受体酪氨酸激酶分类

受体酪氨酸激酶分类
受体酪氨酸激酶分类

受体酪氨酸激酶(receptor tyrosine kinase, RTKs)

各类受体酪氨酸激酶

RTKs是最大的一类酶联受体,它既是受体,又是酶,能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。

已发现50多种不同的RTKs,主要的几种类型包括:

①表皮生长因子(epidermal growth factor, EGF)受体;

②血小板生长因子(platelet-derived growth factor, PDGF)受体和巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF);

③胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1)受体;

④神经生长因子(nerve growth factor, NGF)受体;

⑤成纤维细胞生长因子(fibroblast growth factor, FGF)受体;

⑥血管内皮生长因子(vascularendothelial growth factor, VEGF)受体和肝细胞生长因子(hepatocyte growth factor, HGF)受体等。

受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)。

蛋白酪氨酸激酶简介

蛋白酪氨酸激酶简介 癌症极大威胁人类健康,抗肿瘤研究是当今生命科学中极富挑战性且意义重大的领域。目前,临床上常用的抗肿瘤药物主要是细胞毒类药物,这类抗癌药具有难以避免的选择性差、毒副作用强、易产生耐药等缺点。近年来,随着生命科学研究的飞速进展,恶性肿瘤细胞内的信号转导、细胞周期的调、细胞凋亡的诱导、血管生成以及细胞与胞外基质的相互作用等各种基本过程正在被逐步阐明。以一些与肿瘤细胞分化增殖相关的细胞信号转导通路的关键酶作为药物筛选靶点,发现选择性作用于特定靶点的高效、低毒、特异性强的新型抗癌药物已成为当今抗肿瘤药物研究开发的重要方向。 蛋白酪氨酸激酶是一类具有酪氨酸激酶活性的蛋白质,可分为受体型和非受体型两种,它们能催化ATP上的磷酸基转移到许多重要蛋白质的酪氨酸残基上,使其发生磷酸化。蛋白酪氨酸激酶在细胞内的信号转导通路中占据了十分重要的地位,调节着细胞体内生长、分化、死亡等一系列生理化过程。 蛋白酪氨酸激酶功能的失调则会引发生物体内的一系列疾病。已有的资料表明,超过50%的原癌基因和癌基因产物都具有蛋白酪氨酸激酶活性,它们的异常表达将导致细胞增殖调节发生紊乱,进而导致肿瘤发生。此外,酪氨酸基酶的异常表达还与肿瘤的侵袭和转移,肿瘤新生血管的生成,肿瘤的化疗抗性密切相关。因此,以酪氨酸激酶为靶点进行药物研发成为国际上抗肿瘤药物研究的热点,为此投入的研究经费也是其它任何一个非传统的肿瘤靶点所无法匹敌的。 目前为止,已有十多种蛋白酪氨酸激酶抑制剂和抗体进入I-Ⅱ期临床试验阶段,个别的已经上市,并取得了令人鼓舞的治疗结果。基中,Genentech公司和罗氏药厂联合研究和生产的HerceptinTM(Trastuzumab)是一种抗酪氨酸激酶受体HER2/neu的人源化的单克隆抗体。1998年,美国食品的药物管理局(Food and Drug Administration, FDA)正式批准Herceptin用于治疗某些HER2阳性的转移性乳腺癌。2001年5月,N ovartis公司研发的针对酪氨酸激酶Bcr-Abl的抑制剂GleevecTM (imatinib mesylate)由于对治疗慢性髓样白血病(chronic myelogenous leukemia,CML)具有非常好的疗效,尚未完成Ⅲ期临床就被FDA批准提前上市,用于治疗费城染色体呈阳性(Philadelphia chromosome – positive, Ph+)的慢性髓样白血病患者,引起了巨大的轰动。GleevecTM是第一个在了解癌症的病因后鸽是设计开发,并取得了显著成效和的肿瘤治疗药物,它的研发成功可以说是癌症治疗的一个里程碑。这一重大成就被美国《科学》杂志列入2001年度十大科技新闻。纽约《时代》杂志将其作为杂志的封面,称GleevecTM 开创了药物研发的新时代。2002年2月,美国FDA又批准GleevecTM 用于胃肠基质瘤(gastrointestinal stromal tumors, GLST)的治疗。2002年7月,AstraZeneca公司研发的IressaTM (ZD1839又被美国FDA批准用于治疗经过标准含铂类方案和紫杉萜化疗后仍然继续恶化的终未期非小细胞肺癌患者,这也是第一种用于实体瘤治疗的针对特定靶点挑战分子酪氨酸激酶抑制剂。Herceptin,Gleevec以及Iressa的上市进一步证明了以特定靶点尤其是以酪氨酸激酶为靶点进行抗肿瘤药物的研发是21世纪最有可能获得突破性进展的抗肿瘤药物领域,具有十分广阔的前景。

蛋白酪氨酸激酶综述

蛋白酪氨酸激酶综述 目前至少已有近六十种分属20个家族的受体酪氨酸激酶被子识别。所有受体酷氨酸激酶都属于I型膜蛋白,其分子具有相似的拓朴结构:糖基化的胞外配体结合区,疏水的单次跨膜区,以及胞内的酪氨酸激酶催化结构域及调控序列。不同受体酪氨酸激酶结合,将导致受体发生三聚化,并进一步使受体胞内区特异的受体酪氨酸残基发生自身磷酸化或交叉磷酸化,从而激活下游的信号转导通路。许多肿瘤的发生、发展都与酪氨酸激酶的异常表达有着极其密切的联系,下面将对几类与肿瘤的发生发展最为密切的受体酪氨酸激酶的研究迸展做一简介。 一、表皮生长因子受体(Epidermal grovth factor receptor, EGFR)家族 EGFRPE包括EGFR、ErbB2、ErbB4等4个成员,其家族受体酪氨酸激酶(RTK)以 单体形式存在,在结构上由胞外区、跨膜区、胞内区3个部分组成,胞外区具有2个半氨酸丰富区,胞内区有典型的ATP结合位点和酪氨酸激酶区,其酪氨酸激酶活性在调节细胞增殖及分化中起着至关重要的作用。 人的egfr基因定位于第7号染色体的短臂(7p12.3-p12.1),它编码的产物EGFR由1210个氨基酸组成,蛋白分子量约为170kDa,其中,712-979位属于酪氨酸激酶区。EGFR的专一配体有EGF、TGF、amphiregulin,与其他EGFR家庭成员共有的配体有(cellulin(BTC)、heparin-binding EGF(HB-EGF)、Epiregulin(EPR) )等。 EGFR在许多上皮业源的肿瘤细胞中表达,如非小细胞性肺癌,乳腺癌、头颈癌,膀胱癌,胃癌,前列腺癌,卵巢癌、胶质细胞瘤等。另外,在一些肿瘤如恶性胶质瘤、非小细胞性肺癌、乳腺癌、儿童胶质瘤、成神经管细胞瘤及卵巢癌等中还可检测到EGFR缺失。最为常见的EGFR缺失突变型是EGFRⅧ,EGFR Ⅷ失去了配体结合区,但是可自身活化酪氨酸激酶,刺激下游信号通路的激活,而不依赖于与其配全结合。EGFR在许多肿瘤中的过表达和/或突变,借助信号转导至细胞生长失控和恶性化。另外,EGFR的异常表达还与新生血管生成,肿瘤的侵袭和转移,肿瘤的化疗抗性及预后密切相关。EGFR高表达的肿瘤患者,肿瘤恶性程度高,易发生转移,复发间期短,复发率高,患者的存活期短。 ErbB2,又名HER-2/neu,是EGFR家族的第二号成员,ErbB2通过与EGFR家族中其它三位成员构成异源二聚体,而发挥生物学作用,尚未发现能与其直接结合的配体。编码ErbB2的基因neu最早从大鼠神经母细胞瘤中分离得到,人类体细胞内neu基因的同源基因,又称为HER-2或erbB2,位于人第17号染色体的长臂(17q21.1),它编码的产物ErbB2由1255个氨基酸组成,蛋白分子量约为185Kda,其中,720-987位属于酪氨酸激酶区。 ErbB2通常只在胎儿时期表达,成年以后只在极少数组织内低水平表达。然而在多种人类肿瘤中却过度表达,如乳腺癌(25-30%)、卵巢癌(25-32%、肺静癌(30-35%)、原发性肾细胞癌(30-40%)等。过度表达的原因主要是ErbB2基因扩增(95%)或转录增多(5%)。 1987年,Slamon等人首行先报道了ErbB2扩增和乳腺癌临床预后不良之间的显著关系,其显著性高于雌激素、孕激素等指标,并在以后的研究中得到大量证实。随后,ErbB2表达水平和乳腺癌治疗效果间的关系得到广泛研究,人们发现ErbB2高表达乳腺癌患者对他莫昔芬(tamoxifen)治疗、单独的激素疗法、以及环磷酰胺、甲氨喋呤、5-氟脲嘧啶联合化疗产生耐受。研究还表明,ErbB2在细胞的恶性转化中发挥重要作用,并能促进恶性肿瘤转移。ErbB2受体过度表达往往提示乳腺癌恶性程度高,转移潜力强,进展迅速,化疗缓解期短,易产生化疗和激素治疗抗性,生存率和生存期短,复发率高。 和ErbB4对肿瘤的作用目前尚不清楚,但在肿瘤形成模型的临床前研究发现,ErbB3、Erb3与EGFR、ErbB2共表达后会使肿瘤恶性程度明显增加。 二、血管内皮细胞生长因子受体(Vascular endothelial growth factor receptor, VEGFR)家族VEGFR家族的成员包括:VEGFR1(Flt-1)、VEGFR2(KDR/Flk-1)、VEGFR3(Flt-4),这一家族的受体在细胞外存在着7个免疫球蛋白样的结构域,在胞内酪氨酸激酶区则含有一段亲水手插入序列。

蛋白酪氨酸激酶

蛋白酪氨酸激酶(PTK)是多种肿瘤最常见的生长因子受体,抑制其活性可破坏肿瘤细胞的信号传导,抑制肿瘤细胞增殖和新生血管形成,而对正常细胞影响较小。常见的受体型包括表皮生长因子受体(EGFR)家族、胰岛素受体(IGFR)家族、血小板衍化生长因子受体(PDGFR)家族、VEGFR家族、纤维细胞生长因子受体(。FGFR)家族等。非受体型包括SRC、ABL、JAK、ACK、CSK、FAK、FES、FRK、TEC、SYK家族等。以PTK为靶点的单克隆抗体、小分子酪氨酸激酶抑制剂(TKI)是近年抗肿瘤药研究的热点。2005年之前,美国FDA批准以PTK为靶点的单克隆抗体曲妥珠单抗(1998年)、贝伐单抗(2004年)和西妥昔珠单抗(2004年)和小分子酪氨酸激酶抑制剂伊马替尼(2001年)、吉非替尼(2003年)、埃罗替尼(2004年)等靶向药物应用于临床。2005年后TKI制剂不断上市,且多靶点药已成为新的研究方向。 Neratinib 伯舒替尼(Bosutinib,惠氏公司)是强效Src和Abl激酶双重抑制剂,既能抑制多种人肿瘤细胞中Src蛋白的自主磷酸化,也能抑制Src和Ab底物的磷酸化过程,具有高效的抗增殖活性,可抑制CMI。细胞的增殖和存活,对伊马替尼、达沙替尼和尼罗替尼等已产生耐药的CML,或ALL患者也取得了较好的疗效。目前,正在进行CML的Ⅲ期临床研究。 Motesanib(安进公司)能选择性地作用于VEGFR-1、VEGFR-2、VEGFR-3、PDGFR和c-kit受体,可致内皮细胞程序性死亡增加和血管面积减少,抑制肿瘤血管生成并诱导肿瘤消退。目前,本品NSCLC的Ⅲ期临床研究正在进行中;其GIST、甲状腺癌、乳腺癌、卵巢癌等适应证的研究也处于Ⅱ期临床研究阶段。 凡德他尼(Vandetanib,阿斯利康公司)是口服小分子EGFR、VEGFR、RET多靶点酪氨酸激酶抑制剂。Ⅱ期临床显示,单用或与多西他赛联合用药,其在NSCLC患者的二线/三线治疗中均有效。 Vatalanib(拜耳/诺华)是经高通量筛选出的VEGF、PDGF、c-kit多靶点小分子TKl,对VEGFR-2作用最强。与FOLFOX方案联合治疗转移性结直肠癌的2个Ⅲ期研究正在进行中。目前,发现体内乳酸脱氢酶水平较高的患者疾病PFS显著提高。 BIBtr 1120(勃林格殷格翰公司)是一种新的口服抗血管生成药,抑制VEGF、PDGF、FGF等的作用,目前分别开展了治疗晚期卵巢癌和NSCLC的Ⅲ期临床研究。

受体酪氨酸激酶RTK介绍

1、受体酪氨酸激酶(receptor tyrosine kinase, RTKs) RTKs是最大的一类酶联受体,它既是受体,又是酶,能够同 配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RTKs都是由三 个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏 水α螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。 已发现50多种不同的RTKs,主要的几种类型包括: ①表皮生长因子(epidermal growth factor, EGF)受体; ②血小板生长因子(platelet-derived growth factor, PDGF)受体和巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF); ③胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1)受体; ④神经生长因子(nerve growth factor, NGF)受体; 各类受体酪氨酸激酶 ⑤成纤维细胞生长因子(fibroblast growth factor, FGF) 受体; ⑥血管内皮生长因子(vascularendothelial growth factor, VEGF)受体和肝细胞生长因子(hepatocyte growth factor, HGF)受体等。 受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并 且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单 体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相 互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷 酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内 信号蛋白(signaling protein)的结合位点,可能有10~20种不 同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复 合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列

受体酪氨酸激酶分类

受体酪氨酸激酶(receptor tyrosine kinase, RTKs) 各类受体酪氨酸激酶 RTKs是最大的一类酶联受体,它既是受体,又是酶,能够同配体结合,并将靶蛋白的酪氨酸残基磷酸化。所有的RTKs都是由三个部分组成的:含有配体结合位点的细胞外结构域、单次跨膜的疏水α螺旋区、含有酪氨酸蛋白激酶(RTK)活性的细胞内结构域。 已发现50多种不同的RTKs,主要的几种类型包括: ①表皮生长因子(epidermal growth factor, EGF)受体; ②血小板生长因子(platelet-derived growth factor, PDGF)受体和巨噬细胞集落刺激生长因子(macrophage colony stimulating factor, M-CSF); ③胰岛素和胰岛素样生长因子-1 (insulin and insulin-like growth factor-1, IGF-1)受体; ④神经生长因子(nerve growth factor, NGF)受体; ⑤成纤维细胞生长因子(fibroblast growth factor, FGF)受体; ⑥血管内皮生长因子(vascularendothelial growth factor, VEGF)受体和肝细胞生长因子(hepatocyte growth factor, HGF)受体等。 受体酪氨酸激酶在没有同信号分子结合时是以单体存在的,并且没有活性;一旦有信号分子与受体的细胞外结构域结合,两个单体受体分子在膜上形成二聚体,两个受体的细胞内结构域的尾部相互接触,激活它们的蛋白激酶的功能,结果使尾部的酪氨酸残基磷酸化。磷酸化导致受体细胞内结构域的尾部装配成一个信号复合物(signaling complex)。刚刚磷酸化的酪氨酸部位立即成为细胞内信号蛋白(signaling protein)的结合位点,可能有10~20种不同的细胞内信号蛋白同受体尾部磷酸化部位结合后被激活。信号复合物通过几种不同的信号转导途径,扩大信息,激活细胞内一系列的生化反应;或者将不同的信息综合起来引起细胞的综合性应答(如细胞增殖)。

相关文档
最新文档