沥青路面承载能力应力应变指标分析

沥青路面承载能力应力应变指标分析
沥青路面承载能力应力应变指标分析

沥青路面承载能力应力应变指标分析

摘要:笔者在路面结构力学基础上,研究了路面结构破坏的根本原因。分析结果表面:路面破坏在于过度的应力或应变,而不是挠度造成。有些路面损坏如推移、开裂与弯沉并无直接联系,而是与结构材料中的应力应变相联系。因此,理想的承载力评价应以应力、应变为基础。

关键词:应力应变挠度承载力评价

应力应变变化与“局部”破坏

路面结构内的应力应变状况是极为复杂的,它随着结构层次组合、结构层厚度、作用荷载类型及温度、湿度等因素变化。由于不直观、检测困难,目前在我国沥青路面设计规范中,只是将沥青及基层底部拉应力作为验算指标[1]。

FWD测试利用弯沉盆代替贝克曼梁的单点弯沉,使结构性能评价细化到路面各结构层。这样建立在弯沉盆特性基础上的路面结构反算方法,使以应变为基础的无破损评价得以实现[2]。本文的重点在于如何根据FWD测试数据获取结构层模量、应力应变及结构状态,而对对设计及评价指标不进行深入研究。

利用应变进行剩余寿命计算

⑴AI法计算剩余寿命

美国地沥青协会(AI)基本认定公路沥青路面破坏的两大准则是车辙和疲劳裂缝率。通过模量的反算,也可以采用美国地沥青协会退到的两个道路寿命评估模型来确定路面的使用寿命。这两个模型属于纯力学方法建立的路面剩余寿命评定模型,其特点是求出、,最重要的是首先确定路面的各层弹性模量。由力学法建立的模型有较成熟的理论基础,它是利用弹性理论模型或粘塑性模型通过结构分析得到路面在荷载作用下的应力应变[3~6]。

对于疲劳开裂,在沥青协会MS-1路面设计手册所用的传递函数为:

式中,为全路面20%~25%或轮迹带上45%裂缝率时的容许重复轮载作用次数(ESAL);为沥青混凝土路面底部拉应变;为沥青混凝土面层模量。

对于永久变形(车辙),沥青协会给出的永久变形公式为:

式中,为车辙13时的容许重复轮载作用次数(ESAL);为非胶结层顶面垂直压应变。

沥青路面结构设计

第四章路面结构设计 1.1设计资料 (1)自然地理条件 新建济南绕城高速,道路路基宽度为24.5米,全长5km,结合近几年济南经济增长及人口增长的情况,根据近期的交通量预测该路段的年平均交通量为5000辆/日,交通量平均年增长率γ=4%。路面结构设计为沥青混凝土路面结构,设计年限为15年。 (2)土基回弹模量 济南绕城高速北环所在地区为属于温带季风气候,季风明显,四季分明,春季干旱少雨,夏季温热多雨,秋季凉爽干燥,冬季寒冷少雪。据区域资料,年平均气温13.8℃,无霜期178天,最高月均温27.2℃(7月),最低月均温-3.2℃(1月),年平均降水量685毫米。道路沿线土质路基稠度cω=1.3;因此该路基处于干燥状态,根据公路自然区划可知济南绕城高速处于5Ⅱ区,根据【JTG D50-2006】《公路沥青路面设计规范》中表5.1.4-1可确定工程所在地土基回弹模量设计值为46MPa。 (3)交通资料 交通组成及各车型汽车参数表1-1

1.2交通分析 (1)轴载换算 路面设计以双轮组-单轴载为100KN为标准轴载,以BZZ-100表示。标准轴载的计算参数按表1-2确定。 表1-2 ○1当以设计弯沉为指标时及验算沥青层层底拉应力时,凡大于25kN的各级轴载Pi的作用次数Ni按下式换算成标准轴载P的当量作用次数N的计算公式为: 35 .4 1 2 1 ∑= ? ? ? ? ? = k i i i P P N C C N 式中:N——标准轴载当量轴次数(次/d); Ni——被换算的车型各级轴载作用次数(次/d); P——标准轴载(kN); Pi——被换算车型的各级轴载(kN); C1——被换算车型的各级轴载系数,当其间距大于3m时,按单独的一个轴计算,轴数系数即为轴数m,当其间距小于3m时,按双轴或多 轴计算,轴数系数为C1=1+1.2(m-1);

梁结构应力分布ANSYS分析汇总

J I A N G S U U N I V E R S I T Y 先进制造及模具设计制造实验 梁结构应力分布ANSYS分析 学院名称:机械工程学院 专业班级:研1402 学生姓名:XX 学生学号:S1403062 2015年5 月

梁结构应力分布ANSYS分析 (XX,S1403062,江苏大学) 摘要:本文比较典型地介绍了如何用有限元分析工具分析梁结构受到静力时的应力的分布状态。我们遵循对梁结构进行有限元分析的方法,建立了一个完整的有限元分析过程。首先是建立梁结构模型,然后进行网格划分,接着进行约束和加载,最后计算得出结论,输出各种图像供设计时参考。通过本论文,我们对有限元法在现代工程结构设计中的作用、使用方法有个初步的认识。 关键词:梁结构;应力状态;有限元分析;梁结构模型。 Beam structure stress distribution of ANSYS analysis (Dingrui, S1403062, Jiangsu university) Abstract: This article is typically introduced how to use the finite element analysis tool to analyze the stress of beam structure under static state distribution. We follow the beam structure finite element analysis method, established the finite element analysis of a complete process. Is good beam structure model is established first, and then to carry on the grid, then for constraint and load, calculated the final conclusion, the output of images for design reference. In this article, we have the role of the finite element method in modern engineering structural design, use method has a preliminary understanding. Key words: beam structure; Stress state; The finite element analysis; Beam structure model. 1引言 在现代机械工程设计中,梁是运用得比较多的一种结构。梁结构简单,当是受到复杂外力、力矩作用时,可以手动计算应力情况。手动计算虽然方法简单,但计算量大,不容易保证准确性。相比而言,有限元分析方法借助计算机,计算精度高,

ABAQUS真实应力和真实应变定义塑性(最新整理)

在ABAQUS 中必须用真实应力和真实应变定义塑性.ABAQUS 需要这些值并对应地在输入文件中解释这些数据。 然而,大多数实验数据常常是用名义应力和名义应变值给出的。这时,必须应用公式将塑性材料的名义应力(变)转为真实应力(变)。 考虑塑性变形的不可压缩性,真实应力与名义应力间的关系为: , 00l A lA = 当前面积与原始面积的关系为: 0 l A A l =将A 的定义代入到真实应力的定义式中,得到: 00 ()nom F F l l A A l l σσ===其中 也可以写为。0l l 1nom ε+ 这样就给出了真实应力和名义应力、名义应变之间的关系: (1) nom nom σσε=+真实应变和名义应变间的关系很少用到,名义应变推导如下:0001nom l l l l l ε-= =-上式各加1,然后求自然对数,就得到了二者的关系: ln(1) nom εε=+ ABAQUS 中的*PLASTIC 选项定义了大部分金属的后屈服特性。ABAQUS 用连接给定数据点的一系列直线来逼近材料光滑的应力-应变曲线。可以用任意多的数据点来逼近实际的材料性质;所以,有可能非常逼真地模拟材料的真实性质。在*PLASTIC 选项中的数据将材料的真实屈服应力定义为真实塑性应变的函数。选项的第一个数据定义材料的初始屈服应力,因此,塑性应变值应该为零。 在用来定义塑性性能的材料实验数据中,提供的应变不仅包含材料的塑性应变,而是包括材料的总体应变。所以必须将总体应变分解为弹性和塑性应变分量。弹性应变等于真实应力与杨氏模量的比值,从总体应变中减去弹性应变,就得到了塑性应变,其关系为: /pl t el t E εεεεσ=-=-其中是真实塑性应变,是总体真实应变,是真实弹性应变。 pl εt εel ε

应力-应变曲线

混凝土是一种复合建筑材料,内部组成结构非常复杂。它是由二相体所组成,即粗细骨料被水泥浆所包裹,靠水泥浆的粘接力,使骨料相互粘接成为整体。如果考虑到带气泡和毛细孔隙的存在,混凝土实际是一种三相体的混合物,不能认为是连续的整体。[2] 1. 普通高强度混凝土只能测出压应力-应变曲线的上升段,因为混凝土一旦出现出裂缝,承力系统在加压过程中积累的大量弹性能突然急剧释放,使得裂缝迅速扩展,试件即刻发生破坏,无法测得应力-应变曲线的下降段。[1] 2. 拟合本文的高强混凝土和纤维与混杂纤维增强高强混凝土的受压本构方程的参数结果 图3和图4为掺杂了纤维与混杂纤维的纤维增强高强混凝土的压缩应力一应变全曲线,由曲线可以看出,纤维与混杂纤维增强高强混凝土则能够准确地测出

完整的压应力.应变曲线.纤维增强高强混凝土和混杂纤维增强高强混凝土的这两种曲线具有相同的形状啪,都由三段组成:线性上升阶段、初裂点以后的非线性上升阶段、峰值点以后的缓慢下降阶段.[2] 3.[3]再生混凝土设计强度等级为C20,C25,C30,C40,再生骨料取代率100%。标准棱柱体试件150mm*150mm*300mm,28天强度测试结果。

“等应力循环加卸载试验方法”测定再生混凝土的应力-应变全曲线,即每次加载至预定应力后再卸载至零,再次进行加载,多次循环后达不到预定应力而自动转向包络线时,进行下一级预定应力的加载。 再生粗骨料来源的地域性和差异性使再生骨料及再生混凝土的力学性能有较大差别。 4.通过对普通混凝土和高强混凝土在单轴收压时的应力应变分析发现,混凝土的弹性模量随混凝土的强度的提高而提高,混凝土弹性段的范围随混凝土强度的提高而增大,混凝土应力应变曲线的下降段,随混凝土强度的提高而越来越陡,混凝土的峰值应变与混凝土的抗压强 度无正比关系。

公路桥梁承载能力试验和检测方法

公路桥梁承载能力试验与检测方法 1前言 1.1公路桥梁承载力试验的目的与作用 全国每年都有一大批结构新颖、雄伟壮观、形式多样的桥梁建成,无论在桥梁单跨跨度、结构复杂程度和施工技术难度方面,我国桥梁建设技术水平已进入世界先进之列。 随着科学技术的进步,桥梁结构的设计方法和设计理论都有了根本性的变化,然而影响桥梁工程质量的许多不确定因素仍然存在,对于建成后的桥梁工程质量,人们更希望了解和掌握其使用性能和效果。 对那些影响较大、结构新颖、隐蔽工程较多的桥梁进行全桥实桥荷载试验,是竣工验收时对桥梁工程内在质量进行评判时最直接和有效的方法和手段。同时亦为设计理论、施工技术总结积累经验,为桥梁建设的整体水平提高创造条件,为今后桥梁的养护管理提供科学依据。 美国一位专家曾说过:“无论多么高新的结构分析技术都不能取代用于评估公路大桥性能的现场测试。当建筑物承受工作荷载时,记录下应变测试结果,根据测试结果工程师就能更好地了解桥梁的真实结构响应。” 1.2新的公路桥梁汽车荷载标准

我国颁布的行业标准《公路工程技术标准》(JTGB01—2003),将使用近40年的原公路桥涵结构设计采用的车辆荷载标准模式及其分级作了重大调整。一是将四级标准车队荷载改为公路—I级、公路—,,级两级汽车荷载二是汽车荷载采用了国外普遍采用的车道荷载和车辆荷载组成的模式;另外,从形式上取消了验算荷载,将验算荷载的影响通过多种途径间接地反映到汽车荷载模式中。 而《公路桥涵设计通用规范》(JTG D 60—2004)亦提出在公路桥涵设计时,车道荷载横向分布系数应按设计车道数布置车辆荷载进行计算;同时多车道桥梁上的汽车荷载应考虑多车道折减;当桥梁计算跨径大于150m时,还应按规定的纵向折减系数进行折减;当为多跨连续结构时,整个结构应按最大的计算跨径考虑汽车荷载效应的纵向折减。 1.3解读新的汽车荷载标准 美国早在?944年就在美国公路桥梁规范(AASHO)中采用车辆荷载与车道荷载,即双轨制的活载标准,用以补充活载设计标准的缺陷与不足。采用车道荷载的最大优点是,车道荷载便于在影响线上布载,一旦影响线形状、面积及最大坐标值已知,则加载手续简便,计算工作量少而对于特定桥型结构的桥梁,其内力影响线又是一定的。所以,

真实应力-真实应变曲线的测定

真实应力-真实应变曲线的测定 一、实验目的 1、学会真实应力-真实应变曲线的实验测定和绘制 2、加深对真实应力-真实应变曲线的物理意义的认识 二、实验内容 真实应力-真实应变曲线反映了试样随塑性变形程度增加而流动应力不断上升,因而它又称为硬化曲线。主要与材料的化学成份、组织结构、变形温度、变形速度等因素有关。现在我们把一些影响因素固定下来,既定室温条件下拉伸退火的中碳钢材料标准试样,由拉力传感器行程仪及有关仪器记录下拉力-行程曲线。实测瞬间时载荷下试验的瞬间直径。特别注意缩颈开始的载荷及形成,缩颈后断面瞬时直径的测量,然后计算真实应力-真实应变曲线。 σ真=f(ε)=B·εn 三、试样器材及设备 1、60吨万能材料试验机 2、拉力传感器 3、位移传感器 4、Y6D-2动态应变仪 5、X-Y函数记录仪 6、游标卡尺、千分卡尺 7、中碳钢试样 四、推荐的原始数据记录表格 五、实验报告内容 除了通常的要求(目的,过程……)外,还要求以下内容: 1、硬化曲线的绘制 (1)从实测的P瞬、d瞬作出第一类硬化曲线(σ-ε) (2)由工程应力应变曲线换算出真实应力-真实应变曲线 (3)求出材料常数B值和n值,根据B值作出真实应力-真实应变近似理论硬化

曲线。 2、把真实应力-真实应变曲线与近似理论曲线比较,求出最大误差值。 3、实验体会 六、实验预习思考题 1、 什么是硬化曲线?硬化曲线有何用途? 2、 真实应力-真实应变曲线和工程应力应变曲线的相互换算。 3、 怎样测定硬化曲线?测量中的主要误差是什么?怎样尽量减少误差? 附:真实应力-真实应变曲线的计算机数据处理 一、 目的 初步掌握实验数据的线性回归方法,进一步熟悉计算机的操作和应用。 二、 内容 一般材料的真实应力-真实应变都是呈指数型,即σ=B εn 。如把方程的二边取对数: ln σ=lnB+nln ε, 令 y =ln σ;a =lnB ;x =ln ε 则上式可写成y =a+bx 成为一线性方程。在真实应力-真实应变曲线试验过程中,一般可得到许多σ和ε的数据,经换算后,既有许多的y 和x 值,在众多的数值中如何合理的确定a 和b 值使大多数实验数据都在线上,这可用最小二乘法来处理。 已知有测量点σ1,σ2……σk ,ε1,ε2……εk ,既有y 1y 2y 3……y k ,x 1x 2x 3……x k ,把这些数据代入回归后的线性方程y =a+bx 中去,必将产生误差△v 。 △v 1=a+bx 1-y 1 △v 2=a+bx 2-y 2 · · · △v k =a+bx k -y k 即 △V i =a+bx i -y i 我们回归得直线应满足 ∑△V ︱i 2 ,最小 △ V ︱i 2 =a 2+b 2 x ︱i 2+y ︱i 2 +2abx i -2ay i -2bx i y i ∑△V ︱i 2 = ka 2+b 2∑x i x i +∑y i y i +2ab ∑x i -2a ∑y i -2b ∑x i y i

05沥青路面应力分析讲稿

第五章 沥青路面应力分析 一.古典设计方法 1.麻省公式 图5-1 古典公式示意图 1901年,美国麻省道路委员会第八次年会上发表了世界上第一个路面设计的公式。它假定汽车是一个集中荷载P ,荷载以45?角通过碎石基层分布于边长为碎石层厚2倍的正方形面积的土基上,所以: q P h q h P 2122 = )=( (5-1) 载 荷中集 度强载承基土中:式 P q 2.Downs公式 1933年,Downs对麻省公式进行修正,认为荷载在路面层内的传布与垂直方向成某一分布角θ的圆锥上,所以传到路面的顶面时,压力分布于一个圆形的面积上而不是正方形,但他仍假定汽车荷载为集中荷载。据此: 图5-2 古典公式改进 P h tg q h tg P q ==  πθθ 220564.(5-2) 载 荷中集 度强载承基土中:式 P q 3.Gray公式

1934年、Gray认为由于汽车荷载轮胎接触路面由一个面积,所以不应当假定汽车荷载为集中荷载,而应当假定汽车荷载为圆形均布荷载,并设轮载接地圆形面积的半径为a ,即: P htg a q h tg P q a =()=() πθθ+-210564. (5-3) 载 荷中集 度强载承基土中:式 P q 4.评述 古典理论公式是假定路面只要起分布荷载的作用,采用简单的分布角的概念,这个朴素思想的路面力学理论应予解决的问题; 从各公式得知,路面厚度主要取决于土基承载力得大小,这就是土基强度得问题。但初期没有提出土基参数的测定问题; 古典公式以轮载作为交通荷载,它不能反映交通量的因素,这在当时轻交通时代可能矛盾不突出,但随着交通得发展,不考虑交通量是无法使用的解决的办法就是在土基承载力取值上应根据交通量的大小采取不同的安全系数。 二.弹性半空间体 1.解答过程 1887~1885 布辛尼斯克得到完整的解答,方法是采用半逆解法。 1925年 A.E.Love势能法得到了解答。 采用路面力学中的方法,同样可以得到解答。 2.A.E.Love解 轮隙弯沉的计算及应用采用以上公式 ()()[ ]π μμμμ2 1201200211221 222/1222E pa w z a r E pa w z r z z a z a a E p w )(= 时 =,=当) (= 时 =,=当+)+()(=2/--? ? ?? ??--++ () ????????+??? ??+??? ??+??? ??+??? ??? ?? ??- 6 422024.0047.0125.011120r a r a r a r r a F r a F E pa z a r 2=时 w==,>当μ 三.多层体系 1.解答过程 1945年,D.M.Burmister得到理论解. 1945-1955 研究层状体系的工程应用 1955,R.L.希夫曼得到非轴对称的解 2.计算方法 采用查诺模图法 采用程序计算法 四.计算程序 沥青路面通常是多层体系。自从本世纪四十年代以来无论在理论分析,还是在数值计算方面,都取得很大进展,特别是计算机科学的发展及其在工程技术中广泛应用,使层状体系理论的研究的日趋完善,其中有波米斯特(D.M.Burmister)(1945年)及英因福克斯(L.Fox)、阿堪姆(W.E.Acum)、苏联科岗(Korah)及英国琼斯(A.Jones)等所作的贡献。在荷载形式方面,包括轴对称均布荷载与非轴对称单向水平荷载,都可直接进行数值计算,在层次结构方面,由双层体系、三层体系发展到多层体系。在计算机程序方面,有壳牌公司编制的Bisar 程序,雪弗隆公司编制的Chevron 程序,美国地沥青学会所采用的DAMA 程序。

混凝土受压应力-应变全曲线方程(描述)

混凝土受压应力-应变 全曲线方程

混凝土受压应力-应变全曲线方程 混凝土的应力-应变关系是钢筋混凝土构件强度计算、超静定结构力分析、结构延性计算和钢筋混凝土有限元分析的基础,几十年来,人们作了广泛的努力,研究混凝土受压应力-应变关系的非线性性质,探讨应力与应变之间合理的数学表达式,1942年,Whitney 通过混凝土圆柱体轴压试验,提出了混凝土受压完整的应力应变全曲线数学表达式,得出了混凝土脆性破坏主要是由于试验机刚度不足造成的重要结论,这一结论于1948年由Ramaley 和Mchenry 的试验研究再次证实,1962年,Barnard 在专门设计的具有较好刚性且能控制应变速度的试验机上,试验了一批棱柱体试件以及试件两靖被放大的圆柱体试件,试验再次证明,混凝土的突然破坏并非混凝土固有特性,而是试验条件的结果,即混凝土的脆性破坏可用刚性试验机予以防止,后来由很多学者(如M.Sagin ,P.T.Wang ,过镇海等)所进行的试验,都证明混凝土受压应力-应变曲线确实有下降段存在,那么混凝土受压应力与应变间的数学关系在下降段也必然存在,研究这一数学关系的工作一刻也没有停止。 钢筋混凝土结构是目前使用最为广泛的一种结构形式。但是,对钢筋混凝土的力学性能还不能说已经有了全面的掌握。近年来,随着有限元数值方法的发展和计算机技术的进步,人们已经可以利用钢筋混凝土有限元分析方法对混凝土结构作比较精确的分析了。由于混凝土材料性质的复杂性,对混凝土结构进行有限元分析还存在不少困难,其中符合实际的混凝土应力应变全曲线的确定就是一个重要的方面。 1、混凝土单轴受压全曲线的几何特点 经过对混凝土单轴受压变形的大量试验大家一致公认混凝土单轴受压变过程的应力应变全曲线的形状有一定的特征。典型的曲线如图1所示,图中采用无量纲坐标。 s c c E E N f y x 0,,=== σ εε 式中,c f 为混凝土抗压强度;c ε为与c f 对应的峰值应变;0E 为混凝土的初始弹性模量;s E 为峰值应力处的割线模量。 此典型曲线的几何特

CJJ 《城市桥梁设计荷载标准》

目次 1总则 2术语、符号 3城市桥梁设计荷载 4城市桥梁设计可变荷载 附录A本标准用词说明 附加说明 1总则 1.0.1为改进城市桥梁设计荷载现行方法,采用按车道均布荷载进行加载设计,以达到与国际桥梁荷载标准相接轨的目的,制定本标准。 1.0.2本标准适用于在城市内新建、改建的永久性桥梁和城市高架道路结构以及承受机动车辆荷载的其他结构物的荷载设计。 1.0.3本标准规定的基本可变荷载,适用于桥梁跨径或加载长度不大于150m的城市桥梁结构。 1.0.4本标准的设计活载分为两个等级,即城-A级和城-B级。 1.0.5城市桥梁设计荷载,除应符合本标准外,尚应符合国家现行有关标准的规定。

2术语、符号 2.1术语 2.1.1作用 结构承受各种荷重和变形所引起力效应的通称。 2.1.2荷载 各种车辆、人、雪、风引起的重力,包括永久性、可变性和偶然性三类。 2.1.3永久荷载 在设计有效期内,其值不随时间变化,或其变化与平均值相比可忽略不计的荷载。 2.1.4可变荷载 在设计有效期内,其值随时间变化,且其变化与平均值相比不可忽略的荷载,按其对桥梁结构的影响程度,又可分为基本可变荷载(活载)和其他可变荷载。 2.1.5偶然荷载 在设计有效期内,不一定出现,一旦出现,其值将很大且持续时间很短的荷载。 2.1.6承载能力极限状态设计 结构达到承载能力的极限状态时,引起结构的效应等于材料的抗力时作为设计条件的设计方法。

2.1.7正常使用极限状态设计 结构在正常工作阶段,裂缝、应力与挠度达到最大功能时的设计方法。2.1.8容许应力设计 按各种材料截面达到容许应力时的设计方法。 2.1.9效应 结构或构件承受内力和变形的大小。 2.1.10抗力 结构或构件材料抵抗外力的能力。 2.1.11桥面铺装 桥梁上部结构面板上铺设的防水层与摩损层。 2.1.12行车道板 承受行车重力的板式结构。 2.1.13重力密度 物质单位体积的重力。 2.1.14车道横向折减系数 多车道桥面在横向车道上,当不同时出现活载时,结构效应应予折减的系数。

高分子材料应力-应变曲线的测定

化学化工学院材料化学专业实验报告 实验名称:高分子材料应力-应变曲线的测定 年级: 10级材料化学 日期: 2012-10-25 姓名: 学号: 同组人: 一、 预习部分 聚合物材料在拉力作用下的应力-应变测试是一种广泛使用的最基础的力学试验。聚合物的应力-应变曲线提供力学行为的许多重要线索及表征参数(杨氏模量、屈服应力、屈服伸长率、破坏应力、极限伸长率、断裂能等)以评价材料抵抗载荷,抵抗变形和吸收能量的性质优劣;从宽广的试验温度和试验速度范围内测得的应力-应变曲线有助于判断聚合物材料的强弱、软硬、韧脆和粗略估算聚合物所处的状况与拉伸取向、结晶过程,并为设计和应用部门选用最佳材料提供科学依据。 1、应力—应变曲线 拉伸实验是最常用的一种力学实验,由实验测定的应力应变曲线,可以得出评价材料性能的屈服强度,断裂强度和断裂伸长率等表征参数,不同的高聚物、不同的测定条件,测得的应力—应变曲线是不同的。 应力与应变之间的关系,即:P bd σ= 00100%t I I I ε-= ? E ε σ = 式中 σ——应力,MPa ; ε——应变,%; E ——弹性模量,MPa ; A 为屈服点,A 点所对应力叫屈服应力或屈服强度。 的为断裂点,D 点所对应力角断裂应力或断裂强度 聚合物在温度小于Tg(非晶态) 下拉伸时,典型的应力-应变曲线(冷拉曲线)如下图

曲线分以下几个部分: OA:应力与应变基本成正比(虎克弹性)。--弹性形变 屈服点B:应力极大值的转折点,即屈服应力(sy);屈服应力是结构材料使用的最大应力。--屈服成颈 BC:出现屈服点之后,应力下降阶段--应变软化 CD:细颈的发展,应力不变,应变保持一定的伸长--发展大形变 DE:试样均匀拉伸,应力增大,直到材料断裂。断裂时的应力称断裂强度( sb ),相应的应变称为断裂伸长率(eb) --应变硬化 通常把屈服后产生的形变称为屈服形变,该形变在断裂前移去外力,无法复原。但如果将试样温度升到其Tg附近,形变又可完全复原,因此它在本质上仍属高弹形变,并非粘流形变,是由高分子的链段运动所引起的。 根据材料的力学性能及其应力-应变曲线特征,可将应力-应变曲线大致分为六类:(a)材料硬而脆:在较大应力作用下,材料仅发生较小的应变,在屈服点之前发生断裂,有高模量和抗张强度,但受力呈脆性断裂,冲击强度较差。 (b)材料硬而强:在较大应力作用下,材料发生较小的应变,在屈服点附近断裂,具高模量和抗张强度。 (c)材料强而韧:具高模量和抗张强度,断裂伸长率较大,材料受力时,属韧性断裂。 (d)材料软而韧:模量低,屈服强度低,断裂伸长率大,断裂强度较高,可用于要求形变较大的材料。 (e)材料软而弱:模量低,屈服强度低,中等断裂伸长率。如未硫化的天然橡胶。 (f)材料弱而脆:一般为低聚物,不能直接用做材料。 注意:材料的强与弱从σb比较;硬与软从E(σ/e)比较;脆与韧则主要从断裂伸长率比较。

2017版沥青路面结构计算书

新建路面设计 1. 项目概况与交通荷载参数 该项目位于西南地区,属于二级公路,设计时速为40Km/h,12米双车道公路,设计使用年限为12.0年,根据交通量OD调查分析,断面大型客车和货车交通量为1849辆/日, 交通量年增长率为8.2%, 方向系数取55.0%, 车道系数取70.0%。根据交通历史数据,按表A.2.6-1确定该设计公路为TTC4类,根据表A.2.6-2得到车辆类型分布系数如表1所示。 表1. 车辆类型分布系数 根据路网相邻公路的车辆满载情况及历史数据的调查分析,得到各类车型非满载与满载比例,如表2所示。 表2. 非满载车与满载车所占比例(%) 根据表6.2.1,该设计路面对应的设计指标为沥青混合料层永久变形与无机结合料层疲劳开裂。根据附表A.3.1-3,可得到在不同设计指标下,各车型对应的非满载车和满载车当量设计轴载换算系数,如表3所示。 表3. 非满载车与满载车当量设计轴载换算系数

根据公式(A.4.2)计算得到对应于沥青混合料层永久变形的当量设计轴载累计作用次数为8,109,551, 对应于无机结合料层疲劳开裂的当量设计轴载累计作用次数为562,339,245。本公路设计使用年限内设计车道累计大型客车和货车交通量为4,989,710,交通等级属于中等交通。 2. 初拟路面结构方案 初拟路面结构如表4所示。 表4. 初拟路面结构 路基标准状态下回弹模量取50MPa,回弹模量湿度调整系数Ks取1.00,干湿与冻融循环作用折减系数Kη取1.00,则经过湿度调整和干湿与冻融循环作用折减的路基顶面回弹模量为50MPa。 3. 路面结构验算 3.1 沥青混合料层永久变形验算 根据表G.1.2,基准等效温度Tξ为20.1℃,由式(G.2.1)计算得到沥青混合料层永久变形等效温度为21.5℃。可靠度系数为1.04。 根据B.3.1条规定的分层方法,将沥青混合料层分为6个分层,各分层厚度(hi)如表5所示。利用弹性层状体系理论,分别计算设计荷载作用下各分层顶部的竖向压应力(Pi)。根据式(B.3.2-3)和式(B.3.2-4),计算得到d1=-8.23,d2=0.77。把d1和d2的计算结果带入式(B.3.2-2),可得到各分层的永久变形修正系数(kRi),并进而利用式(B.3.2-1)计算各分层永久变形量(Rai)。各计算结果汇总于表5中。 各层永久变形累加得到沥青混合料层总永久变形量Ra=19.2(mm),根据表3.0.6-1,沥青层容许永久变形为20.0(mm),拟定的路面结构满足要求。

midasCivil在桥梁承载能力检算及荷载试验中的应用(以Civil_V2012为例)

目录 1桥梁承载能力检算评定 (2) 1.1检算总述 (2) 1.2作用及抗力效应计算 (2) 2桥梁荷载试验 (7) 2.1静载试验 (7) 2.1.1确定试验荷载 (7) 2.1.2试验荷载理论计算 (10) 2.1.3试验及数据分析 (12) 2.1.4试验结果评定 (15) 2.2动载试验 (16) 2.2.1自振特性试验 (16) 2.2.2行车动力响应试验 (18) 2.2.2.1移动荷载时程分析 (18) 2.2.2.2动力荷载效率 (29) 2.2.3试验数据分析及结构动力性能评价 (29) 参考文献 (30)

结合公路桥梁承载能力检测评定规程,应进行桥梁承载能力检算评定,判断荷载作用检算结果是否满足要求。另外如果作用效应与抗力效应的比值在1.0——1.2之间时,尚需根据规范规定进行荷载试验评定承载能力。下面将对midas Civil在桥梁承载能力检算评定及荷载试验中的应用详细叙述。 1桥梁承载能力检算评定 1.1检算总述 进行桥梁承载能力检测评定时需要进行(1)桥梁缺损状况检查评定(2)桥梁材质与状态参数检测评定(3)桥梁承载能力检算评定。通过(1)、(2)及实际运营荷载状况调查,确定分项检算系数,根据得到的分项检算系数,对桥梁承载能力极限状态的抗力及正常使用极限状态的容许值进行修正,然后将计算作用效应值与修正抗力或容许值作对比,判断检算结果是否满足要求。一般来说承载能力检算主要包括抗弯、正斜截面抗剪承载力检算、裂缝宽度检算、挠度检算、稳定性验算等。 1.2作用及抗力效应计算 为得到检测桥梁在荷载作用下的计算效应值,可以通过midas Civil进行计算分析得到。对于预应力混凝土及钢筋混凝土等配筋混凝土桥梁,为得到结构抗力效应值,可以结合PSC设计、RC设计验算得到相应抗力值。前处理当中需要考虑自重、二期及其他恒载、预应力荷载、成桥时候的温度作用(整体升降温+梯度升降温)、移动荷载、支座沉降(根据实测得到的变位定义)等荷载作用;定义施工阶段分析,可设置包括一次成桥及服役时间长度的收缩徐变两个阶段。计算分析完毕后,先进行荷载组合:结果>荷载组合,选择“混凝土设计”表单,可以结合通用设计规范D60-04自动生成功能生成荷载组合,组合类型按照检测评定规程选择承载能力极限状态设计和正常使用极限状态设计,分别进行结构抗弯、剪、扭验算及抗裂验算。

应力-应变曲线

应力-应变曲线 MA 02139,剑桥 麻省理工学院 材料科学与工程系 David Roylance 2001年8月23日 引言 应力-应变曲线是描述材料力学性能的极其重要的图形。所有学习材料力学的学生将经 常接触这些曲线。这些曲线也有某些细微的差别,特别对试验时会产生显著的几何变形的塑 性材料。在本模块中,将对表明应力-应变曲线特征的几个点作简略讨论,使读者对材料力 学性能的某些方面有初步的总体了解。本模块中不准备纵述“现代工程材料的应力-应变曲 线”这一广阔的领域,相关内容可参阅参考文献中列出的博依(Boyer )编的图集。这里提 到的几个专题——特别是屈服和断裂——将在随后的模块中更详尽地叙述。 “工程”应力-应变曲线 在确定材料力学响应的各种试验中,最重要的恐怕就是拉伸试验1 了。进行拉伸试验时, 杆状或线状试样的一端被加载装置夹紧,另一端的位移δ是可以控制的,参见图1。传感器 与试样相串联,能显示与位移对应的载荷)(δP 的电子读数。若采用现代的伺服控制试验机, 则允许选择载荷而不是位移为控制变量,此时位移)(P δ是作为载荷的函数而被监控的。 图1 拉伸试验 在本模块中,应力和应变的工程测量值分别记作e σ和e ε, 它们由测得的载荷和位移值,及试样的原始横截面面积和原始长度按下式确定 0A 0L 1 应力-应变试验及材料力学中几乎所有的试验方法都由制定标准的组织,特别是美国试验和材料学会 (ASTM)作详尽的规定。金属材料的拉伸试验由ASTM 试验E8规定;塑料的拉伸试验由ASTM D638规定; 复合材料的拉伸试验由ASTM D3039规定。

真实应力—应变曲线拉伸实验

实验一 真实应力—应变曲线拉伸实验 一、实验目的 1、理解真实应力—应变曲线的意义,并修正真实应力—应变曲线。 2、计算硬化常数B 和硬化指数n ,列出指数函数关系式n S Be =。 3、验证缩颈开始条件。 二、基本原理 1、绘制真实应力—应变曲线 对低碳钢试样进行拉伸实验得到的拉伸图,纵坐标表示试样载荷,横坐标表示试样标距的伸长。经过转化,可得到拉伸时的条件应力—应变曲线。在条件应力—应变曲线中得到的应力是用载荷除以试样拉伸前的横截面积,而在拉伸变形过程中,试样的截面尺寸不断变化,因此条件应力—应变曲线不能真实的反映瞬时应力和应变关系。需要绘制真实应力 —应变曲线。 在拉伸实验中,条件应力用σ表示,条件应变(工程应变)用ε表示,分别用式(1)和(2)计算。 A F = σ (1) 式中,σ为条件应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积。 000 l l l l l ε-?= = (2) 式中,ε为工程应变;l 为试样拉伸后的长度;0l 为试样拉伸前的长度。 真实应力用S 表示,真实应变用∈表示,分别用式(3)和(4)计算。 )1()1(0 εσε+=+== A F A F S (3) 式中,S 为真实应力;F 为施加在试样上的载荷;0A 为试样拉伸前的横截面积;σ为条件应力; ε为工程应变。 )1(ε+=n l e (4) 式中,e 为真实应变;ε为工程应变。 由式(1)和(2)可知,只要测出施加在试样上的载荷以及拉伸前的横截面积,可以计算出条件应力和工程应变;根据式(3)和(4),就可以计算出真实应力和真实应变。测出几组不同的数据,就可以绘制真实应力应变曲线。 2、修正真实应力—应变曲线 在拉伸实验中,当产生缩颈后,颈部应力状态由单向变为三向拉应力状态,产生形状硬化,使应力发生变化。为此,必须修正真实应力—应变曲线。 修正公式如下:

真应力-真应变曲线

真应力-真应变曲线(true stress-logarithmic strain curves) 表征塑性变形抗力随变形程度增加而变化的图形,又称硬化曲线。它定量地描述了塑性变形过程中加工硬化增长的趋势,是金属塑性加工中计算变形力和分析变形体应力-应变分布情况的基本力学性能数据。 硬化曲线的纵坐标为真应力,横坐标为真应变。试验时某瞬间载荷与该瞬间试件承力面积之比称真应力(或真抗力,即真实塑性变形抗力)。硬化曲线可用拉伸、扭转或压缩的方法来确定,其中应用较广的为拉伸法。根据表示变形程度的公式不同,用拉伸图计算所得硬化曲线有3种,如图1所示。第1种是S-δ曲线,表示真应力与延伸率之间的关系。第2种是S-φ曲线,是真应力与断面收缩率的关系曲线。第3种是S-ε曲线,是真应力与对数变形之间的关系曲线。由于φ与ε的变化范围为0~1,所以第2、3种硬化曲线可直观地看出变形程度的大小,使用时较为方便。 S-δ曲线的制作先作圆柱试件拉伸试验获取拉伸图(拉力P与试件绝对仲长Δl的关系图),如图2a所示。然后按下述方法计算出曲线上各点的真应力S和对应的断面收缩率φ,根据所获数据绘制S-φ曲线,如图2b所示。

按式(4)与(6)可求出试件出现细颈前的那段曲线,因为该曲线的变形沿试件长度上是均匀的,符合体积不变条件。 当拉伸力达最大时,变形迅速集中并形成细颈,细颈部位受三向拉仲应力作用而逐渐变小,最终发生破断。由于形成细颈后变形发展得极不均匀,每瞬间参加变形的体积不知,故不能用公式计算这个阶段中曲线上任意点处的应力与应变;实用中只能按细颈中断口部位面积F f及断裂时的拉伸力P f来算出断点处的真实断裂应力S K及真实断裂应变φK,然后将该点与出现细颈前所算出的点,用光滑曲线联结即可组成一条完整的曲线(图2b)。

真实应力应变与工程应力应变—区别、换算

真实应力应变与工程应力应变 工程应力和真实应力有什么区别? 首先请看这张图: 这里面的Stress和Strain就是指的工程应力和工程应变,满足这个关系:

但实际上,从前一张图上就可以看出,拉伸变形是有颈缩的,因此单纯的比例关系意义是不大的,因而由此绘出的图也可能给人带来一些容易产生误解的信息,比如让人误认为过了M点金属材料本身的性能会下降。但其实我们可以看到,在断口处A(这个面积才代表真正的受应力面)是非常小的,因而材料的真实强度时上升了的(是指单位体积或者单位面积上的,不是结构上的)。 因而真实应力被定义了出来: 这个是真实应力,其中Ai是代表性区域(cross-sectional area,是这么翻的吧?)前面的例子中是颈缩区截面积。 然后就可以根据某些数学方法推出真实应变:

但具体怎么推的别问我,因为我也不知道…… 但这两个式子在使用上还是不那么直接,因而我们引入体积不变条件Aili=A 0l0然后可以得到: 和 但似乎只有在颈缩刚刚开始的阶段这两个式子才成立。 下面这张图是真实应力应变和工程应力引力应变的对照图: 其中的Corrected是指的考虑了颈缩区域复杂应力状态后作的修正。 3.6 真实应力-应变曲线

单向均匀拉伸或压缩实验是反映材料力学行为的基本实验。 流动应力(又称真实应力)——数值上等于试样瞬间横断面上的实际应力,它是金属塑性加工变形抗力的指标。 一.基于拉伸实验确定真实应力-应变曲线 1.标称应力-应变曲线 室温下的静力拉伸实验是在万能材料试验机上以小于的应变速率下进行的。标称应力-应变曲线不能真实地发映材料在塑性变形阶段的力学特征。 2.真实应力-应变曲线 A.真实应力-应变曲线分类 分三类: Ⅰ.Y -ε; Ⅱ.Y -ψ; Ⅲ.Y -∈; B.第三类真实应力-应变曲线的确定 方法步骤如下: Ⅰ.求出屈服点σs(一般略去弹性变形) 式中P s——材料开始屈服时的载荷,由实验机载荷刻度盘上读出; A o——试样原始横截面面积。 Ⅱ.找出均匀塑性变形阶段各瞬间的真实应力Y和对数应变Ε

沥青路面承载能力应力应变指标分析

沥青路面承载能力应力应变指标分析 摘要:笔者在路面结构力学基础上,研究了路面结构破坏的根本原因。分析结果表面:路面破坏在于过度的应力或应变,而不是挠度造成。有些路面损坏如推移、开裂与弯沉并无直接联系,而是与结构材料中的应力应变相联系。因此,理想的承载力评价应以应力、应变为基础。 关键词:应力应变挠度承载力评价 应力应变变化与“局部”破坏 路面结构内的应力应变状况是极为复杂的,它随着结构层次组合、结构层厚度、作用荷载类型及温度、湿度等因素变化。由于不直观、检测困难,目前在我国沥青路面设计规范中,只是将沥青及基层底部拉应力作为验算指标[1]。 FWD测试利用弯沉盆代替贝克曼梁的单点弯沉,使结构性能评价细化到路面各结构层。这样建立在弯沉盆特性基础上的路面结构反算方法,使以应变为基础的无破损评价得以实现[2]。本文的重点在于如何根据FWD测试数据获取结构层模量、应力应变及结构状态,而对对设计及评价指标不进行深入研究。 利用应变进行剩余寿命计算 ⑴AI法计算剩余寿命 美国地沥青协会(AI)基本认定公路沥青路面破坏的两大准则是车辙和疲劳裂缝率。通过模量的反算,也可以采用美国地沥青协会退到的两个道路寿命评估模型来确定路面的使用寿命。这两个模型属于纯力学方法建立的路面剩余寿命评定模型,其特点是求出、,最重要的是首先确定路面的各层弹性模量。由力学法建立的模型有较成熟的理论基础,它是利用弹性理论模型或粘塑性模型通过结构分析得到路面在荷载作用下的应力应变[3~6]。 对于疲劳开裂,在沥青协会MS-1路面设计手册所用的传递函数为: 式中,为全路面20%~25%或轮迹带上45%裂缝率时的容许重复轮载作用次数(ESAL);为沥青混凝土路面底部拉应变;为沥青混凝土面层模量。 对于永久变形(车辙),沥青协会给出的永久变形公式为: 式中,为车辙13时的容许重复轮载作用次数(ESAL);为非胶结层顶面垂直压应变。

材料的应力和应变的关系

材料的应力和应变的关系 臂牵引可能转移的很小的几英寸不削弱其效用。 真实应变,就像真实应力,在此基础上计算的实际长度测试样本在测试和主要用于研究的基本性能的材料。之间的差异名义应力和应变计算,从最初的规模的标本,和真应力一应变是微不足道的压力通常遇到的工程结构,但有时差别较大的应力和应变成为重要的。 延性材料。经过大量的塑料拉伸或剪切变形破裂之前。当柔软材料的最后力量达成,横截面面积的试样开始减少或颈部,和由此产生的负荷,可以进行标本减退。因此,应根据原始的区域减少超越极限强度的材料,虽然压力继续增加,直至破裂。 渗透和吸收渗透是指容易与水可以缓慢穿过混凝土。这不应该混淆混凝土的吸水性,两者没有必然联系。吸收可能被定义为有能力的混凝土吸水到其空隙。低渗透是一个重要的要求,水力结构和在某些情况下,透水性混凝土可以被认为是更重要的比强度虽然,其他条件相等,低渗透性混凝土也将坚固耐用。混凝土这很容易吸收水容易恶化。与混凝土相比,钢是一种高强度材料。有用的普通钢筋抗拉强度以及压缩,也就是屈服强度,大约是15倍的普通结构混凝土抗压强度,和超过100倍的拉伸强度。另一方面,钢铁成本高是一个比较具体的材料。因此,2种材料的最佳组合使用,如果具体是无法抵御压应力和拉伸应力。 弹性模量作为一般规则,混凝土的弹性模量块可以被假定为与他们的实力,增加强度的增加。然而,对于集料混凝土砌块有很大影响

的类型骨料,在案件的蒸压加气混凝土,由透气度、弹性模量通常是不引用时,这个信息是必需的,制造商应要求提供。 数百年来,地图提供分层图形形式的信息和已被用来作为法律文件和工具、辅助决策等应用城市规划。最近,地理信息系统(地理信息系统)扩大了所发挥的作用类型的地图,包括整个系统的硬件,软件,和程序设计的捕捉,管理,操纵,和生产信息在空间范围。地理信息系统应用的确广泛;它们包括基础测绘,地籍管理,基础设施,管理设施,以及许多其他的。许多的负载可以被认为是由一个固定和非固定部分。它往往是必要的单独的负载为固定部分和其他部分的随机方式作用在结构上。非固定荷载分析意味着需要考虑不同加载条件,其中每一个被定义时的程度和位置的所有非固定荷载是有。 结构安全要求结构的强度是足够的负荷,可能会对它采取行动。如果强度可以准确预测如果负载同样确切地知道,然后就能保证安全提供强度只要稍微超过荷载的要求。但有许多来源的不确定性的估计负荷以及分析,设计,施工。这些不确定性需要安全边际。 在开始计算负载和他们的“行动”或应力和挠度设计者必须选择要使用的材料,并有一个明确的概念的方式,转让纵向和横向负载点应用到地面将发生。稳健的概念实际上这种结构决定了成功或失败的设计,关于它不仅安全,而且其经济。在任何实际的设计情况的可行性,各种制度和在何种程度上减少或增加的费用,其他元素的结构首先必须建立。智能选择最佳的概念,他只能在标准的一个具体问题已经彻底的调查和确定。

3-5 应力应变曲线

第17章 材料本构关系 本章内容:本构关系constitutive relations (应 力应变关系stress-strain relations )的建立 本章重点:增量理论 单向拉伸(或压缩)→屈服应力s σ 继续变形→材料强化→流动应力(真实应力) 真实应力应变曲线true stress strain curve 可以由实验建立 17.1 拉伸试验曲线 单 向 拉 伸 uniaxial tensile : 2 323211 ,0,εεεσσσ-====存在 等效应力1σσ= 1εε=, 因此εσεσ-?-曲线一致

17.1.1 拉伸图和条件应力——应变曲线 0 0A F = σ l l ?=ε p.比例极限 e.弹性极限 c.屈服极限 b.抗拉强度(颈缩点) b s σσσ,2.0,概念与定义 拉伸失稳tensile instability 拉伸缩颈 tensile necking 17.1.2真实应力——应变曲线true stress strain curve 真实应力()εσε +===+110A F A F S , 真实应变()ε+∈=1ln 颈缩后断裂点:K K K A F S = K K A A 0ln =∈ 修正correction :ρ8/ 1S K K S S +=(颈缩处为三向

应力) 17.1.3 失稳点instability 特性(S :真实应力) () b b d dS S =∈ A A l l SA F 00 ln ln ......=∈== ∈ =∴e A A 0 因此 ∈=e A S F 0 由于失稳点 F 有极大值, dF=0( ) 00=∈-?∈ -∈ -d Se dS e A 化简得dS-Sd ∈=0 17.2 压缩试验compressive test 曲线 拉伸时∈达不到很大(一般∈≤1.0),但压缩时存在摩擦必须解决 方法:1) 直接消除摩擦的圆柱体压缩法 试样D 0=20~30mm ,D 0/H 0=1,压缩

相关文档
最新文档