计算方法练习题集和答案解析

计算方法练习题集和答案解析
计算方法练习题集和答案解析

练习题与答案

练习题一

练习题二

练习题三

练习题四

练习题五

练习题六

练习题七

练习题八

练习题答案

练习题一

一、是非题

1.*x=–1

2.0326作为x的近似值一定具有6位有效数字,且其误差

限£

4

10

2

1

-

?

。 ( )

2.对两个不同数的近似数,误差越小,有效数位越多。()

3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用

2

1

2

x

-

近似表示c o s x产生舍入误差。

() 5. 3.14和 3.142作为π的近似值有效数字位数相同。() 二、填空题

1.为了使计算

()()

23

349

12

111

y

x x x

=+-+

---

的乘除法次数尽量少,

应将该表达式改写为;

2.*x=–0.003457是x舍入得到的近似值,它有位有效数字,误差限为,相对误差限为;

3.误差的来源是;

4.截断误差

为;

5.设计算法应遵循的原则

是。

三、选择题

1.*x=–0.026900作为x的近似值,它的有效数字位数为( ) 。

(A) 7; (B) 3;

(C) 不能确定 (D) 5.

2.舍入误差是( )产生的误差。

(A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值

(C) 观察与测量 (D) 数学模型准确值与实际值

3.用 1+x近似表示e x所产生的误差是( )误差。

(A). 模型 (B). 观测 (C). 截断 (D). 舍入

4.用s *=21

g t 2表示自由落体运动距离与时间的关系式 (g 为重力加速度),s t 是在时间t 的实际距离,则s t s *是( )误差。

(A). 舍入 (B). 观测 (C). 模型 (D). 截断

5.1.41300作为2的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题

1. 3.142,3.141,22

7分别作为π的近似值,各有几位有效数字?

2. 设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少?

3. 利用等价变换使下列表达式的计算结果比较精确:

(1)1||,11211<<+-++x x x x , (2) 1||1112<<+?+x dt t x x

(3) 1||,1<<-x e x , (4) 1)1ln(2>>-+x x x

4.真空中自由落体运动距离s 与时间t 的关系式是s =21

g t 2,g 为重力加速度。现设g 是精确的,而对t 有0.1±秒的测量误差,证明:当t 增加时,距离的绝对误差增加,而相对误差却减少。

5*. 7,取

??

???+==+)

7(21210k k k x x x x k =0,1,…, 若k x 7的具有n 位有效数字的近似值,求证1k x +7的具有2n 位有效数字的近似值。

练 习 题 二

一、是非题

1.

单点割线法的收敛阶比双点割线法低。 ( ) 2.

牛顿法是二阶收敛的。 ( ) 3.

求方程310x x --=在区间[1, 2]根的迭代法总是收敛的。 ( ) 4. 迭代法的敛散性与迭代初值的选取无关。 ( ) 5. 求非线性方程 f (x )=0根的方法均是单步法。 ( )

二、填空题

1. 1. 用二分法求非线性方程f (x )=0在区间(a ,b )的根时,二分n 次后的误差限为 ;

1. 2. 设)(x f 可微,求方程)(x f x =的牛顿迭代格式是 ;

2. 3. 用二分法求方程310x x +-=在区间[0,1]的根,进行一步后根的所

在区间为 ,要求准确到3

10-,则至少应二分 次;

3. 4. 2()(5)x x x ?α=+-,要使迭代格式1()k k x x ?+=局部收敛到

*x =α的取值围是 ;

4. 5. 求方程340x x +-=根的单点割线法是 ,

其收敛阶为 ;双点割线法是 ,其收敛阶为 。

三、计算题

1. 用二分法求方程210x x --=的正根,使误差小于0.05。

2. 求方程3210x x --=在0 1.5x =附近的一个根,将方程改写为下列等

价形式,并建立相应迭代公式。 (1) 211x x =+,迭代公式1211k k x x +=+;

(2) 321x x =+,迭代公式()12311k k x x +=+; (3) 211x x =-

,迭代公式1k x +=;

试分析每种迭代公式的收敛性,并选取收敛最快的方法求具有4位有效数字的近似值。

3.

02x =, 计算三次,保留三位小数。

4. 用割线法求方程3310x x --=的在0 1.5x =附近的一个根,精确到小数点后第二位。

四*、证明题

已知方程()0f x =,试导出求根公式

122()()

2[()]()()k k k k k k k f x f x x x f x f x f x +'=-'''-

并证明:当*x 是方程()0f x =的单根时,公式是3阶收敛的。

练 习 题 四

一、是非题

1.矩阵

??????????--=521352113A 具有严格对角优势。 ( ) 2.

??????????---=521351113A 是弱对角优势矩阵。 ( ) 3.高斯—塞德尔迭代法一定比雅可比迭代法收敛快。 ( )

4.1||||

x f 收敛的必要条件。 ( ) 5*. 逐次超松弛迭代法是高斯—赛德尔迭代法的一种加速方法。 ( )

二、填空题

1. 解方程组 ???=+=+0215321

21x x x x 的雅可比迭代格式(分量形式)为 , 该迭代矩阵的谱半径=)(1B ρ ;

2. 解方程组??

?=+=+021532121x x x x 的高斯—赛德尔迭代格式(分量形式)为 ,迭代矩阵=2B , 该迭代矩阵 的谱半径=)(2B ρ ;

3. 幂法的迭代公式为 ;

4*.QR 算法是用来求 矩阵的全部特征值的一种方法。

5*.雅可比方法是用来求 矩阵的全部特征值及特征向量的一种变换方法。

三、选择题

1. 解方程组b Ax =的迭代格式(1)()k k M +=+x x f 收敛的充要条件是( )

(A )1||||

(C )1)(

2.幂法的收敛速度与特征值的分布( )

(A )有关; (B )无关; (C )不一定。

3.幂法是用来求矩阵( )特征值及特征向量的迭代法。

(A )按模最大; (B )按模最小;

(C )任意一个; (D )所有的。

4.解代数线性方程组的松弛法收敛的必要条件是 ( )

(A )10<<ω; (B )10<≤ω;

(C )20<<ω; (D )20≤≤ω。

5.反幂法是用来求矩阵( )特征值及特征向量的迭代法。

(A )按模最大; (B )按模最小;

(C )任意一个; (D )所有的。

四、计算题

1.用简单迭代法(雅可比迭代法)解线性方程组

?????-=+--=+-=+841

35332132131x x x x x x x x

取(0)(0,0,0)T =x ,列表计算三次,保留三位小数。

2.用高斯—赛德尔迭代法解线性方程组

131231233531

48x x x x x x x x +=??-+=-??-+=-?

取(0)(0,0,0)T =x ,列表计算三次,保留三位小数。

3.用幂法求矩阵

??????????---=210121004A 按模最大特征值及相应特征向量,列表计算三次,取(0)(1,1,1)T =x

,保留两位小数。

4*.取46.1=ω,用松弛法解线性方程组 ???????=+-=-+-=-+-=-041

202124343232121x x x x x x x x x x

取(0)(0,0,0)T =x ,列表计算三次,保留三位小数。

5*.用雅可比方法对称矩阵

??????????=110121014A 的特征值及相应特征向量(按四位小数计算,1.0=ε)。

6*.用QR 算法求矩阵

??????????=410131012A 的全部特征值。 练 习 题 五

一、是非题

计算方法_习题第一、二章答案..

第一章 误差 1 问3.142,3.141,7 22分别作为π的近似值各具有几位有效数字? 分析 利用有效数字的概念可直接得出。 解 π=3.141 592 65… 记x 1=3.142,x 2=3.141,x 3=7 22. 由π- x 1=3.141 59…-3.142=-0.000 40…知 34111 10||1022 x π--?<-≤? 因而x 1具有4位有效数字。 由π- x 2=3.141 59…-3.141=-0.000 59…知 223102 1||1021--?≤-

计算方法引论课后答案.

第一章 误差 1. 试举例,说明什么是模型误差,什么是方法误差. 解: 例如,把地球近似看为一个标准球体,利用公式2 4A r π=计算其表面积,这个近似看为球体的过程产生 的误差即为模型误差. 在计算过程中,要用到π,我们利用无穷乘积公式计算π的值: 12 222...q q π=? ?? 其中 11 2,3,... n q q n +?=?? ==?? 我们取前9项的乘积作为π的近似值,得 3.141587725...π≈ 这个去掉π的无穷乘积公式中第9项后的部分产生的误差就是方法误差,也成为截断误差. 2. 按照四舍五入的原则,将下列各数舍成五位有效数字: 816.956 7 6.000 015 17.322 50 1.235 651 93.182 13 0.015 236 23 解: 816.96 6.000 0 17.323 1.235 7 93.182 0.015 236 3. 下列各数是按照四舍五入原则得到的近似数,它们各有几位有效数字? 81.897 0.008 13 6.320 05 0.180 0 解: 五位 三位 六位 四位 4. 若1/4用0.25表示,问有多少位有效数字? 解: 两位 5. 若 1.1062,0.947a b ==,是经过舍入后得到的近似值,问:,a b a b +?各有几位有效数字? 解: 已知4311 d 10,d 1022 a b --

计算方法——第二章——课后习题答案刘师少

2.1 用二分法求方程013=--x x 在[1, 2]的近似根,要求误差不超过3102 1-?至少要二分多少? 解:给定误差限ε=0.5×10-3,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(2 11 a b k 即可,亦即 96678.912lg 10lg 35.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =10. 2.3 证明方程1 -x –sin x =0 在区间[0, 1]内有一个根,使用二分法求误差不超过 0.5×10-4的根要二分多少次? 证明 令f (x )=1-x -sin x , ∵ f (0)=1>0,f (1)=-sin1<0 ∴ f (x )=1-x -sin x =0在[0,1]有根.又 f '(x )=-1-c os x<0 (x ∈[0.1]),故f (x ) 在[0,1]单调减少,所以f (x ) 在区间 [0,1]内有唯一实根. 给定误差限ε=0.5×10-4,使用二分法时,误差限为 )(211*a b x x k k -≤-+ 只要取k 满足ε<-+)(211 a b k 即可,亦即 7287.1312 lg 10lg 45.0lg 12lg lg )lg(=-+-=---≥εa b k 只要取n =14. 2.4 方程0123=--x x 在x =1.5附近有根,把方程写成四种不同的等价形式,并建立相应的迭代公式: (1)211x x +=,迭代公式2111k k x x +=+ (2)231x x +=,迭代公式3211k k x x +=+ (3)112-=x x ,迭代公式111-=+k k x x (4)13-=x x ,迭代公式131-=+k k x x 试分析每种迭代公式的收敛性,并选取一种收敛迭代公式求出具有四位有效数字的近似根。 解:(1)令211)(x x f + =,则3 2)(x x f -=',由于 159.05.112)(33<≈≤='x x f ,因而迭代收敛。 (2)令321)(x x f +=,则322)1(3 2)(-+='x x x f ,由于

计算方法的课后答案

《计算方法》习题答案 第一章 数值计算中的误差 1.什么是计算方法?(狭义解释) 答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。 2.一个实际问题利用计算机解决所采取的五个步骤是什么? 答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果 4.利用秦九韶算法计算多项式4)(5 3 -+-=x x x x P 在3-=x 处的值,并编程获得解。 解:400)(2 3 4 5 -+?+-?+=x x x x x x P ,从而 所以,多项式4)(5 3 -+-=x x x x P 在3-=x 处的值223)3(-=-P 。 5.叙述误差的种类及来源。 答:误差的种类及来源有如下四个方面: (1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。 (2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。 (3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。 (4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。这样引起的误差称为舍入误差。 6.掌握绝对误差(限)和相对误差(限)的定义公式。 答:设* x 是某个量的精确值,x 是其近似值,则称差x x e -=* 为近似值x 的绝对误差(简称误差)。若存在一个正数ε使ε≤-=x x e * ,称这个数ε为近似值x 的绝对误差限(简称误差限或精度)。 把绝对误差e 与精确值* x 之比* **x x x x e e r -==称为近似值x 的相对误差,称

数值计算方法大作业

目录 第一章非线性方程求根 (3) 1.1迭代法 (3) 1.2牛顿法 (4) 1.3弦截法 (5) 1.4二分法 (6) 第二章插值 (7) 2.1线性插值 (7) 2.2二次插值 (8) 2.3拉格朗日插值 (9) 2.4分段线性插值 (10) 2.5分段二次插值 (11) 第三章数值积分 (13) 3.1复化矩形积分法 (13) 3.2复化梯形积分法 (14) 3.3辛普森积分法 (15) 3.4变步长梯形积分法 (16) 第四章线性方程组数值法 (17) 4.1约当消去法 (17) 4.2高斯消去法 (18) 4.3三角分解法 (20)

4.4雅可比迭代法 (21) 4.5高斯—赛德尔迭代法 (23) 第五章常积分方程数值法 (25) 5.1显示欧拉公式法 (25) 5.2欧拉公式预测校正法 (26) 5.3改进欧拉公式法 (27) 5.4四阶龙格—库塔法 (28)

数值计算方法 第一章非线性方程求根 1.1迭代法 程序代码: Private Sub Command1_Click() x0 = Val(InputBox("请输入初始值x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = (Exp(2 * x0) - x0) / 5 If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求f(x)=e2x-6x=0在x=0.5附近的根(ep=10-10)

1.2牛顿法 程序代码: Private Sub Command1_Click() b = Val(InputBox("请输入被开方数x0")) ep = Val(InputBox(请输入误差限ep)) f = 0 While f = 0 X1 = x0 - (x0 ^ 2 - b) / (2 * b) If Abs(X1 - x0) < ep Then Print X1 f = 1 Else x0 = X1 End If Wend End Sub 例:求56的值。(ep=10-10)

工程水文水力学思考题和计算题(25题思考问答题,20题计算题)

工程水文水力学思考题和计算题 一、思考问答 1、水文现象是一种自然现象,它具有什么特性,各用什么方法研究? 答:具有确定性(也可说周期性)与随机性,确定性决定了水文现象的相似性,决定了水文现象的随机性。确定性规律用成因分析发研究,随机性规律用数理统计法研究。 1)成因分析法: 如降雨径流预报法、河流洪水演算法等。 2)数理统计法: 情势预测、预报的方法。如设计年径流计算、设计洪水计算、地区经验公式等。 水文计算常常是二种方法综合使用,相辅相成,例如由暴雨资料推求设计洪水,就是先由数理统计法求设计暴雨,再按成因分析法将设计暴雨转化为设计洪水。 此外,当没有水文资料时,可以根据水文现象的变化在地区分布上呈现的一定规律(水文现象在各流域、各地区的分布规律)来研究短缺和无资料地区的水文特征值。 2、何谓水量平衡?试叙闭合流域水量平衡方程在实际工作中的应用和意义。 答:对任一地区、任一时段进入的水量与输出的水量之差,必等于其蓄水量的变化量,这就是水量平衡原理,是水文计算中始终要遵循的一项基本原理。 依此,可得任一地区、任一时段的水量平衡方程。对一闭合流域:设P 为某一特定时段的降雨量,E 为该时段内的蒸发量,R 为该时段该流域的径流量,则有:P=R+Ec+△U , △U为该时段流域内的蓄水量,△U=U1+U2。 对于多年平均情况,△U =0,则闭合流域多年平均水量平衡方程变为:P'=R'+E' 影响水资源的因素十分复杂,水资源的许多有关问题,难于由有关的成因因素直接计算求解,而运用水量平衡关系,往往可以使问题得到解决。因此,

水量平衡原理在水文分析计算和水资源规划的分析计算中有广泛的应用。如利用水量平衡式可以用已知的水文要素推求另外的未知要素。例如:某闭合流域的多年平均降雨量 P'=1020mm ,多年平均径流深R'=420mm,试求多年平均蒸发量E '。E'=P'-R'=600mm。 3、何谓年径流?它的表示方法和度量单位是什么?径流深度、径流总量、平均流量、径流模数的概念及相互关系。 答:一个年度内在河槽里流动的水流叫做年径流。年径流可以用年径流总量W(m3)、年平均流量Q(m3/s)、年径流深R(mm)、年径流模数M(L/(s ﹒km2))等表示。 将计算时段的径流总量,平铺在水文测站以上流域面积上所得的水层厚度,称为径流深度径流总量是指在指定时段Δt通过河流某一断面的总水量。 径流模数是单位流域面积上单位时间所产生的径流量。 4、流量的观测与水位流量关系曲线的延长。 答:测站测流时,由于施测条件限制或其他种种原因,致使最高水位或最低水位的流量缺测或漏测,在这种情况下,须将水位流量关系曲线作高、低水部分的外延,才能得到完整的流量过程。 1)根据水位面积、水位流速关系外延:河床稳定的测站,水位面积、水位流速关系点常较密集,曲线趋势较明确,可根据这两根线来延长水位流量关系曲线。 2)根据水力学公式外延:此法实质上与上法相同,只是在延长Z~V曲线时,利用水力学公式计算出需要延长部分的V值。最常见的是用曼宁公式计算出需要延长部分的V值,并用平均水深代替水力半径R。由于大断面资料已知,因此关键在于确定高水时的河床糙率n和水面比降I。 3)水位流量关系曲线的低水延长:低水延长常采用断流水位法。所谓断流水位是指流量为零时的水位,一般情况下断流水位的水深为零。此法关键在于如何确定断流水位,最好的办法是根据测点纵横断面资料确定。 5、流域平均降水量的计算方法。

计算方法课后题答案之习题二

习题二 1. 证明方程043 =-+x x 在区间[1,2]内有一个根。如果用二分法求它具有5位有效数字的根,需要 二分多少次。 证明: (1) 不妨令 4)(3-+=x x x f ,求得: 02)1(<-=f 06)2(>=f 又因为4)(3-+=x x x f 在区间[1,2]内是连续的,所以在区间[1,2]内有至少一个根。 又因为 13)(2'+=x x f 在区间[1,2]内013)(2'>+=x x f ,所以4)(3-+=x x x f 单调。 得证,043 =-+x x 在区间[1,2]内仅有一个根。 (2)具有5位有效数字的根,说明根可以表示成 5 4321.a a a a a ,所以绝对误差限应该是 5a 位上的 一半,即: 4105.0-?=ε。由公式: ε≤-+1 2 k a b 可得到, 14=k 迭代次数为151=+k 次。 ---------------------------------------------------------------------------------------------------------------------- 2. 用二分法求方程 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内的近似根(精确到10-3)。 解:043499.05625.099749.0)25.1(5.1sin )5.1(2 >=-=-=f 009070.0190930.0)22(2sin )2(2 <-=-=-=f 所以0)2 (sin )(2 =-=x x x f 在区间[1.5,2]内有根,又 x cos )('-=x x f 在区间[1.5,2]内 0x cos )('<-=x x f 所以 0)2 (sin )(2=-=x x x f 在区间[1.5,2]内有根,且唯一。符合二分条件,可以用二分法,二分的 次数为:

西工大计算方法作业答案

参考答案 第一章 1 *1x =1.7; * 2x =1.73; *3x =1.732 。 2. 3. (1) ≤++)(* 3*2*1x x x e r 0.00050; (注意:应该用相对误差的定义去求) (2) ≤)(*3*2*1x x x e r 0.50517; (3) ≤)/(*4*2x x e r 0.50002。 4.设6有n 位有效数字,由6≈2.4494……,知6的第一位有效数字1a =2。 令3)1()1(1* 102 1 102211021)(-----?≤??=?= n n r a x ε 可求得满足上述不等式的最小正整数n =4,即至少取四位有效数字,故满足精度要求可取6≈2.449。 5. 答:(1)*x (0>x )的相对误差约是* x 的相对误差的1/2倍; (2)n x )(* 的相对误差约是* x 的相对误差的n 倍。 6. 根据******************** sin 21)(cos 21sin 21)(sin 21sin 21)(sin 21)(c b a c e c b a c b a b e c a c b a a e c b S e r ++≤ =* *****) ()()(tgc c e b b e a a e ++ 注意当20* π < >c tgc ,即1 *1 * )() (--

7.设20= y ,41.1*0 =y ,δ=?≤--2* 00102 1y y 由 δ1* 001*111010--≤-=-y y y y , δ2*111*221010--≤-=-y y y y M δ10*991*10101010--≤-=-y y y y 即当0y 有初始误差δ时,10y 的绝对误差的绝对值将减小10 10-倍。而110 10 <<-δ,故计算过程稳定。 8. 变形后的表达式为: (1))1ln(2--x x =)1ln(2-+-x x (2)arctgx x arctg -+)1(=) 1(11 ++x x arctg (3) 1ln )1ln()1(ln 1 --++=? +N N N N dx x N N =ΛΛ+-+- +3 2413121)1ln(N N N N 1ln )11ln()1(-++ +=N N N N =1)1ln()1 1ln(-+++N N N (4)x x sin cos 1-=x x cos 1sin +=2x tg

计算方法练习题与答案

练习题与答案 练习题一 练习题二 练习题三 练习题四 练习题五 练习题六 练习题七 练习题八 练习题答案 练习题一 一、是非题 1.–作为x的近似值一定具有6位有效数字,且其误差限。() 2.对两个不同数的近似数,误差越小,有效数位越多。() 3.一个近似数的有效数位愈多,其相对误差限愈小。()

4.用近似表示cos x产生舍入误差。 ( ) 5.和作为的近似值有效数字位数相同。 ( ) 二、填空题 1.为了使计算的乘除法次数尽量少,应将该表达式改写 为; 2.–是x舍入得到的近似值,它有位有效数字,误差限 为,相对误差限为; 3.误差的来源是; 4.截断误差 为; 5.设计算法应遵循的原则 是。 三、选择题 1.–作为x的近似值,它的有效数字位数为( ) 。 (A) 7; (B) 3; (C) 不能确定 (D) 5. 2.舍入误差是( )产生的误差。 (A) 只取有限位数 (B) 模型准确值与用数值方法求得的准确值 (C) 观察与测量 (D) 数学模型准确值与实际值 3.用 1+x近似表示e x所产生的误差是( )误差。 (A). 模型 (B). 观测 (C). 截断 (D). 舍入 4.用s*=g t2表示自由落体运动距离与时间的关系式 (g为重力加速度),s t是在时间t内的实际距离,则s t s*是()误差。 (A). 舍入 (B). 观测 (C). 模型 (D). 截断 5.作为的近似值,有( )位有效数字。 (A) 3; (B) 4; (C) 5; (D) 6。

四、计算题 1.,,分别作为的近似值,各有几位有效数字? 2.设计算球体积允许的相对误差限为1%,问测量球直径的相对误差限最大为多少? 3.利用等价变换使下列表达式的计算结果比较精确: (1), (2) (3) , (4) 4.真空中自由落体运动距离s与时间t的关系式是s=g t2,g为重力加速度。现设g是精确的,而对t有秒的测量误差,证明:当t增加时,距离的绝对误差增加,而相对误差却减少。 5*. 采用迭代法计算,取 k=0,1,…, 若是的具有n位有效数字的近似值,求证是的具有2n位有效数字的近似值。 练习题二 一、是非题 1.单点割线法的收敛阶比双点割线法低。 ( ) 2.牛顿法是二阶收敛的。 ( ) 3.求方程在区间[1, 2]内根的迭代法总是收敛的。( ) 4.迭代法的敛散性与迭代初值的选取无关。 ( ) 5.求非线性方程f (x)=0根的方法均是单步法。 ( ) 二、填空题

2020年奥鹏吉大网络教育《计算方法》大作业解答

2020年奥鹏吉大网络教育《计算方法》大作业解答 (说明:前面是题目,后面几页是答案完整解答部分,注意的顺序。) 一、解线性方程 用矩阵的LU分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用矩阵的Doolittle分解算法求解线性方程组 用高斯消去法求解线性方程组 用高斯消去法求解线性方程组 用主元素消元法求解线性方程组 用高斯消去法求解线性方程组 利用Doolittle分解法解方程组Ax=b,即解方程组 1、用矩阵的LU分解算法求解线性方程组 X1+2X2+3X3 = 0 2X1+2X2+8X3 = -4 -3X1-10X2-2X3 = -11 2、用矩阵的Doolittle分解算法求解线性方程组 X1+2X2+3X3 = 1 2X1– X2+9X3 = 0 -3X1+ 4X2+9X3 = 1 3、用矩阵的Doolittle分解算法求解线性方程组 2X1+X2+X3 = 4 6X1+4X2+5X3 =15 4X1+3X2+6X3 = 13 4、用高斯消去法求解线性方程组

2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 5、用无回代过程消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 6、用主元素消元法求解线性方程组 2X 1- X 2+3X 3 = 2 4X 1+2X 2+5X 3 = 4 -3X 1+4X 2-3X 3 = -3 7、用高斯消去法求解线性方程组 123123123234 4272266 x x x x x x x x x -+=++=-++= 8、利用Doolittle 分解法解方程组Ax=b ,即解方程组 12341231521917334319174262113x x x x -? ????? ???? ??-??????=? ? ????--?????? --???? ??

数值计算方法习题答案(绪论,习题1,习题2)

引论试题(11页) 4 试证:对任给初值x 0, 0)a >的牛顿迭代公式 112(),0,1 ,2,......k a k k x x x k +=+= 恒成立下列关系式: 2112(1)(,0,1,2,.... (2)1,2,...... k k k x k x x k x k +-=≥= 证明: (1 )(2 2 11222k k k k k k k k x a x a x x x x x +-??-+=+= =? ?? (2) 取初值00>x ,显然有0>k x ,对任意0≥k , a a x a x x a x x k k k k k ≥+??? ? ??-=???? ??+=+2 12121 6 证明: 若k x 有n 位有效数字,则n k x -?≤ -1102 1 8, 而() k k k k k x x x x x 28882182 1-=-???? ??+=-+ n n k k x x 21221102 1 5.22104185 .28--+?=??<-∴>≥ 1k x +∴必有2n 位有效数字。 8 解: 此题的相对误差限通常有两种解法. ①根据本章中所给出的定理: (设x 的近似数* x 可表示为m n a a a x 10......021*?±=,如果* x 具有l 位有效数字,则其相对误差限为 ()11 * *1021 --?≤ -l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为

025.0102 21 111=??≤--x x e 71.22=x ,有两位有效数字,相对误差限为 025.0102 21 122=??≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为: 00025.0102 21 333=??≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x ∴其相对误差限为 00678.07 .20183 .011≈<-x e x 同理对于71.22=x ,有 003063 .071 .20083 .022≈<-x e x 对于718.23=x ,有 00012.0718 .20003 .033≈<-x e x 备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。 (2)采用第二种方法时,分子为绝对误差限,不是单纯的对真实值与近似值差值的四舍五入,绝对误差限大于或等于真实值与近似值的差。 11. 解: ......142857.3722≈,.......1415929.3113 255≈ 21021 722-?≤-∴ π,具有3位有效数字 6102 1 113255-?≤-π,具有7位有效数字

(完整word版)计算方法习题集及答案.doc

习题一 1. 什么叫数值方法?数值方法的基本思想及其优劣的评价标准如何? 数值方法是利用计算机求解数学问题近似解的方法 x max x i , x ( x 1 , x 2 , x n ) T R n 及 A n R n n . 2. 试证明 max a ij , A ( a ij ) 1 i n 1 i n 1 j 证明: ( 1)令 x r max x i 1 i n n p 1/ p n x i p 1/ p n x r p 1/ p 1/ p x lim( x i lim x r [ ( ] lim x r [ lim x r ) ) ( ) ] x r n p i 1 p i 1 x r p i 1 x r p 即 x x r n p 1/ p n p 1/ p 又 lim( lim( x r x i ) x r ) p i 1 p i 1 即 x x r x x r ⑵ 设 x (x 1,... x n ) 0 ,不妨设 A 0 , n n n n 令 max a ij Ax max a ij x j max a ij x j max x i max a ij x 1 i n j 1 1 i n j 1 1 i n j 1 1 i n 1 i n j 1 即对任意非零 x R n ,有 Ax x 下面证明存在向量 x 0 0 ,使得 Ax 0 , x 0 n ( x 1,... x n )T 。其中 x j 设 j a i 0 j ,取向量 x 0 sign(a i 0 j )( j 1,2,..., n) 。 1 n n 显然 x 0 1 且 Ax 0 任意分量为 a i 0 j x j a i 0 j , i 1 i 1 n n 故有 Ax 0 max a ij x j a i 0 j 即证。 i i 1 j 1 3. 古代数学家祖冲之曾以 355 作为圆周率的近似值,问此近似值具有多少位有效数字? 113 解: x 325 &0.314159292 101 133 x x 355 0.266 10 6 0.5 101 7 该近似值具有 7 为有效数字。

数值计算方法思考题

数值计算方法思考题 第一章 预篇 1.什么是数值分析?它与数学科学和计算机的关系如何? 2.何谓算法?如何判断数值算法的优劣? 3.列出科学计算中误差的三个来源,并说出截断误差与舍入误差的区别。 4.什么是绝对误差与相对误差?什么是近似数的有效数字?它与绝对误差和相对误差有何关系? 5.什么是算法的稳定性?如何判断算法稳定?为什么不稳定算法不能使用? 6.判断如下命题是否正确: (1)一个问题的病态性如何,与求解它的算法有关系。 (2)无论问题是否病态,好的算法都会得到好的近似解。 (3)解对数据的微小变化高度敏感是病态的。 (4)高精度运算可以改善问题的病态性。 (5)用一个稳定的算法计算良态问题一定会得到好的近似值。 (6)用一个收敛的迭代法计算良态问题一定会得到好的近似值。 (7)两个相近数相减必然会使有效数字损失。 (8)计算机上将1000个数量级不同的数相加,不管次序如何结果都是一样的。 7.考虑二次代数方程的求解问题 ax 2 + bx + c = 0. 下面的公式是熟知的 a ac b b x 242-±-=. 与之等价地有 ac b b c x 422--= . 对于 a = 1, b = -100 000 000 , c = 1 应当如何选择算法? 8.指数函数有著名的级数展开 ++++=!3!213 2x x x e x 如果对x < 0用上述的级数近似计算指数函数的值,这样的算法结果是否会好?为什么? 9.考虑数列x i , i = 1,…, n , 它的统计平均值定义为 ∑==n i i x x x 1 1 它的标准差

1 12)(11??????--=∑-n i i x x n σ 数学上它等价于 1 12211???????????? ??--=∑=n i i x n x n σ 作为标准差的两种算法,你如何评价它们的得与失? 第二章 非线性方程求根 1.判断如下命题是否正确: (a) 非线性方程的解通常不是唯一的; (b) Newton 法的收敛阶高于割线法; (c) 任何方法的收敛阶都不可能高于Newton 法; (d) Newton 法总是比割线法更节省计算时间; (e) 如果函数的导数难于计算,则应当考虑选择割线法; (f) Newton 法是有可能不收敛; (g) 考虑简单迭代法x k +1 = g (x k ),其中x * = g (x *)。如果| g '(x *) | <1,则对任意的初 始值,上述迭代都收敛。 2.什么叫做一个迭代法是二阶收敛的?Newton 法收敛时,它的收敛阶是否总是二阶 的? 3.求解单变量非线性方程的单根,下面的3种方法,它们的收敛阶由高到低次序如何? (a) 二分法 (b) Newton 方法 (c) 割线方法 4.求解单变量非线性方程的解,Newton 法和割线方法,它们每步迭代分别需要计算几 次函数值和导数值? 5.求解某个单变量非线性方程,如果计算函数值和计算导数值的代价相当,Newton 法和割线方法它的优劣应如何评价? 第三章 解线性方程组的直接法 1.用高斯消去法为什么要选主元?哪些方程组可以不选主元? 2.高斯消去法与LU 分解有什么关系?用它们解线性方程组Ax = b 有何不同?A 要满足什么条件? 3.乔列斯基分解与LU 分解相比,有什么优点? 4.哪种线性方程组可用平方根法求解?为什么说平方根法计算稳定? 5.什么样的线性方程组可用追赶法求解并能保证计算稳定? 6.何谓向量范数?给出三种常用的向量范数。 7.何谓矩阵范数?何谓矩阵的算子范数?给出矩阵A = (a i j )的三种范数|| A ||1,|| A ||2,|| A ||∞,|| A ||1与|| A ||2哪个更容易计算?为什么? 8.什么是矩阵的条件数?如何判断线性方程组是病态的? 9.满足下面哪个条件可判定矩阵接近奇异? (1)矩阵行列式的值很小。 (2)矩阵的范数小。

西安交通大学计算方法B大作业

计算方法上机报告 姓名: 学号: 班级:

目录 题目一------------------------------------------------------------------------------------------ - 4 - 1.1题目内容 ---------------------------------------------------------------------------- - 4 - 1.2算法思想 ---------------------------------------------------------------------------- - 4 - 1.3Matlab源程序----------------------------------------------------------------------- - 5 - 1.4计算结果及总结 ------------------------------------------------------------------- - 5 - 题目二------------------------------------------------------------------------------------------ - 7 - 2.1题目内容 ---------------------------------------------------------------------------- - 7 - 2.2算法思想 ---------------------------------------------------------------------------- - 7 - 2.3 Matlab源程序---------------------------------------------------------------------- - 8 - 2.4计算结果及总结 ------------------------------------------------------------------- - 9 - 题目三----------------------------------------------------------------------------------------- - 11 - 3.1题目内容 --------------------------------------------------------------------------- - 11 - 3.2算法思想 --------------------------------------------------------------------------- - 11 - 3.3Matlab源程序---------------------------------------------------------------------- - 13 - 3.4计算结果及总结 ------------------------------------------------------------------ - 14 - 题目四----------------------------------------------------------------------------------------- - 15 - 4.1题目内容 --------------------------------------------------------------------------- - 15 - 4.2算法思想 --------------------------------------------------------------------------- - 15 - 4.3Matlab源程序---------------------------------------------------------------------- - 15 - 4.4计算结果及总结 ------------------------------------------------------------------ - 16 - 题目五----------------------------------------------------------------------------------------- - 18 -

换热器计算思考题及参考答案

换热器思考题 1. 什么叫顺流?什么叫逆流(P3)? 2.热交换器设计计算的主要内容有那些(P6)? 换热器设计计算包括以下四个方面的内容:热负荷计算、结构计算、流动阻力计算、强度计算。 热负荷计算:根据具体条件,如换热器类型、流体出口温度、流体压力降、流体物性、流体相变情况,计算出传热系数及所需换热面积 结构计算:根据换热器传热面积,计算热交换器主要部件的尺寸,如对管壳式换热器,确定其直径、长度、传热管的根数、壳体直径,隔板数及位置等。 流动阻力计算:确定流体压降是否在限定的范围内,如果超出允许的数值,必须更改换热器的某些尺寸或流体流速,目的为选择泵或风机提供依据。 强度计算:确定换热器各部件,尤其是受压部件(如壳体)的压力大小,检查其强度是否在允许的范围内。对高温高压换热器更应重视。尽量采用标准件和标准材料。 3. 传热基本公式中各量的物理意义是什么(P7)? 4. 流体在热交换器内流动,以平行流为例分析其温度变化特征(P9)?

5. 热交换器中流体在有横向混合、无横向混合、一次错流时的简化表示(P20)? 一次交叉流,两种流体各自不混合 一次交叉流,一种流体混合、另一种流体不混合 一次交叉流,两种流体均不混合 6. 在换热器热计算中, 平均温差法和传热单元法各有什么特点(P25、26)? 什么是温度交叉,它有什么危害,如何避免(P38、76)? 7.管壳式换热器的主要部件分类与代号(P42)? 8.管壳式换热器中的折流板的作用是什么,折流板的间距过大或过小有什么不利之处(P49~50)? 换热器安装折流挡板是为了提高壳程对流传热系数,为了获得良好的效果,折流挡板的尺寸和间距必须适当。对常用的圆缺形挡板,弓形切口过大或过小,都会产生流动“死区”,均不利于传热。一般弓形缺口高度与壳体内径之比为0.15~0.45,常采用0.20和0.25两种。 挡板的间距过大,就不能保证流体垂直流过管束,使流速减小,管外对流传热系数下降;间距过小不便于检修,流动阻力也大。一般取挡板间距为壳体内径的0.2~1.0倍,我国系列标准中采用的挡板间距为:固定管板式有150,300和600mm三种;浮头式有150,200, 300,480和600mm五种。 a.切除过少 b.切除适当 c.切除过多 9管壳式换热器中管程与壳程中流体的速度有什么差异(P292)? 管壳式换热器中管程流体的速度大于壳程中流体的速度。 10.板式换热器与管壳式换热器的比较,板式换热器有什么优点(P125~127)? ? 1)传热系数高:由于平板式换热器中板面有波纹或沟槽,可在低雷诺数(Re=200

计算方法上机实习题大作业(实验报告).

计算方法实验报告 班级: 学号: 姓名: 成绩: 1 舍入误差及稳定性 一、实验目的 (1)通过上机编程,复习巩固以前所学程序设计语言及上机操作指令; (2)通过上机计算,了解舍入误差所引起的数值不稳定性 二、实验内容 1、用两种不同的顺序计算10000 21n n -=∑,分析其误差的变化 2、已知连分数() 1 01223//(.../)n n a f b b a b a a b =+ +++,利用下面的算法计算f : 1 1 ,i n n i i i a d b d b d ++==+ (1,2,...,0 i n n =-- 0f d = 写一程序,读入011,,,...,,,...,,n n n b b b a a 计算并打印f 3、给出一个有效的算法和一个无效的算法计算积分 1 041 n n x y dx x =+? (0,1,...,1 n = 4、设2 2 11N N j S j == -∑ ,已知其精确值为1311221N N ?? -- ?+?? (1)编制按从大到小的顺序计算N S 的程序 (2)编制按从小到大的顺序计算N S 的程序 (3)按两种顺序分别计算10001000030000,,,S S S 并指出有效位数 三、实验步骤、程序设计、实验结果及分析 1、用两种不同的顺序计算10000 2 1n n -=∑,分析其误差的变化 (1)实验步骤: 分别从1~10000和从10000~1两种顺序进行计算,应包含的头文件有stdio.h 和math.h (2)程序设计: a.顺序计算

#include #include void main() { double sum=0; int n=1; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0)printf("sun[%d]=%-30f",n,sum); if(n>=10000)break; n++; } printf("sum[%d]=%f\n",n,sum); } b.逆序计算 #include #include void main() { double sum=0; int n=10000; while(1) { sum=sum+(1/pow(n,2)); if(n%1000==0) printf("sum[%d]=%-30f",n,sum); if(n<=1)break; n--; } printf("sum[%d]=%f\n",n,sum); } (3)实验结果及分析: 程序运行结果: a.顺序计算

计算方法习题答案

计算方法第3版习题答案 习题1解答 1.1 解:直接根据定义得 *411()102x δ-≤?*411()102r x δ-≤?*3*12211 ()10,()1026 r x x δδ--≤?≤?*2*5331()10,()102r x x δδ--≤?≤ 1.2 解:取4位有效数字 1.3解:433 5124124124 ()()() 101010() 1.810257.563 r a a a a a a a a a δδδδ----++++++≤≤=?++? 123()r a a a δ≤ 123132231123 ()()() a a a a a a a a a a a a δδδ++0.016= 1.4 解:由于'1(),()n n f x x f x nx -==,故***1*(())()()()n n n f x x x n x x x δ-=-≈- 故** * ***(()) (())()0.02()r r n f x x x f x n n x n x x δδδ-= ≈== 1.5 解: 设长、宽和高分别为 ***50,20,10l l h h εεωωεεεε=±=±=±=±=±=± 2()l lh h ωωA =++,*************()2[()()()()()()]l l l h h l h h εδωωδδδωδδωA =+++++ ***4[]320l h εωε=++= 令3201ε<,解得0.0031ε≤, 1.6 解:设边长为x 时,其面积为S ,则有2()S f x x ==,故 '()()()2()S f x x x x δδδ≈= 现100,()1x S δ=≤,从而得() 1 ()0.00522100 S x x δδ≈ ≤ =? 1.7 解:因S ld =,故 S d l ?=?,S l d ?=?,*****()()()()()S S S l d l d δδδ??≈+?? * 2 ()(3.12 4.32)0.010.0744S m δ=+?=, *** ** * () () 0.0744 ()0.55%13.4784 r S S S l d S δδδ= = = ≈ 1.8 解:(1)4.472 (2)4.47 1.9 解:(1) (B )避免相近数相减 (2)(C )避免小除数和相近数相减 (3)(A )避免相近数相减 (3)(C )避免小除数和相近数相减,且节省对数运算 1.10 解 (1)357sin ...3!5!7!x x x x x =-+-+ 故有357 sin ..3!5!7! x x x x x -=-+-, (2) 1 (1)(1)1lnxdx ln ln ln N+N =N N +-N N +N +-? 1 (1)1ln ln N +=N +N +-N 1.11 解:0.00548。 1.12解:21 16 27 3102 ()()() -? 1.13解:0.000021

相关文档
最新文档