机翼模型分析实例

机翼模型分析实例
机翼模型分析实例

南昌航空大学实验报告

课程名称:CAD/CAE软件应用实验名称:机翼模型分析实例

指导老师评定:签名:

(一)实验目的:

1.进一步熟悉应用ANSYS对实体进行受力分析。

2.对机翼进行模态分析,观察分析机翼的应力,应变情况。

(二)实验要求:

1.对机翼进行实体建模,并对其进行加载计算。

2.扩展模态再次进行计算,并进行结构后处理。

(三)实验内容:

/PREP7

ET,1,PLANE182

ET,2,SOLID185

MPDATA,EX,1,,3800 MPDATA,PRXY,1,,0.3 MPDATA,DENS,1,,1.033E-3 K,1,0,0,0,

K,2,2,0,0,

K,3,2.3,0.2,0,

K,4,1.9,0.45,0,

K,5,1,0.25,0,

LSTR, 1, 2 LSTR, 5, 1 FLST,3,4,3

FITEM,3,2

FITEM,3,3

FITEM,3,4

FITEM,3,5

BSPLIN, ,P51X, , , , ,-1,0, 0,-1,-0.25,0,

FLST,2,3,4

FITEM,2,1

FITEM,2,3

FITEM,2,2

AL,P51X

ESIZE,0.25,0, MSHKEY,0

CM,_Y,AREA

ASEL, , , , 1

CM,_Y1,AREA

CHKMSH,'AREA' CMSEL,S,_Y

AMESH,_Y1

CMDELE,_Y

CMDELE,_Y1

CMDELE,_Y2

ESIZE,0,10,

TYPE, 2

MAT, 1

REAL,

ESYS, 0

SECNUM,

FLST,2,1,5,ORDE,1

FITEM,2,1

VEXT,P51X, , ,0,0,10,,,,

FINISH

/SOL

ANTYPE,2

MODOPT,LANB,5

EQSLV,SPAR

MXPAND,5, , ,0

LUMPM,0

PSTRES,0

MODOPT,LANB,5,0,0, ,OFF

ESEL,U,TYPE,,1

NSEL,S,LOC,Z,0

FLST,2,26,1,ORDE,2

FITEM,2,1

FITEM,2,-26

D,P51X, , , , , ,ALL, , , , ,

ALLSEL,ALL

MXPAND,5,0,0,0,0.001,

SOLVE

FINISH

/PREP7

FINISH

/POST1

/VIEW,1,1,2,3

/ANG,1

/REP,FAST

FINISH

/SOL

FINISH

/POST1

SET,LIST

SET,FIRST

PLDI, ,

ANMODE,10,0.5, ,0

/TITLE,肖曾 12061210

SET,NEXT

PLDI, ,

ANMODE,10,0.5, ,0

/TITLE,肖曾 12061210

SET,NEXT

PLDI, ,

ANMODE,10,0.5, ,0

/TITLE,肖曾 12061210

SET,NEXT

PLDI, ,

ANMODE,10,0.5, ,0

/TITLE,肖曾12061210

(四)实验结果:

(A)第一阶振动模态

(B)第二阶振动模态

(C)第三阶振动模态

(D)第四阶振动模态

(五)实验总结:

通过这次实验进一步熟悉了ANSYS的使用方法。对机翼进行建模,理论联系实际,进一步加深了对所学知识的理解,也体会到了ANSYS这软件的强大作用,坚定了我努力学好这门技术的决心。尽管这是最后一个实验了,但我会在未来的学习中多多努力,多多使用ANSYS,多多学习ANSYS这强大的软件。

基于ANSYS的机翼振动模态分析

机翼模型的振动模态分析 摘要:本文在ANSYS13.0平台上,采用有限元方法对机翼模态进行了建模和数值分析,为机翼翼型的设计和改进提供基础数据。 1.引言 高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,这些问题构成飞行器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼模态的分析,可以获得机翼翼型在各阶频率下的模态,得出振动频率与应变之间的关系,从而可以改进设计,避免或减小机翼在使用过程中因为振动引起的变形。 同时,通过实践和实际应用,可以掌握有限元分析的方法和步骤,熟悉ANSYS有限元分析软件的建模和网格划分技巧和约束条件的确定,为以后进一步的学习和应用打下基础。 2.计算模型 一个简化的飞机机翼模型如图1所示,机翼的一端固定在机体上,另一端为悬空自由端,该机翼沿延翼方向为等厚度,有关的几何尺寸见图1。 图1.机翼模型简图 在分析过程采用直线段和样条曲线简化描述机翼的横截面形状,选取5个keypoint,A(0,0,0)为坐标原点,同时为翼型截面的尖点;B(0.05,0,0)为下表面轮廓截面直线上一点,同时是样条曲线BCDE的起点;D(0.0475,0.0125,0)为样曲线上一点。C(0.0575, 0.005,0)为样条曲线曲率最大点,样条曲线的顶点;点E(0.025,0.00625,0)与点A构成直线, 斜率为0.25。通过点A、B做直线和点B、C、D、E作样条曲线就构成了截面的形状,如图2。沿Z方向拉伸,就得到机翼的实体模型,如图1。

物场模型分析实例:发动机积碳清洗

基于物_场模型的汽车发动机积碳清洗技术分析 1、案例描述:汽车发动机在工作过程中,燃油中不饱和烯烃和胶质在高温状态下会产生的一种焦着状的物质,其附着在发动机的气门、燃烧室和气管内壁上,长期累积下来的积碳会加剧汽车发动机的磨损,进而影响发动机的使用性能,缩短其使用寿命。因此,汽车使用者必须及时清除发动机积碳,传统方法是采用含有催化剂的清洁剂对发动机积碳进行清除,缺点是清洗速度慢、清除不彻底。 2、构建传统清除积碳方法的物场模型: 清洗剂中的活性成分可以与积碳中的化学成分结合,从而达到活性化积碳化学粒子并使其软化的效果,进而使积碳能够轻易脱落,但是清洁剂在普通的使用手段下,清洗积碳的速度慢,原因是清洁剂活性成分与积碳化学微粒结合能力不足,效果不明显,也就是有用作用不足。这个过程具有两种物质:清洁剂和积碳,一种场:化学能场。于是可以构建出该问题的物场模型,如图1.1所示。 图1.1

3、从图1.1可以看出,这个问题的物场模型系统三元件都存在,是一个完 整模型;但普通使用手段下清洗剂并不能起到彻底并快速有效清除积碳的效果,作用显得不足,所以这是一个非有效完整模型。针对作用效果不足的物场模型,76个标准解中的第2类标准解(增强物场模型)可以对这个问题进行改善。为了达到避免问题复杂化而又能提高积碳清洗效率的目的,即不再往清洗剂中加入其他物质。从而中第2类标准解中查找到以下几个标准解:(1)S2.1.2 双物_场模型:如果需要强化一个难以控制的物场模型,而且禁止替换元素,可以通过加入第二个易控制的场,建立一个双物场模型来解决问题,如图1.2所示。 (2)S2.2.1 使用更可控的场:物场模型可以通过使用更易控制的场来替换不能控制或难以控制的场而得到加强,如图1.3所示。 (3)S2.2.2 物质S2的分裂:通过加大物质S2的分裂程度,可以加强物场模型,如图1.4所示。 (4)S2.2.5 构造场:通过使用异质场、持续场或可调节立体结构替代同质场或无组织场,以加强物场模型,如图1.5所示。 图1.2 图1.3

ANSYS实例分析-飞机机翼

ANSYS实例分析 ——模型飞机机翼模态分析 一,问题讲述。 如图所示为一模型飞机机翼,其长度方向横截面形状一致,机翼的一端固定在机体上,另一端为悬空自由端,试对机翼进行模态分析并显示机翼的模态自由度。是根据一下的参数求解。 机翼材料参数:弹性模量EX=7GPa;泊松比PRXY=0.26;密度DENS=1500kg/m3。 机翼几何参数:A(0,0);B(2,0);C(2.5,0.2);D(1.8,0.45);E (1.1,0.3)。 问题分析 该问题属于动力学中的模态分析问题。在分析过程分别用直线段和样条曲线描述机翼的横截面形状,选择PLANE42和SOLID45单元进行求解。 求解步骤:

第1 步:指定分析标题并设置分析范畴 1.选取菜单途径Utility Menu>File>Change Title 2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。 3.选取菜单途径Main Menu>Preferences. 4.单击Structure选项使之为ON,单击OK。主要为其命名的作用。 第2 步:定义单元类型 1.选取菜单途径:Main Menu>Preprocessor>Elemen t Type>Add/Edit/Delete。 2.Element Types对话框 将出现。 3.单击Add。Library of

Element Types对话框将出现。 4.在左边的滚动框中单击“Structural Solid”。 5.在右边的滚动框中单击“Quad 4node 42”。 6.单击Apply。 7.在右边的滚动框中单击“Brick 8node 45”。 8.单击OK。 9.单击Element Types对话框中的Close按钮。 第3 步:指定材料性能

铝合金机翼模态分析

铝合金机翼模态分析 模态是机械结构的固有震动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析。振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。本文通过有限元方法,对铝合金机翼进行模态分析,了解其振动特性。 1结构模型 铝合金是应用最为广泛的航空材料,铝合金结构具有强度高,质量小的优点,被广泛的应用于机身和机翼的设计。本次使用的铝合金型号为6061,其密度为2.8g/cm3,弹性模量为E=68.9Gpa,泊松比为0.330,机翼的结构模型如下图1所示 图1.1机翼结构模型 假定该机翼为小型无人机机翼,整个机翼由蒙皮、主梁、辅助梁、翼肋组成。该机翼是弦长为100mm,展弦比为8的矩形直机翼。蒙皮厚度为1mm,主梁厚度为2mm,位于翼型最大厚度处,辅助梁的厚度为1mm,位于后缘1/4弦长处,端肋厚度为1mm,加强肋厚度为2mm。上图给出的是半个机翼的有限元分析模型,其右端固支在机身上。 1.数学模型

机翼的无阻尼固有振动方程为: 0)(2=Φ-M K ω (2.1) 式中: 结构的固有频率;结构的特征向量矩阵; 矩阵; 结构的刚度矩阵和质量--Φ-ωM K , 结构离散化后,运动状态下,可以得到结构的动力平衡方程如下: (2.2) 上式中{P (t )}为流体力矢量,结构在空气中自由振动时,此项为零。本次分析不考虑空气动力的影响,因此结构系统在空气中的无阻尼振动方程为 0}]{[]][[][][1=++δδδ K C M (2.3) 2.机翼有限元模态分析 在对机翼模型进行模态分析之前首先要定义其材料属性为密度为2.8g/cm3,弹性模量为E=68.9Gpa ,泊松比为0.330,接着对其进行有限元网格划分,本次网格划分采用的是六面体结构化网格,网格大小为1mm ,网格数为,如图3.1-3.3所示 3.1 翼端处网格 )}({][}]{[][][1t P K C M =++δδ

飞机的气动布局与机翼的几何参数资料讲解

飞机的气动布局与机翼的几何参数

飞机的气动布局与机翼的几何参数 人类向往飞行是从模仿鸟类飞行开始的。但是由于鸟类飞行机理的复杂性,至今未能对扑翼机模仿成功。 而真正促使人们遨游天空的,也许是受中国风筝的启发,在航空之父凯利的科学理论指导下,将动力和升力面分开考虑,而发明了固定翼飞机。 飞机是二十世纪人类史最伟大的科学成就。是人类最快捷、舒适、高效、安全的交通运输工具,在国家安全、社会和国民经济的发展中占有极其重要的地位。 当年李白受安史之乱蒙冤沦为囚犯,被流放到白帝城后,朝廷大赦天下,他立刻返舟东下,重出三峡,欣喜的心情无法言表: 朝辞白帝彩云间,千里江陵一日还。两岸猿声啼不住,轻舟已过万重山。 如果李白乘飞机,不知如何写佳作。是否同意写成如下: 朝辞白帝彩云间,千里江陵一时还。两耳风声鸣不住,轻机已过万重山。 人类要想自由飞翔,必须做到: 1、必须有良好的气动外形 2、必须有轻巧的结构 3、必须有相当的动力 4、必须达到一定的速度 5、必须有机敏的操纵机构 6、必须有导航系统 与鸟的飞行不同,飞机在空中能够飞行是依靠与空气的相对运动,而产生作用在飞机上的力和力矩来实现的。如对于水平等速直线飞行而言,从飞机受力条件,有 L=G L V ¥(升力与重力平衡) F=D D//V ¥(推力与阻力平衡) M=0 (俯仰力矩保持守恒) 飞机产生升力必须具备的条件: (1)有空气(飞机在空中飞行是靠作用于飞机上的空气动力)。此外,喷气发动机的氧气也是取源于空气。 (2)必须存在一定的飞行速度(飞机和空气之间要有一定的相对运动,产生空气动力)。 (3)要有适当的气动外形、受力大小和飞行姿态。

ANSYS模态分析实例

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下: Main Menu >Preprocessor > Element Type > Add/Edit/Delete

①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“ Quad 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

机翼振动模态试验与颤振分析

机翼振动模态试验与颤振分析 1 引言 高空长航时飞机近年来得到了世界的普遍重视。由于其对长航时性能的要求,这种飞机的机翼往往采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重量的要求,往往使得这类结构受载时产生一系列气动弹性问题,如机翼结构的静气动弹性发散、颤振等等。这些问题构成飞行器设计和其它结构设计中的不利因素,甚至极为有害,解决气动弹性问题历来为飞机设计中的关键技术。 气动弹性问题又分为静气动弹性问题和动气动弹性问题。在动气动弹性问题领域中最令人关注的是颤振问题。颤振现象是气动力、结构弹性力和惯性力三者耦合的结果。所以颤振的发生与机翼结构的振动特性密切相关。 在对机翼进行颤振特性的数值计算时,颤振计算结果的正确性和精确性取决于机翼各阶固有振动模态的精确性。真实机翼的固有模态可以通过模态试验测得。 根据颤振数值计算过程的需要,参与计算的各阶模态必须正交,而试验测得的模态并不严格正交,且因为结构阻尼的存在,模态通常为复数。有一种处理方法是通过取幅值,把各阶模态变为实模态,然后对求得的广义质量阵、刚度阵进行修正,使其变为对角阵从而方便数值计算;另一种方法是直接建立机翼的有限元模型,通过数值计算求得固有模态(满足正交性),但是计算所得模态的正确性需要通过模态试验进行验证。在实际工程中,通常采用第二种方法,本文也采用这种方法的思路。 本文研究对象为一个大展弦比平板机翼模型:一块半展长 1 米,弦长0.12 米,厚度1.8毫米的铝板,边界条件为根部固支。 2 模态数值分析 有限元模型作为颤振分析的基础,也是试验模态结果正确性验证的重要参考。另外根据计算所得的各阶主要模态的节线位置,可以确定传感器测量点和激振点的布放位置(尽量将激振点和测量点放置在远离各阶节线的位置,如果正好在某阶节线上,则该阶模态无法激励出或测量不到)。所以在试验前须根据实际结构建立一个能够充分反映结构质量、刚度特性的有限元模型。 使用Nastran 有限元计算软件进行根部固支状态下的振动模态计算,得到结果如表 1 所示。

基于anasys飞机机翼的模态分析报告

基于ANSYS飞机机翼的模态分析报告 设计完成日期2015年5 月4 日 目录 1项目背景 (2)

1.1 立项背景 (2) 1.2研究内容 (3) 1.3 分析方案 (3) 2有限元模型的建立及分析 (3) 2.1 建立模型 (3) 2.2 划分网格并施加约束 (4) 2.3定义分析类型 (5) 3 求解 (5) 3.1固有频率 (5) 3.2振动模态 (6) 4 有限元结果处理及分析 (7) 5结语 (7) 摘要:介绍了如何利用ANSYS软件建立飞机机翼的有限元模型。应用ANSYS软件对机翼进行特定约束条件下的振动模态分析,得到了机翼的各阶固有频率及相应的变形云图,为机翼在高空飞行时的设计和改进提供了依据。 关键词:ANSYS;机翼;有限元模型;模态分析

1项目背景 1.1 立项背景 随着航空事业的不断发展和进步,以及各国对民用飞机和军用运输机的要求不断提高,大型亚声速乃至超声速客机以及运输机已成为各军事、经济大国争先发展的项目。为了未来大型飞机的载重多、飞的更快更高程的突出特点,无疑要增大飞机的尺寸、重量和气动弹性。这将对飞机各部件的结构强度提出更高的要求,因此降低结构质量成为结构设计追求的一项重要指标,大型柔性成为很多航空结构的一个特点,这种大型柔性复杂结构极易受到外界及航空器本身扰动的影响而发生振动。 飞机机翼 大型运载火箭、导弹、大型运输机等通常对振动环境有严格的要求,强烈的振动会严重地影响各种有效载荷的正常工作,导致系统性能下降甚至失效,直接威胁航空结构的安全。这种由振动引起结构疲劳的问题也变得越来越突出。因此,研究大型柔性航空结构的振动特性,并对其进行振动控制非常重要,航空结构系统的振动抑制问题历来是航空器设计中的一个重要问题和难点。相对于固定翼飞机来说,大型飞机机翼的振动现象更为明显,而且过高的振动水平会引起机翼结构的疲劳破坏,影响机载设备的正常工作,飞行事故屡见不鲜。例如,美军驻伊拉克的空运部队在一次给C-17运输机加油过程中发生了左机翼整体断裂的恶性事故;法国的一架超军旗飞机在飞行中由于机翼折断,造成飞行员坠机身亡;美国的一架F-15战斗机在飞行中由于机动动作太大,造成右机翼断裂脱落。面对着血的教训,设计人员在不断寻找各种合理有效的计算和校核方法冈。以美国为例,从20世纪60年代初期开始进行飞机机翼振动主动控制技术的研究,至今已形成

ANSYS-Maxwell涡流场分析案例

1.训练后处理应用实例 本例中的涡流模型由一个电导率σ=106S/m,长度为100mm,横截面积为10×10m2的导体组成,导体通有幅值为100A、频率为60Hz、初始相位ф=120°的电流。 (一)启动M a x w e l l并建立电磁分析 1.在windows系统下执行“开始”→“所有程序”→ANSYS Electromagnetic→ANSYS Electromagnetic Suite 15.0→Windows 64-bit→Maxwell 3D命令,进入Maxwell软件界面。 2.选择菜单栏中命令,将文件保存名为“training_post” 3.选择菜单栏中Maxwell 3D→Solution Type命令,弹出Solution Type对话框 (1)Magnetic:eddy current (2)单击OK按钮 4.依次单击Modeler→Units选项,弹出Set Model Units对话框,将单位设置成m,并单 击OK按钮。 (二)建立模型和设置材料 1.依次单击Draw→Box命令,创建长方体 在绝对坐标栏中输入:X=-5,Y=-5,Z=0,并按Enter键 在相对坐标栏中输入:dX=5,dY=5,dZ=100,并按Enter键 单击几何实体,左侧弹出属性对话框,重命名为:Cond 材料设置为conductor,电导率为σ=106S/m 2.依次单击Draw→Box命令,创建长方体 在绝对坐标栏中输入:X=55,Y=-10,Z=40,并按Enter键 在相对坐标栏中输入:dX=75,dY=10,dZ=60,并按Enter键 单击几何实体,左侧弹出属性对话框,重命名为:aux 3.依次单击Draw→Line 在绝对坐标栏中输入:X=0,Y=0,Z=0,并按Enter键 在相对坐标栏中输入:dX=0,dY=0,dZ=100,并按Enter键 名为line1 4.依次单击Draw→line,生成长方形 对角点为(20,-20,50)、(-20,20,50),名为line2 5.依次单击Draw→Region命令,弹出Region对话框,设置如下 :Pad individual directions (-100,-100,0)、(200,100,100) (三)指定边界条件和源 1.按f键,选择Cond与Region的交界面,依次单击菜单中的Maxwell 3D→Excitations→ Assign→Current命令,在对话框中填入以下内容: (1)Name:SourceIn (2)Value:100 A (3)Palse:120deg (4)单击OK按钮 2.按f键,选择Cond与Region的另一个交界面,依次单击菜单中的Maxwell 3D→ Excitations→Assign→Current命令,在对话框中填入以下内容: (5)Name:SourceIn (6)Value:100 A (7)Palse:120deg

第10章 周期对称结构的模态分析

第十章周期对称结构的模态分析 ANSYS的周期对称分析支持静力(Static)分析和模态(Modal)分析。静力分析支持线性和大变形非线性;模态分析支持带有预应力的模态分析和不带有预应力的两种,关于带有预应力的模态分析本书第九章有专门讲述。本章只讲述不带有预应力的模态分析。在静力分析和模态分析这两种分析类型中,关于模型建立部分的要求是一致的,不同的是在进行模态分析时需要指定求解的节径数以及指定对于每个节径数的求解的模态阶数。对于每个节径,ANSYS均将其作为一个载荷步。ANSYS将周期对称边界条件施加于每一载荷步,并且每求解一个载荷步(即节径)后,都将构成周期对称边界条件的约束方程删除(保留任何用户自定义的约束方程)。在静力分析中ANSYS只求解零节径,而在模态分析中默认将求解全部节径。 本章中介绍的实例依然是第7章的轮盘,包括模型和边界条件。 10.1 问题描述 某型压气机盘,见7.1节的对其描述。要求查看其低阶频率结构和振动模态。 10.2 建立模型 在周期对称分析中,在建立模型后,划分网格之前,需要指定周期对称选项。 10.2.1 设定分析作业名和标题 在进行一个新的有限元分析时,通常需要修改数据库文件名(原因见第二章),并在图形输出窗口中定义一个标题用来说明当前进行的工作内容。另外,对于不同的分析范畴(结构分析、热分析、流体分析、电磁场分析等)ANSYS6.1所用的主菜单的内容不尽相同,为此我们需要在分析开始时选定分析内容的范畴,以便ANSYS6.1显示出跟其相对应的菜单选项。 (1)选取菜单路径Utility Menu >File >Change Jobname,将弹出修改文件名(Change Jobname)对话框,如图10.1所示。

物理板块模型实例解析

物理板块模型实例解析51 2012-8-22 板块模型是一种复合模型,是由板模型和滑块模型组合而成的,在试题中是比较常见的模型类型。求解板块模型题首先要从板和滑块两个模型的特点出发,分析滑块与板的特点,滑块未必是光滑的,一个是板的长度,是有限的,是否为足够长的,一个是板的表面是否存在摩擦;还要分析板和滑块的组合方式,一般的组合方式为一滑块和一长版结构的,其次,要分析板和滑块间的相互作用特点,两种常见的试题模式:一种是滑块在水平方向不受力,但有初速度,一种是板在水平方向受外力的作用。解题时要注意分析两个模型的相互作用特点和相互作用过程,此类模型题通常运用的物理规律有:匀变速直线运动规律,牛顿运动定律,动能定理,动量定理,动量守恒定律,机械能守恒定律,能的转化和守恒定律等规律。 【例题1】如图所示,放在水平地面上的长木板B ,长为:l m .,质量为2 kg ,B 与地面之间 的动摩擦因数为0.2。一质量为3 kg 的小铅块A ,放在B 的左端,A 、B 之间的动摩擦因数为0.4,当A 以3 m /s 的初速度向右运动之后,求最终A 对地的位移和A 对B 的位移。 解析:(1)对A :2/4s m g m g m a A A A A A -=-=- =μμ 对B :2/1)(s m m g m m mag a B B A B A B =+-= μμ A 相对地面做匀减速运动, B 相对地面做匀加速运动,设经过时间t ,A 的位移为x A ,B 的位移为x B ,此时A 、B 达到共同速度v 共,再共同做匀减速运动,经过x 0的位移停止运动. 对A :t a v v A +=0共----------------------------------------① A a v v xA 22 2-= 共-------------------------------② 对B :t a v B A =---------------------------------------------③ 22 1 t a x B B = ------------------------------------------------④ 代值解得v 共=0.6 m/s ,t =0.6 s ,x A =1.08 m ,x B =0.18 m A 对B 的位移m x x x B A 9.0=-=? (2)A 、B 共同运动加速度为2/2) (s m m m m m a B A B A B AB -=++-= μ

ANSYS机翼模型模态分析详细过程

机翼模型的模态分析 高空长航的飞机近年得到了世界的普遍重视。由于其对长航时性能的要求, 这种飞机的机翼采用非常大的展弦比,且要求结构重量非常低。大展弦比和低重 量的要求,往往使这类结构受载时产生一系列气动弹性问题,这些问题构成飞行 器设计和其它结构设计中的不利因素,解决气动弹性问题历来为飞机设计中的关 键技术。颤振的发生与机翼结构的振动特性密切相关。通过对机翼的模态分析, 可获得机翼翼型在各阶频率下的模态,得出振动频率与应变间的关系,从而可改 进设计,避免或减小机翼在使用过程中因振动引起变形。 下图是一个机翼的简单模态分析。该机翼模型沿着长度方向具有不规则形 状,而且其横截面是由直线和曲线构成(如图所示)。机翼一端固定于机身上, 另一端则自由悬挂。机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3, 密度r =886 kg/m。 图1机翼模型的结构尺寸图 1、建立有限元模型 1.1定义单元类型 自由网格对模型的要求不高,划分简单省时省力。选择面单元PLANE42 和体单元Solid45 进行划分网格求解。 1.2定义材料特性 根据上文所给的机翼材料常数定义材料特性,弹性模量E=0.26GPa,泊松比 m=0.3,密度r =886 kg/m。 1.3建立几何模型并分网 该机翼模型比较简单,可首先建立机翼模型的截面,再其进行网格划分,然后对截面拉伸0.25m的长度并划分10个长度单元,而得到整个模型的网格。

图2机翼模型截面图 图3 盘轴结构的有限元模型 1.4模型施加载荷和约束 因为机翼一端固定于机身上,另一端则自由悬挂,因此对机翼模型的一端所有节点施加位移约束和旋转约束。 1.5 分析求解 本次求解了机翼模型的前五阶模态,各阶固有频率值如下

物理板块模型实例解析51

物理板块模型实例解析51 2012-8-22 板块模型是一种复合模型,是由板模型和滑块模型组合而成的,在试题中是比较常见的模型类型。求解板块模型题首先要从板和滑块两个模型的特点出发,分析滑块与板的特点,滑块未必是光滑的,一个是板的长度,是有限的,是否为足够长的,一个是板的表面是否存在摩擦;还要分析板和滑块的组合方式,一般的组合方式为一滑块和一长版结构的,其次,要分析板和滑块间的相互作用特点,两种常见的试题模式:一种是滑块在水平方向不受力,但有初速度,一种是板在水平方向受外力的作用。解题时要注意分析两个模型的相互作用特点和相互作用过程,此类模型题通常运用的物理规律有:匀变速直线运动规律,牛顿运动定律,动能定理,动量定理,动量守恒定律,机械能守恒定律,能的转化和守恒定律等规律。 【例题1】如图所示,放在水平地面上的长木板B ,长为:l m .,质量为2 kg ,B 与地面之间 的动摩擦因数为0.2。一质量为3 kg 的小铅块A ,放在B 的左端,A 、B 之间的动摩擦因数为0.4,当A 以3 m /s 的初速度向右运动之后,求最终A 对地的位移和A 对B 的位移。 解析:(1)对A :2/4s m g m g m a A A A A A -=-=-=μμ 对B :2/1)(s m m g m m mag a B B A B A B =+-=μμ A 相对地面做匀减速运动, B 相对地面做匀加速运动,设经过时间t ,A 的位移为x A ,B 的位移为x B ,此时A 、B 达到共同速度v 共,再共同做匀减速运动,经过x 0的位移停止运动. 对A :t a v v A +=0共----------------------------------------① A a v v xA 220 2-=共-------------------------------② 对B :t a v B A =---------------------------------------------③ 22 1t a x B B =------------------------------------------------④ 代值解得v 共=0.6 m/s ,t =0.6 s ,x A =1.08 m ,x B =0.18 m A 对 B 的位移m x x x B A 9.0=-=? (2)A 、B 共同运动加速度为2/2)(s m m m m m a B A B A B AB -=++-=μ m a v x AB 09.02020=-=共

机翼模型的振动模态分析

机设1305 彭鹏程1310140521 一个简化的飞机机翼模型如图所示,该机翼沿延翼方向为等厚度。有关的几何尺寸见下图,机翼材料的常数为:弹性模量E=0.26GPa,泊松比m=0.3,密度r =886 kg/m。对该结构进行振动模态的分析。 (a) 飞机机翼模型 (b) 翼形的几何坐标点 振动模态分析计算模型示意图 解答这里体单元SOLID45 进行建模,并计算机翼模型的振动模态。 建模的要点: ⑴首先根据机翼横截面的关键点,采用连接直线以及样条函数< BSPLIN >进行连接以形成一个由封闭线围成的面; ⑵在生成的面上采用自由网格划分生成面单元(PLANE42); ⑶设置体单元SOLID45,采用< VEXT>进行Z 方向的多段扩展; ⑷设置模态分析< ANTYPE,2>,采用Lanczos 方法进行求解< MODOPT,LANB >; ⑸在后处理中,通过调出相关阶次的模态; ⑹显示变形后的结构图并进行动态演示。 给出的基于图形界面的交互式操作(step by step)过程如下。 (1) 进入ANSYS(设定工作目录和工作文件) 程序→ANSYS →→ANSYS Interactive →Working directory ( 设置工作目录) →Initial jobname(设置工作文件名):Modal→Run (2) 设置计算类型 ANSYS Main Menu:Preferences…→Structural →OK (3) 选择单元类型 ANSYS Main Menu:Preprocessor →Element Type →Add/Edit/Delete →Add…→Structural solid:Quad 4node 42 →Apply →solid →Brick 8node 45→OK →Close (4) 定义材料参数 ANSYS Main Menu:Preprocessor →Material Props →Material Models →Structural →Linear →Elastic →Isotropic:EX:0.26E9(弹性模量),PRXY:0.3(泊

飞机机翼模态分析实例

飞机机翼模态分析实例 模态分析实例 §1.13.1飞机机翼模态分析实例 §1.13.1.1 问题描述 该实例对一个飞机模型的机翼进行模态分析,以确定机翼的模态频率和振型。机翼沿长度方向轮廓一致,横截面由直线和样条曲线定义(如图9所示)。机翼的一端固定在机体上,另一端为自由端。机翼由低密度聚乙烯制成,相关参数如下: 杨氏模量=38×103psi泊松比=0.3密度=1.033e-3slugs/in3 图9模型飞机机翼简图 §1.13.1.2GUI方式分析过程 第1 步:指定分析标题并设置分析范畴 1.选取菜单途径Utility Menu>File>Change Title 2.输入文字“Modal analysis of a model airplane wing”,然后单击OK。 3.选取菜单途径Main Menu>Preference 4.单击Structure选项使之为ON,单击OK。 第2 步:定义单元类型 1.选取菜单途径Main Menu>Preprocessor>Element Type>Add/Edit/Delete。 2.Element Types对话框将出现。 3.单击Add。Library of Element Types对话框将出现。 4.在左边的滚动框中单击“Structural Solid”。 5.在右边的滚动框中单击“Quad4node42”。 6.单击Apply。 7.在右边的滚动框中单击“Brick8node45”。 8.单击OK。 9.单击Element Types对话框中的Close按钮。 第3 步:指定材料性能 1.选取菜单途径Main Menu>Preprocessor>Material Props>-Constant-Isotropic。Isotro pic Material Properties对话框将出现。 2.在OK上单击以指定材料号为1。第二个对话框将出现。 3.输入EX为3800。 4.输入DENS为1.033e-3。 5.输入NUXY为0.3。 6.单击OK。 第4 步:在给定的位置生成关键点 1.选取菜单途径Main Menu>Preprocessor>-Modeling-Creat>Keypoints>In Active C S。Creat Keypoints in Active Coordinate System对话框将出现。 2.输入Keypoint number(关键点号)为1,X,Y,Z位置分别为0,0,0。可用TAB键在输入区之间移动。 3.单击Apply。 4.对下面的关键点及X,Y,Z位置重复这一过程: 关键点2:2,0,0

模态分析实例 1 平板中央开孔模型的模态分析

这些实例包括两个问题: 1. 平板中央开孔模型的模态分析: –一步一步地描述了如何进行模态分析; –既可以由学员自己来练习这个问题,也可以由老师把这个问题作为范例来讲。 2. 对模型飞机机翼进行模态分析: –这个问题留给学员做练习。 细节部分请参考动力学实例分析补充材料。 为了方便大家学习,这里给出具体操作过程,供大家参考。 1. 平板中央开孔模型的模态分析: 说明: 确定一个有孔方板的前 10 阶频率。假设约束板在孔边缘的径向位移。板的材料为铝,属性如下: –弹性模量 E = 10 x 106 psi –密度ρ = 2.4 x 10-4 lbf-sec2/in4 –泊松比μ = 0.27

操作过程: 1. 清除数据库并读入文件plate.inp 以创建几何模型和网格。 2. 定义材料属性

Preprocessor > Material Props > Material Models… ? 依次双击: –… Structural … Linear … Elastic … Isotropic ? EX = 10e6 (弹性模量,单位psi) ? PRXY = 0.27 (泊松比) ? OK –… Structural … Density ? DENS = 2.4e-4 (密度,单位:lbf-sec2/in4) ? OK 退出材料对话框。 3. 进入/Solution,选择模态分析: Solution > New Analysis…选择Modal,然后OK。

4. 设置分析选项: Solution > Analysis Options… 使用Block Lanczos 方法(默认) 抽取10 个模态;扩展10 个模态 可计算单元结果…按OK 在下一个对话框中接受默认设置

物-场模型分析

1 物—场模型分析是TRIZ理论中的一种重要的问题描 述和分析工具,用以建立与已存在的系统或新技术系统 问题相联系的功能模型,在问题的解决过程中,可以根 据物—场模型所描述的问题,来查找相对应的一般解法 和标准解法。 2

6.1 物—场分析 每个系统的出现都是为了实现某个确定的功能。产品是 功能的实现。 所谓功能,是指系统的输出与系统的输人之间正常的、 期望存在的关系。产品设计中,经常使用到传递函数: y = F (x1,x2,x3,…,x n) 式中y —输出; x1,x2,x3,…,x n—输入。 输出与输入之间的函数关系F 就是功能。 系统的功能可以是一个比较大的总的功能,也可以是分 解到子系统的功能,也可以一直分解下去,直达底层的功能 为止。底层的功能结构上比较简单,容易进行理解和表达。 3 阿奇舒勒通过对功能的研究,发现并总结出以下3条定律: l) 所有的功能都可以分解为3个基本元素(S1,S2,F); 2)一个存在的功能必定由这3个基本元素组成; 3)将相互作用的3个基本元素进行有机组合将形成一个功能。 为方便表示,功能用一个三角形来进行模型化,三角形的下边2个角是3个物体(或称为物质),上角是作用或效应(或称为场)。物体可以是工件或工具,场是能量形式。通常,任何一个完整的系统功能,都可以用一个完整的物—场三角形进行模型化,称为物—场分析模型。见图7-l。如果是一个复杂的系统,可以用多个物—场三角形来进行模型化。 4

5 F S 1S 2 图6-1 物——场分析模型 6 参与相互作用的物体S 1和S 2可以是: 1) 材料; 2) 工具;3) 零件; 4) 人; 5) 环境。F S 1S 2

机翼模型分析实例

南昌航空大学实验报告 课程名称:CAD/CAE软件应用实验名称:机翼模型分析实例 指导老师评定:签名: (一)实验目的: 1.进一步熟悉应用ANSYS对实体进行受力分析。 2.对机翼进行模态分析,观察分析机翼的应力,应变情况。 (二)实验要求: 1.对机翼进行实体建模,并对其进行加载计算。 2.扩展模态再次进行计算,并进行结构后处理。 (三)实验内容: /PREP7 ET,1,PLANE182 ET,2,SOLID185 MPDATA,EX,1,,3800 MPDATA,PRXY,1,,0.3 MPDATA,DENS,1,,1.033E-3 K,1,0,0,0, K,2,2,0,0, K,3,2.3,0.2,0, K,4,1.9,0.45,0, K,5,1,0.25,0, LSTR, 1, 2 LSTR, 5, 1 FLST,3,4,3 FITEM,3,2 FITEM,3,3 FITEM,3,4 FITEM,3,5 BSPLIN, ,P51X, , , , ,-1,0, 0,-1,-0.25,0, FLST,2,3,4 FITEM,2,1 FITEM,2,3 FITEM,2,2 AL,P51X ESIZE,0.25,0, MSHKEY,0 CM,_Y,AREA ASEL, , , , 1 CM,_Y1,AREA CHKMSH,'AREA' CMSEL,S,_Y AMESH,_Y1 CMDELE,_Y CMDELE,_Y1 CMDELE,_Y2 ESIZE,0,10, TYPE, 2 MAT, 1 REAL, ESYS, 0 SECNUM, FLST,2,1,5,ORDE,1 FITEM,2,1 VEXT,P51X, , ,0,0,10,,,, FINISH /SOL ANTYPE,2 MODOPT,LANB,5 EQSLV,SPAR MXPAND,5, , ,0 LUMPM,0 PSTRES,0 MODOPT,LANB,5,0,0, ,OFF ESEL,U,TYPE,,1 NSEL,S,LOC,Z,0 FLST,2,26,1,ORDE,2 FITEM,2,1 FITEM,2,-26 D,P51X, , , , , ,ALL, , , , , ALLSEL,ALL MXPAND,5,0,0,0,0.001, SOLVE FINISH /PREP7 FINISH /POST1 /VIEW,1,1,2,3 /ANG,1 /REP,FAST FINISH /SOL FINISH /POST1 SET,LIST SET,FIRST PLDI, , ANMODE,10,0.5, ,0 /TITLE,肖曾 12061210 SET,NEXT PLDI, , ANMODE,10,0.5, ,0 /TITLE,肖曾 12061210 SET,NEXT PLDI, , ANMODE,10,0.5, ,0 /TITLE,肖曾 12061210 SET,NEXT PLDI, , ANMODE,10,0.5, ,0 /TITLE,肖曾12061210

机翼模态分析实验-命令流

《机翼模态分析实验》 实验目的 1、使学生深化对机械系统有限元仿真的认识; 2、培养学生的工程分析能力。 一、 实验内容 对飞机机翼完成几何建模、单元划分、约束处理、外载处理、参数设定、计算设定以及结果分析等完整的固有频率分析过程。 p A B F F X Y Y X Z D(1.9,0.45,0)E(1,0.25,0) B(2,0,0) C(2.3,0.2,0)A B E C D 图—1 二、 实验步骤 1、定义标题和设置参数 (1) Menu>选择菜单Utility File>Change Title 。 (2) 输入文本“Modal analysis of a model airplane wing ”,单击。 (3) 选择菜单Main Menu>Preferences 。 (4) 选中“Structural ”选项,单击。 2、定义单元类型 (1) 选择菜单Main Menu>Preprocessor>Element Type>Add/Edit/Delete ,弹出【Element Types 】窗口如图2。

(2)单击,弹出【Library of Element Types】对话框如图3。 图3 【Library of Element Types】对话框 (3)在左侧的滚动框中选择“Structural Solid”。 (4)在右侧的滚动框中选择“Quad 4node 42”。 (5)单击。 (6)在右侧的滚动框中选择“Brick 8node 45”,单击。 (7)单击关闭窗口。 1.定义材料性质 (1)选择菜单路径Main Menu>Preprocessor>Material Props>Material Models,打开 【Define Material Model Behavior】材料属性对话框如图4。

相关文档
最新文档