使用及R 、C 元件,因此非常便于集成,这给推广应用带来革命性影响。因为不使用电感、特别是大型电感,也因为运放在性能的飞速提高的同时价格却一降再降,所以在成本方面有源滤波器已经变得比无源滤波器还有优势。本文基于这一点简单介绍了RC 有源滤波器的结构,以基于实现带通波器设计为例,完成了其设计过程,并利用电子仿真软件Pspice 进行了仿真。 1、OrCAD/Pspice10.5简介 对于仿真技术而言,目前最流行的是以美国伯克利分校开发的Spice 为核心的仿真软件,而以Spice 为核心开发的最好的仿真软件是OrCAD/Pspice10.5。它之所以流行就是因为他能很好地运行在PC 平台上且能很好地进行模拟数字混合信号的仿真,而且能解决很多设计上的实际问题。OrCAD10.5在以前版本的基础上扩展了许多功能,包括供设计输入的OrCADCaptureR ,供类比与混合讯号模拟用的PspiceRA/DBasics ,供电路板设计的 OrCADLayoutR 以及供高密度电路板自动绕线的SPECCTRAR 4U 。新加入的SPECCTRA ,用以支援设计日益复杂的各种高速、高密度印刷电路板设计。 OrCAD/PSpice 10.5软件的功能特点有: (1)对模拟电路不仅可进行直流、交流、瞬态等基本电路特性分析,而且可进行参数扫描分析和统计分析。 (2)以OrCAD/Capture 作为前端,除了以利用Capture 的电路图输入这一基本功能外,还可以实现OrCAD 中设计项目统一管理。 (3)将电路模拟结果和波形显示分析两个模块集成在一起。Probe 只是其中的一个窗口,在屏幕上可同时显示波形和输出文本等内容,Probe 还具有电路性能分析功能。 (4)使用PSpice 优化器能调整电路,在一定的约束条件下,对电路的某些参数进行调整,直到电路的性能达到要求为止。 2、RC 有源滤波器的设计 根据线性系统理论,n 阶滤波器的传递函数的一般形式为 11 10 111)()()(a s a s a s b s b s b s b s U s U s A n n n m m m m i o ++++++++==---- (1) (1)式中,m ≤n ;一个复杂的传递函数可以分解成几个简单的传递函数的乘积。上式中, 若n 为偶数,可分解为n/2个二阶滤波器的级联;而若n 为奇数,则可分解成一个一阶滤波器和(n-1)/2个二阶滤波器的级联。一阶、二阶滤波器是构成高阶滤波器的基本单元,二阶 滤波器单元传递函数可以写为:0 120 122)(a s a s b s b s b s A ++++=,其中分子系数0b 、1b 、2b 决定了 传递函数的零点位置,即决定滤波器类型(低通、高通、带通、带阻),分母系数1a 、0a 决

信息光学习题答案

信息光学习题答案 第一章 线性系统分析 1.1 简要说明以下系统是否有线性和平移不变性. (1)()();x f dx d x g = (2)()();?=dx x f x g (3)()();x f x g = (4)()()()[];2 ? ∞ ∞ --= αααd x h f x g (5) ()()απξααd j f ?∞ ∞ --2exp 解:(1)线性、平移不变; (2)线性、平移不变; (3)非线性、平移不变; (4)线性、平移不变; (5)线性、非平移不变。 1.2 证明)()ex p()(2x comb x j x comb x comb +=?? ? ??π 证明:左边=∑∑∑∞ -∞ =∞-∞=∞-∞=-=??? ???-=??? ??-=??? ??n n n n x n x n x x comb )2(2)2(2122δδδ ∑∑∑∑∑∑∞ -∞ =∞ -∞ =∞ -∞=∞ -∞=∞ -∞ =∞ -∞ =--+-= -+-=-+-= +=n n n n n n n n x n x n x jn n x n x x j n x x j x comb x comb ) () 1()() ()exp()() ()exp()()exp()()(δδδπδδπδπ右边 当n 为奇数时,右边=0,当n 为偶数时,右边=∑∞ -∞ =-n n x )2(2δ 所以当n 为偶数时,左右两边相等。 1.3 证明)()(sin x comb x =ππδ 证明:根据复合函数形式的δ函数公式 0)(,) () ()]([1 ≠''-= ∑ =i n i i i x h x h x x x h δδ 式中i x 是h(x)=0的根,)(i x h '表示)(x h 在i x x =处的导数。于是 )() ()(sin x comb n x x n =-=∑∞ -∞ =π δπ ππδ

新版哈尔滨工程大学电子信息考研经验考研参考书考研真题

备考的时候唯一心愿就是上岸之后也可以写一篇经验贴,来和学弟学妹们分享这一年多的复习经验和教训。 我在去年这个时候也跟大家要一样在网上找着各种各样的复习经验贴,给我的帮助也很多,所以希望我的经验也可以给你们带来一定帮助,但是每个人的学习方法和习惯都不相同,所以大家还是要多借鉴别人的经验,然后找到适合自己的学习方法,并且坚持到底! 时间确实很快,痛也快乐着吧。 我准备考研的时间也许不是很长,希望大家不要学我,毕竟考研的竞争压力是越来越大,提前准备还是有优势的,另外就是时间线只针对本人,大家可以结合实际制定自己的考研规划。 在开始的时候我还是要说一个老生常谈的话题,就是你要想明白自己为什么要考研,想明白这一点是至关重要的。如果你是靠自我驱动,是有坚定的信心发自内心的想要考上研究生,就可以减少不必要的内心煎熬,在复习的过程中知道自己不断的靠近自己的梦想。 好了说了一些鸡汤,下面咱们说一下正经东西吧,本文三大部分:英语+政治+专业课,字数比较多,文末分享了真题和资料,大家可自行下载。 哈尔滨工程大学电子信息的初试科目为: (101)思想政治理论(202)俄语(301)数学一(810)自动控制原理 或(101)思想政治理论(203)日语(301)数学一(810)自动控制原理 或(101)思想政治理论(201)英语一(301)数学一(810)自动控制原理 参考书目为: 《自动控制原理》,刘胜编著,哈尔滨工程大学出版社,2015年;

《线性系统理论》,郑大钟编著,清华大学出版社,2002 跟大家先说一下英语的复习吧。 学英语免不了背单词这个难关,词汇量上不去,影响的不仅是考试成绩,更是整体英语能力的提升;背单词也是学习者最感到头痛的过程,不是背完了转身就忘,就是背的单词不会用,重点单词主要是在做阅读的时候总结的,我把不认识不熟悉的单词全都挑出来写到旁边,记下来反复背直至考前,总之单词这一块贵在坚持,背单词的日程一定要坚持到考研前一天。 因此,学会如何高效、科学地记忆词汇,养成良好的记单词习惯,才能达到事半功倍的学习效果,我用的是《木糖英语单词闪电版》,里面的高频词汇都给列出来了,真的挺方便的,并且刷真题我用的《木糖英语真题手译》这本书,我感觉对我帮助特别大,里面的知识点讲解的通俗易懂,而且给出的例子都很经典,不容易忘记。 前期,在这段时间最重要的是积累,也就是扩充自己的词汇量,基础相对差一些的同学可以背考研单词,而基础相对好一些的同学考研单词相对于你来说就会比较简单,这时就不必浪费时间,可以进行外刊阅读。由于考研英语阅读的文章全部都是从外刊中摘录的,所以进行外刊阅读就可以把其当作“真题”的泛读。 中期,在期末考试和小学期结束之后就要开始做真题了,我从最早的那年开始一路做下来,留了三套考前模拟,大概是有二十多套。我一般会第一天做一套然后后面花1~2天的时间对文章进行精读及分析错误原因。早些年的英语出题有相当难度,考察的有不少都是很复杂的句式及熟词僻义,这与近几年的考察角度是完全不同的,所以我建议时间不多的同学完全可以放弃早些年的真题,然后时间比较充足的同学可以做一做,但是不需要因为错很多,而丧失信心,我记得

线性系统理论相关的matlab应用

控制系统的分析方法 >早期的控制系统分析过程复杂而耗时,如想得到一个系统的冲激响应曲线,首先需要编写一个求解微分方程的子程序,然后将已经获得的系统模型输入计算机,通过计算机的运算获得冲激响应的响应数据,然后再编写一个绘图程序,将数据绘制成可供工程分析的响应曲线。 > MATLAB控制系统工具箱和SIMULINK辅助环境的出现, 给控制系统分析带来了福音。 >控制系统的分析包括系统的稳定性分析、时域分析、频域分析及根轨迹分析。本课件是关于状态空间的时域分析

利用MATLAB进行模型转换 MATLAB是当今世界上最优秀的科技应用软件之一,它以强大 的科学计算能力和可视化功能,简单易用的编程语言以及开放式的编程环境等一些显著的优点,使得它在当今许许多多科学技术领域中成为计算机辅助分析和设计、算法研究和应用开发的基本工具和首选平台。在本书中,用它作为系统分析和设计的软件平台,更显示出独特的优毎。 本节利用MATLAB实现数学模型的转换。 1 -1传递函数与状态空间表达式之间的转换 1).连续系统状态空间表达式 可以用ss命令来建立状态空间模型。对于连续系统,其格 式为sys=ss(A5B5C5D),其中A, B, C, D为描述线性连续系统的矩阵。 当sys1是一个用传递函数表示的线性定常系统时,可以用命令sys=ss(sys1),将其转换成为状态空间形式。也可以用命令 sys=ss(sys1/ mirf )计算出系统sys的最小实现。

例1控制系统微分方程为 y ⑷ +1 oy + 35》+ 50$ + 24y = u+ lit + 24w + 24u 求 其状态空间表达式。 可以先将其转换成传递函数 ,+7异+24$ + 24 54+1053+3552+5054-24 输入下列命令 num=[l 7 24 24]; den=[l 10 35 50 24]; % 另子"分母多项式 G=tf^ den); 菠荻得系统的传递函数模型 sys=ss(G;l 语句执行结果为 b = ul xl 1 x2 0 x3 0 x4 0 xl x2 x3 x4 ul yl 1 0.4375 0.3T5 0. 1875 y i o ContinuouE-time model. 这个结果表示,该系统的状态空间表达式为

大学matlab课程设计图像的傅里叶变换及其应用

课程名称: MATLAB及在电子信息课程中的应用实验名称:图像的傅里叶变换及其应用 设计四图像的傅里叶变换及其应用

一、设计目的 通过该设计,掌握傅里叶变换的定义及含义。 二、设计内容及主要的MATLAB 函数 1、图像的离散傅里叶变换 假设),(n m f 是一个离散空间中的二维函数,则该函数的二维傅里叶变换定义为 n j m j e e n m f f 21),()2,1(ωωωω--∞∞-∞∞-∑∑= 其中21ωω和是频域变量,单位是弧度/采样单元。函数),(21ωωf 为函数),(n m f 的频谱。 二维傅里叶反变换的定义为21212121),(),(ωωωωωωπ πωππωd d e e f n m f n j m j ??-=-== 因此,函数),(n m f 可以用无数个不同频率的复指数信号的和表示,在频率),(21ωω处复指数信号的幅度和相位为),(21ωωf MATLAB 提供的快速傅里叶变换函数 1)fft2:用于计算二维快速傅里叶变换,其语法格式为 b=fft2(I),返回图像I 的二维傅里叶变换矩阵,输入图像I 和输出图像B 大小相同; b=fft2(I,m,n),通过对图像I 剪切或补零,按用户指定的点数计算二维傅里叶变换,返回矩阵B 的大小为m ?n 。 很多MATLAB 图像显示函数无法显示复数图像,为了观察图像傅里叶变换后的结果,应对变换后的结果求模,方法是对变换结果使用abs 函数。 2)fftn :用于计算n 维快速傅里叶变换,其语法格式为 b=fftn(I),计算图像的n 维傅里叶变换,输出图像B 和输入图像I 大小相同; b=fftn(I, size),通过对图像I 剪切或补零,按size 指定的点数计算n 维傅里叶变换,返回矩阵B 的大小为size 。 3) fftshift :用于将变换后的图像频谱中心从矩阵的原点移到矩阵的中心,其语法格式为 b=fftshift(I),将变换后的图像频谱中心从矩阵的原点移到矩阵的中心。

空军工程大学博士研究生入学试题[001]

空军工程大学2016年博士研究生入学试题 考试科目:线性系统理论(A卷)科目代码3003 说明:答题时必须答在配发的空白答题纸上,答题可不抄题,但必须写清题号,写在试题上不给分;考生不得在试题及试卷上做任何其它标记,否则试卷作废,试题必须同试卷一起交回。 一、填空题(每空2分,共20分) (1)状态变量组数学上表征为一个极大变量组。(2)线性系统时域运动分析的核心在于揭示系统状态相对于和 的演化规律。 (3)系统完全能控和系统完全互为等价关系。 (4)系统的稳定性可分为稳定性和稳定性,其中,前者又被称为“BIBO稳定性”。 (5)对连续时间线性时不变系统,系统则必定为BIBO稳定,反之则未必。 (6)控制系统的综合归结为。 (7)一般来说,反馈的类型可分为和。 二、计算题(每小题5分,共15分) (1)确定微分方程3523 &&&&&&的一个状态空间描述。 y y y y u +-+=

(2)计算下列状态空间描述的传递函数G(s) 140321[10]x x u y x ????=+????--????=& (3)化以下线性系统为约当标准型 010341[20]x x u y x ????=+????--???? =& 三、(15分)假设系统状态方程如下 112201230x x u x x ????????=+????????--? ???????&&1 [20]y x = 请: (1)计算状态转移矩阵 (2)求解状态方程的解 (3)判断系统的能控能观性 四、(15分)利用Lyapunov 稳定性判据,分析如下系统的稳定性。 (1) 22121122221212() ()x x cx x x x x cx x x =++=-++&& (2)

线性系统理论综述

线性系统理论课程大作业论文线性系统理论综述及其应用

这学期学习的线性系统理论属于系统控制理论的一个最为基本和成熟发展的分支,主要包括以下内容:介绍采用系统理论解决工程问题的一般步骤,明确建模、分析、综合在解决实际问题中的作用,并重点介绍线性系统模型的特征和分析方法;介绍系统的状态空间描述,结余状态空间方法的分析和系统结构特征和结构的规范分解以及状态反馈及其性质等。 一.线性系统理论研究内容综述 系统是系统控制理论所要研究的对象,从系统控制理论的角度,通常将系统定义为由相互关联和相互制约的若干部分组成的具有特定功能的整体。 动态系统是运动规律按照确定规律或者确定的统计的规律岁时间演化的一类系统,动态系统的行为由各类变量间的关系来表征,系统的变量可以分为三种形式,一类是反映外部对系统的影响或者作用的输入变量组,如控制、投入、扰动等;二是表征系统状态行为的内部状态变量组;三是反映系统外部作用或影响的输入变量组如响应,产出。表征系统动态的过程的数学描述具有两类基本形式,一是系统的内部描述,另一组是输入变量对状态变量的组的动态影响。从机制的角度来看,动态系统可被分类为连续系统变量动态系统和离散事件动态系统;从特征的角度,动态系统可分别分类为线性系统和非线性系统,参数集成系统和分布参数系统;从作用时间类型角度,动态系统可被称为连续时间系统和离散时间系统。 线性系统理论是系统控制理论最为成熟和最为基础的分支。他是现代控制理论的一个重要组成部分,也是对经典控制理论的延申。现代控制理论主要是着重研究现性状态的运动规律和改变这种规律的可能性和方法。线性系统的理论和方法是建立在建模的基础上。在建模的基础上,可以进一步把线性系统的理论进一步区分为“分析理论”和“综合理论”。分析理论分为定量分析和定性分析,定量分析是着重于研究对系统性能和控制具有重要意义的结构特性。系统综合理论是建立在分析的基础上,系统综合目的是使系统的性能达到期望的指标或实现最优化。 线性系统理论的研究对象为线性系统,线性系统为最为简单和最为基本的一类动态系统。线性系统理论是系统控制理论中最为充分、发展最为成熟和应用最为广泛的一个开支。线性系统的的一个基本特征是其模型满足线性叠加原理。对于线性系统的研究也可以进一步分为线性是不变系统和线性时不变系统两类。对系统进行建模也是控制理论中具有重要的作用。对系统建模的作用多样性和基本型、途径以及系统的建模的准则=====系统建模的简单性和分析的结果的准确性之间做出适当的折中。 线性控制理论在1960年前后开始了从经典控制理论到现代理论的过渡。反应这种过渡的重要标志成果是,卡尔曼把在分析力学中广为采用的状态空间描

全维状态观测器的设计

实 验 报 告 课程 线性系统理论基础 实验日期 2016年 6月 6 日 专业班级 学号 同组人 实 验 名 称 全 维 状 态 观 测 器 的 设 计 评分 批阅教师签字 一、实验目的 1. 学习用状态观测器获取系统状态估计值的方法,了解全维状态观测器的极点对状态的估计误差的影响; 2. 掌握全维状态观测器的设计方法; 3. 掌握带有状态观测器的状态反馈系统设计方法。 二、实验容 开环系统? ??=+=cx y bu Ax x ,其中 []0100001,0,10061161A b c ????????===????????--???? a) 用状态反馈配置系统的闭环极点:5,322-±-j ; b) 设计全维状态观测器,观测器的极点为:10,325-±-j ; c) 研究观测器极点位置对估计状态逼近被估计值的影响; d) 求系统的传递函数(带观测器及不带观测器时);

绘制系统的输出阶跃响应曲线。 三、实验环境 MATLAB6.5 四、实验原理(或程序框图)及步骤 利用状态反馈可以使闭环系统的极点配置在所希望的位置上,其条件是必须对全部状态变量都能进行测量,但在实际系统中,并不是所有状态变量都能测量的,这就给状态反馈的实现造成了困难。因此要设法利用已知的信息(输出量y和输入量x),通过一个模型重新构造系统状态以对状态变量进行估计。该模型就称为状态观测器。若状态观测器的阶次与系统的阶次是相同的,这样的状态观测器就称为全维状态观测器或全阶观测器。 设系统完全可观,则可构造如图4-1所示的状态观测器 图4-1 全维状态观测器 为求出状态观测器的反馈ke增益,与极点配置类似,也可有两种方法: 方法一:构造变换矩阵Q,使系统变成标准能观型,然后根据特征方程求出k e ; 方法二:是可采用Ackermann公式:

线性系统理论多年考题和答案

2008级综合大题 []400102110010112x x u y x ????????=-+????????-????=& 1 能否通过状态反馈设计将系统特征值配置到平面任意位置? 2 控规范分解求上述方程的不可简约形式? 3 求方程的传递函数; 4 验证系统是否渐近稳定、BIBO 稳定、李氏稳定;(各种稳定之间的关系和判定方法!) 5 可能通过状态反馈将不可简约方程特征值配置到-2,-3?若能,确定K ,若不能,请说明理由; 6 能否为系统不可简约方程设计全阶状态观测器,使其特征值为-4,-5; 7画出不可简约方程带有状态观测器的状态反馈系统结构图。 参考解答: 1. 判断能控性:能控矩阵21416124,() 2.000M B AB A B rank M ?? ????==-=???? ???? 系统不完全 可控,不能任意配置极点。 2 按可控规范型分解 取M 的前两列,并加1与其线性无关列构成1140120001P -????=-??????,求得1203311066 001P ?? ?? ?? ??=-?????? ???? 进行变换[]11 20831112,0,22260001A PAP B PB c cP --? ??????? ????=-====???? ???????? ????

所以系统不可简约实现为[]08112022x x u y x ?????=+?????????? ?=? & 3. 12(1)(1)2(1) ()()(4)(2)(1)(4)(2) s s s G s c sI A B s s s s s --+-=-= =-++-+ 4. det()(4)(2)(1)sI A s s s -=-++,系统有一极点4,位于复平面的右部,故不是渐近稳定。 12(1) ()()(4)(2) s G s c sI A B s s --=-= -+,极点为4,-2,存在位于右半平面的极点,故系统不 是BIBO 稳定。 系统发散,不是李氏稳定。 5. 可以。令11228,12T k k k k A Bk k +???? =+=???????? 则特征方程[]2 112()det ()(2)28f s sI A Bk s k s k k =-+=-++-- 期望特征方程*2 ()(2)(3)56f s s s s s =++=++ 比较上两式求得:728T k -?? =??-?? 6. 可以。设12l L l ??=????,则11222821222l l A LC l l --?? -=? ?--?? 特征方程2 2121()(222)1628f s s l l s l l =+-++-- 期望特征方程*2 ()(4)(5)920f s s s s s =++=++ 比较得:103136L ???? =????????

线性系统理论试卷

湘潭大学研究生考试试题 考试科目:线性系统理论/现代控制理论考生人数:20考试形式:闭卷 适用专业: 双控单控/电传 适用年级:一年级 试卷类型: A 类 一、给定多项式矩阵如下: 22121()1 2s s s s D s s s ?? ?????? ++++= ++ 1. 计算矩阵的行次数,判断系统是否行既约? 2. 计算矩阵的列次数,判断系统是否列既约? 3. 寻找单模矩阵,将多项式矩阵()D s 化为史密斯型。 二、设系统的传递函数矩阵为右MFD 1()()N s D s -,其中: 210 ()21s D s s s s ? ? ????? ? -= +-+,()11N s s s ???? =-+ 试判断{}(),()N s D s 是否右互质;如果不是右互质,试通过初等运算找出其最大右公因子。 三、给定()G s 的一个左MFD 为: 1 210 1 0()112 1s s G s s s s -? ? ?? ?????????? ? ? -+= +-+ 试判断这个MFD 是否是最小阶的;如果不是,求出其最小阶MFD 。 四、确定下列传递函数矩阵的一个不可简约左MFD : 21 1 0()102 2s s s G s s s s s ????????? ? ?? += +++ 五、给定系统的传递函数矩阵为

22 3 (1)(2)(1)(2)()31(1)(2) (2)s s s s s s G s s s s s s ???? ?? ??????? ? +++++= +++++ 试计算出相应的评价值,并写出其史密斯--麦克米伦型。 六、给定传递函数矩阵如下: 2 2221156()1253 43s s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试定出其零、极点,并计算出其结构指数。 七、给定系统的传递函数矩阵如下: 2 2211 154()14 3 712s s s s G s s s s s ???? ?? ??? ? ?? +-++= ++++ 试求出一个控制器型实现。 八、确定下列传递函数矩阵()G s 的一个不可简约的PMD 2 2 141()143 32s s s s G s s s s s ?? ?? ?? ??? ??? ++-= ++++ 九、给定系统的传递函数矩阵如下: 1 2 2 430 11()221 21s s s s G s s s s s -?????? ??????? ?? ? ++-+= +++ 试设计一个状态反馈K,使得状态反馈系数的极点为: 12λ*=-, 23λ*=-, 4,5 42j λ* =-±

北航线性系统理论完整版答案

1-1 证明:由矩阵 可知A 的特征多项式为 n n n n n n n n n n n n n n n a a a a a a a a a a a a a a a a a a a a a a a A I ++++++=+++++=+++=++=+= -+λλλλλλλλλλ λλλλλ λλλλ λλλλ1-3-32-21-11-3-31 22 -2-1-n 1 3-n 2-n 2 1 -1n 1 2-n 1-n 12-n 1-n n 1- )1(-)1(- 0 0 0 1- )1(-)1(- 0 0 0 1- 1 0 1- 0 0 0 1- 若i λ是A 的特征值,则 所以[] T i i 1-n i 2 1 λλλ 是属于i λ的特征向量。 1-7 解:由于()τ τ--t e t g =,,可知当τ≤-=-=αα ββαβαt u t u P u Q P 而()()?? ?+>+≤-=???>≤=βαβαβααβαβ t 0 t t 0 t t u t u Q u P Q ,故u P Q u Q P αββα≠,所以系统是时变的。 又因为()()()()()?? ?>≤=???>≤=ααααα,,T T t u t u P u P P T T min t 0 min t t 0 t 而()()()()()()() ?? ?>≤=???>≤=ααααα,,,,T T t u T T t u P u P P P T T T min t 0 min t min t 0 min t ,故()()u P P P u P P T T T αα=,所以系统具有因果性。 1-11 解:由题设可知,()τ-t g 随τ变化的图如下所示。

线性系统理论

线性系统理论之观察 摘要 系统控制的理论和实践被认为是20世纪对人类生产活动和社会发生重大影响的科学领域之一。在系统和控制科学领域内,线性系统是基本的研究对象,并在过去几十年中取得了众多结果和重要进展,已经形成和发展为相当完整和相当成熟的线性系统理论。线性系统理论的重要性首先在于它的基础性,其大量的概念、方法、原理和结论,对于系统与控制理论的许多学科分支,诸如最优控制、非线性控制、鲁棒控制、随机控制、智能控制、系统辨识和参数估计、过程控制、数字滤波和通信系统等,都具有重要和基本的作用,成为学习和研究这些学科必不可少的基础知识。 关键词最优控制、非线性控制、鲁棒控制、随机控制、智能控制、系统辨识和参数估计、过程控制、数字滤波和通信系统等 线性系统理论的主要内容 线性系统理论着重于研究线性系统状态的运动规律和改变这种运动规律的可能性和方法,以建立和揭示系统结构、参数和性能间的确立和定量的关系。通常,研究系统运动规律的问题称为分析问题,研究改变运动规律的可能性和方法的问题则为综合问题。从哲学的角度而言,前者属于认识系统的范畴,后者属于改造系统的范围。 线性系统的理论和方法是建立在其模型基础之上的。不管是对系统进行分析还是综合,一个首要的前提是建立器系统数学模型。建立模型时,最重要的是确定什么是需要反映和研究的主要系统属性,并在此基础上来定出他们的定量关系。随着所观察问题的性质的不同,

一个系统可以有不同的模型,它们代表了系统不同侧面的属性。系统数学模型的基本要素是变量、参量、常量和它们之间的关系。变量包括状态变量、输入变量和输出变量,有些情况下还需考虑扰动变量。参量可以是系统的参数或表征系统性能的参数,前者受系统环境的影响课产生变动,后者可随设计要求而人为地改变其取值。常量是指系统中不随时间改变的参数。线性系统的数学模型有两种主要形式,即时间域模型和频率域模型。时间域模型变现为微分方程组或差分方程组,可同时适用于线性时不变和线性时变系统。频率域模型表现为传递函数和频率响应,只适用于线性时不变系统。对应于系统的这两项模型,已经发展和形成线性系统理论中的两类不同方法。 (1)线性系统分析理论 (2)线性系统综合理论 线性系统理论的主要内容包括:①与系统结构有关的各种问题,例如系统的结构分解问题和解耦问题等。系统结构的规范分解(见能观测性)是其中的著名结果。②关于控制系统中反馈作用的各种问题,包括输出反馈和状态反馈对控制系统性能的影响和反馈控制系统的综合设计等问题。极点配置是这方面的主要研究课题。③状态观测器问题,研究用来重构系统状态的状态观测器的原理和设计问题。④实现问题,研究如何构造具有给定的外部特性的线性系统的问题,主要研究课题是最小实现问题。⑤几何理论,即用几何观点研究线性系统的全局性问题(见线性系统几何理论)。⑥代数理论,用抽象代数方法研究线性系统,把线性系统理论抽象化和符号化。其中最有名的是模

热电系统的热网变量与设计

热电系统的热网变量与设计 集中供热系统已经成为现代化城市的重要基础设施,在世界范围内得到迅速的发展和广泛的应用。供热管网作为供热系统的重要组成部分,具有规模大、结构复杂,投资巨大的特点。本文依据线性系统理论分析供热系统运行特点,建立了用“周期供热量”管理供热系统热力平衡的理论体系。通过应用说明了这种新理论体系具有好的可操作性。 标签热网;变量;优化设计;周期供热量;热力平衡 目前热网的有关技术的研究不断深入,但是热网的优化设计、可靠性分析、参数辨识和热网的故障诊断等方面的研究仍旧是热网研究中的薄弱环节。目前的热网研究中,基本上都是将热网中的物理量如管道阻力数、热用户负荷等作为确定性变量进行研究,但实际上热网中的物理量大部分都具有不确定的特点,这些物理量的不确定性会影响热网的设计计算和运行工况分析的结果,目前在热网中尚没有开展这方面的研究。本文着重研究热网中的管段阻力数和热用户负荷的随机性导致的其他变量的不确定性问题,以及研究考虑热用户负荷、热用户资用压头和管段阻力数的随机性热网优化设计方法。 基于概率论和网络图论的有关理论,本文首先求解热网中管段流量和节点压力对管段阻力数一阶导数矩阵,这是进行随机性影响分析的基础。利用Taylor一阶近似的方法研究管段阻力数的随机性所导致的管段流量和节点压力的随机性问题,研究表明采用Taylor一阶近似的情况下,管段流量和节点压力服从正态分布。求解管段流量和节点压力的方差和数学期望,并给出在一定置信度条件的管段流量和节点压力的置信区间。结合算例分析了管段阻力数的随机性对管段流量和节点压力的具体影响。为了提高热网变量随机性影响分析的精度,利用Taylor 二阶近似的方法分析管段阻力数的随机性引起的管段流量和节点压力的随机性问题。 首先在热网管段流量和节点压力对管段阻力数的一阶导数矩阵基础上,推导出二阶导数矩阵的表达式。利用蒙特卡洛方法对各管段流量和各节点压力进行随机抽样,并使用SPSS软件和偏度、峰度方法对其进行正态性检验。结合算例研究了Taylor一阶近似与二阶近似的差别。除研究热网管段阻力数的随机性影响外,本文研究了用户热负荷的随机性对管段流量和节点压力的影响。求解管段流量和节点压力对节点流量的一阶导数矩阵,利用Taylor一阶近似的方法分析由于热用户流量的随机性所导致的热网管段流量和节点压力的随机性问题。结果表明在Taylor一阶近似时,各管段流量和节点压力服从正态分布。在此基础上求解他们的方差、数学期望及在一定置信度条件的置信区间。结合算例分析热用户负荷的随机性对管段流量和节点压力的具体影响。在混沌理论和传统的遗传模拟退火算法基础上,提出一种基于混沌理论的改进模拟退火算法,用于进行热网确定性优化设计计算。 结合算例的分析表明,与传统模拟退火算法相比较,新算法在保证算法性能的

相关文档
最新文档