多个绝对值求和型函数最值问题的求解方法

多个绝对值求和型函数最值问题的求解方法
多个绝对值求和型函数最值问题的求解方法

多个绝对值求和型函数最值问题的求解方法

命题设a

1≤a

2

≤a

3

≤…≤a

n

,

Y=︱x-a

1︱+︱x-a

2

︱+︱x-a

3

︱+…+︱x-a

n

︱,求y达到最小值的条件:

(1)当n=2k时,x∈﹝a

k,,a

k+1

﹞,y值达到最小;

(2)当n=2k-1时,x=a

k

时,y值达到最小。

利用绝对值的几何意义,可以方便的证明。(思考:穿根法思想试试?)

证明:(1)当n=2k时

若a k<a k+1

︱x-a1︱+︱x-a2k︱≥a2k-a1, 当且仅当x∈﹝a1,,a2k﹞时等号成立,

︱x-a2︱+︱x-a2k-1︱≥a2k-1-a2,当且仅当x∈﹝a2,,a2k-1﹞时等号成立,

︱x-a k︱+︱x-a k+1︱≥a k+1-a k, 当且仅当x∈﹝a k,a k+1﹞时等号成立;

因为﹝a k,a k+1﹞是以上各区间的公共的子区间,

所以当且仅当x∈﹝a k,a k+1﹞时,以上各式的等号能同时成立,y才能达到最小。

若a k=a k+1时,当且仅当x=a k=a k+1时,以上各式的等号能同时成立,y才能达到最小。(2)当n=2k-1时,

︱x-a1︱+︱x-a2k-1︱≥a2k-1-a1,当且仅当x∈﹝a1,a2k-1﹞时等号成立,

︱x-a2︱+︱x-a2k-2︱≥a2k-2-a2,当且仅当x∈﹝a2,a2k-2﹞时等号成立,

︱x-a k-1︱+︱x-a k+1︱≥a k+1-a k-1,当且仅当x∈﹝a k-1,a k+1﹞时等号成立;

︱x-a k︱≥0,当且仅当x=a k时等号成立

因为x=a k是以上各区间唯一公共的元素,

所以当且仅当x=a k时,以上各式的等号能同时成立,y才能达到最小。

例1 y=︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-19︱,求y的最小值。

解析:共19项,中项为10,由以上定理知,当且仅当x=10时,y值达到最小。

代人x=10,y

min

=90.

例2(第19届“希望杯”高二2试)

如果对于任意实数x,都有

y=︱x-1︱+︱x-2︱+︱x-3︱+…+︱x-2008︱≥m成立,那么m的最大值是:(A)1003×1004 (B)10042(C)1003×1005 (D)1004×1005

解析:m的最大值,即是y的最小值。

绝对值和式共2008项,中间两项分别是1004和1005,

当且仅当x∈﹝1004,1005﹞时,y能达到最小,

取x=1004或x=1005代人,y

min

=10042,故选(B).

例3 y=︱x-1︱+︱x-2︱+︱x-3︱+︱x-4︱>4,求x的解集。

解析:共4项,中间两项分别是2和3,当且仅当x∈﹝2,3﹞时,y

min

=4。

所以原不等式的解集是{x︱x<2或x>3}.

例4 (2009上海卷理13题)

某地街道呈现东西和南北方向的网格状,相邻街距都是1。两街道相交的点称为格点,若以互相垂直的两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3, 4),(-2,3),(4,5)(6,6)为报刊零售点。请确定一个格点(除报刊零售点外)为发行点,使6个报刊零售点沿街道到发行站的路程和最短,则发行点的坐标为(

解析: 设格点为(x,y),则格点到各零售点的距离之和为

︱x+2︱+︱x+2︱+︱x-3︱+︱x-3︱+︱x-4︱+︱x-6︱

+︱y-1︱+︱y-2︱+︱y-3︱+︱y-4︱+︱y-5︱+︱y-6︱

x系列共6项,中间两项都为3,

当且仅当 x=3时,这一部分和值达到最小;

y系列共6项,中间两项为3和4,

当且仅当 y∈〔3,4〕时,这一部分和值达到最小。

所以(x,y)可取点(3,3)或(3,4),由题意舍去(3,4),所以只能选

(3,3)。

例5 求y=︱2x-1︱+︱2x-2︱+︱2x-3︱+︱2x-4︱+︱2x-5︱的最小值解析: 令t=2x ,则y=︱t-1︱+︱t -2︱+︱t-3︱+︱t-4︱+︱t-5︱,

共5项,中项为3,当t=3即 x=㏒

23,y

min

=6

例6 求y=︱㏒

2X+1︱+︱㏒

2

X-1︱+︱㏒

2

X-2︱+︱㏒

2

X-4︱+︱㏒

2

X-6

︱的最小值

解析:令t=㏒

2

X,则

y=︱t+1︱+︱t -1︱+︱t-2︱+︱t-4︱+︱t-6︱

共 5项,中项为2,,当且仅当t=2即 x=4时,y

min

=7。

例7求 y=︱x2+2x-1︱+︱x2+2x -2︱+︱x2+2x-3︱的最小值。

解析:令t=x2+2x,则y=︱t-1︱+︱t -2︱+︱t-3︱

共3项,中项为2,当且仅当t=2即x2+2x=2时,y有最小值,

对x2+2x=2求解,得x=-1±,此时y

min

=2.

练习(1)求y=︱x+1︱+︱2x-6︱+︱3x-6︱的最小值

(2)求y=︱x-6︱+︱x-6︱的最小值

分析:(1) y =

︱x+1︱+︱x-2︱+︱x-2︱+︱x-2︱+︱x-3︱+︱x-3︱,共6项,中间两项都为2,代人2即可。

(2) y =

〔︱x-6︱+︱x-6︱+︱x-12︱〕,中项为6,代人6即可。

(完整版)数列求和常见的7种方法

数列求和的基本方法和技巧 一、总论:数列求和7种方法: 利用等差、等比数列求和公式 错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和 分段求和法(合并法求和) 利用数列通项法求和 二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法, 三、逆序相加法、错位相减法是数列求和的二个基本方法。 数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. 一、利用常用求和公式求和 利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= 2、等比数列求和公式:?????≠--=--==) 1(11)1()1(111 q q q a a q q a q na S n n n 3、 )1(211+==∑=n n k S n k n 4、)12)(1(611 2 ++==∑=n n n k S n k n 5、 21 3)]1(21[+== ∑=n n k S n k n [例1] 已知3 log 1log 23-= x ,求???++???+++n x x x x 32的前n 项和. 解:由2 1 2log log 3log 1log 3323=?-=?-= x x x

由等比数列求和公式得 n n x x x x S +???+++=32 (利用常用公式) =x x x n --1)1(= 2 11)211(21--n =1-n 21 [例2] 设S n =1+2+3+…+n ,n ∈N *,求1 )32()(++= n n S n S n f 的最大值. 解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(2 1 ++=n n S n (利用常用公式) ∴ 1)32()(++= n n S n S n f =64 342++n n n = n n 64341+ += 50 )8(12+- n n 50 1≤ ∴ 当 8 8- n ,即n =8时,501)(max =n f 二、错位相减法求和 这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:1 32)12(7531--+???++++=n n x n x x x S ………………………① 解:由题可知,{1 )12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1 -n x }的通项之积 设n n x n x x x x xS )12(7531432-+???++++=………………………. ② (设制错位) ①-②得 n n n x n x x x x x S x )12(222221)1(1432--+???+++++=-- (错位相减) 再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1 ----? +=-- ∴ 2 1)1() 1()12()12(x x x n x n S n n n -+++--=+ [例4] 求数列 ??????,2 2,,26,24,2232n n 前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 2 1 }的通项之积

含绝对值函数的最值问题

专题三: 含绝对值函数的最值问题 1. 已知函数2()2||f x x x a =-- (0>a ),若对任意的[0,)x ∈+∞,不等式(1)2()f x f x -≥恒成立,求实数a 的取值范围、 不等式()()12f x f x -≥化为()2 212124x x a x x a ----≥-- 即:()242121x a x a x x ---+≤+-(*)对任意的[)0,x ∈+∞恒成立因为0a >,所以分如下情况讨论: ①当0x a ≤≤时,不等式(*)24120[0,]x x a x a ++-≥?∈对恒成立 ②当1a x a <≤+时,不等式(*)即24160(,1]x x a x a a -++≥?∈+对恒成立 由①知102 a <≤,2()416(,1]h x x x a a a ∴=-+++在上单调递减 2662a a ∴≤--≥-或 11626222 a -<∴-≤≤Q 2、已知函数f (x )=|x -a |,g (x )=x 2+2ax +1(a 为正数),且函数f (x )与g (x )的图象在y 轴上的截距相等.(1)求a 的值;(2)求函数f (x )+g (x )的最值. 【解析】(1)由题意f (0)=g (0),∴|a |=1、又∵a >0,∴a =1、 (2)由题意f (x )+g (x )=|x -1|+x 2+2x +1、 当x ≥1时,f (x )+g (x )=x 2+3x 在[1,+∞)上单调递增, 当x <1时,f (x )+g (x )=x 2+x +2在????? ???-121上单调递增,在(-∞,12-]上单调递减. 因此,函数f (x )+g (x )在(-∞,12-]上单调递减,在????? ???-12+∞上单调递增. 2min ()4120[0,]()(0)120 1 02 g x x x a a g x g a a =++-≥∴==-≥∴<≤Q 在上单调递增只需2min ()(1)420h x h a a a ∴=+=+-≥只需

几种常见数列求和方法的归纳

几种常见数列求和方法的归 纳 -标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

几种常见数列求和方法的归纳 1.公式法:即直接用等差、等比数列的求和公式求和。主要适用于等差,比数列求和。 (1)等差数列的求和公式:d n n na a a n S n n 2 ) 1(2)(11-+=+= (等差数列推导用到特殊方法:倒序相加) (2)等比数列的求和公式??? ??≠--==) 1(1)1()1(11q q q a q na S n n (切记:公比含字母时一定 要讨论) (3)222221(1)(21) 1236n k n n n k n =++=++++=∑(不作要求,但要了解) 例:(1)求=2+4+6+ (2) (2)求=x+++…+(x ) 2.倒序相加:适用于:数列距离首尾项距离相同的两项相加和相同。 例:(1)求证:等差数列{}的前n 项和d n n na a a n S n n 2 ) 1(2)(11-+=+= (2)222 2sin 1sin 2sin 3sin 89+++ + . 3.分组求和法:把数列的每一项分成若干项,使其转化为等差或等比数列,再求和。 例:(1)求和:(1) 个 n n S 111111111++++= 81 10 9101--+n n (2)2 2222)1 ()1()1(n n n x x x x x x S ++++++=

当1±≠x 时, n x x x x S n n n n 2) 1()1)(1(2 2222+-+-=+ 当n S x n 4,1=±=时 4.裂项相消法:把数列的通项拆成两项之差、正负相消剩下首尾若干项。(分式求和常用裂项相消) 常见的拆项公式: 111)1(1+-=+n n n n ,) 121 121(21)12)(12(1+--=+-n n n n , 1111 ()(2)22 n n n n =-++, ) 12)(12(1 1)12)(12()2(2+-+=+-n n n n n , 2= 例:(1)求和:111 1 ,,,,, 132435 (2) n n ???+ . (2)求和)12)(12()2(5343122 22+-++?+?=n n n S n 1 2)1(2++= n n n S n 5.错位相减法:比如{}{}.,,2211的和求等比等差n n n n b a b a b a b a +++ (适用于:等差数列乘以等比数列的通项求和) 例:求和:23,2,3, ,, n a a a na

含绝对值函数的综合问题一

含绝对值函数综合问题 一、含绝对值函数的最值 1、含一个绝对值的一次绝对值函数的最值、单调性、对称性 (1)()||f x x =的图像是以原点为顶点的“V ”字形图像;函数在顶点处取得最小值 “(0)0f =”,无最大值;在函数(,0],[0,)x ∈-∞↓+∞↑;对称轴为:0x = (2)()||(0)f x kx b k =+≠图像是以(,0)b k -为顶点的“V ”字形图像;在顶点取得最小值: “()0b f k -=”,无最大值;函数在(,],[,)b b x k k ∈-∞-↓-+∞↑;对称轴为:b x k =- (3)函数()||(0)f x k x b k =+≠: 0k >时,函数是以(,0)b -为顶点的“V ”字形图像;函数在顶点取得最小值: “()0f b -=”,无最大值;函数在(,],[,)x b b ∈-∞-↓-+∞↑;对称轴为:x b =- 0k <时,是以(,0)b -为顶点的倒“V ”字形图像,函数在顶点取得最大值: “()0f b -=”,无最小值;函数在(,],[,)x b b ∈-∞-↑-+∞↓;对称轴为:x b =- 2、含两个绝对值的一次绝对值函数的最值、单调性、对称性 (1)函数()||||()f x x m x n m n =-+-<的图像是以点(,),(,)A m n m B n n m --为折点的 “平底形”图像;在[,]x m n ∈上的每点,函数都取得最小值n m -,无最大值;函数 在(,],[,)x m x n ∈-∞↓∈+∞↑ ,在[,]x m n ∈无单调性;对称轴为2 m n x +=。 (2)函数()||||f x x m x n =---: 当m n >时,()f x 是以点(,),(,)A m n m B n m n --为折点的“Z 字形”函数图像;在 (,]x n ∈-∞上的每点,函数都取得最大值m n -,在[,)x m ∈+∞上的每点,函数都取得最小值n m -;函数在[,]x n m ∈↓,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对称中心为(,0)2 m n +; 当n m >时,()f x 是以点(,),(,)A m m n B n n m --为折点的“反Z 字形”函数图像; 在(,]x m ∈-∞上的每点,函数都取得最小值m n -,在[,)x n ∈+∞上的每点,函数都 取得最大值n m -;函数在[,]x m n ∈↑,在(,]x n ∈-∞及[,)x m ∈+∞上无单调性;对 称中心为( ,0)2 m n +; (3)()||||()f x a x m b x n m n =-+-<图像是以(,()),(,())A m f m B n f n 为折点的折线。 当0a b +>时,两端向上无限延伸,故最小值,最小值为min{(),()}f m f n ; 当0a b +<时,两端向下无限延伸,故最大值,最大值为{(),()}Max f m f n ; 当0a b +=时,两端无限延伸且平行x 轴,故既有最大值又有最小值,最大值为 {(),()}Max f m f n ;最小值为min{(),()}f m f n 。 3、含多个绝对值的一次函数的最值、单调性 函数1212()||||||(,,,)n i n f x x a x a x a a R i n N a a a *=-+-++-∈∈<<< 设 (1)若21()n k k N *=-∈,则()f x 的图像是以(,())k k a f a 为顶点的“V ”字形图像 (a )当且仅当k x a =时,min 1211221[()]|()()|k k k k f x a a a a a a -++-=+++-+++ (b ) 函数()f x 在(,],[,)k k a a -∞↓+∞↑,若{}i a 为等差数列,则图像关于k x a =对称 (2)若2()n k k N *=∈,则()f x 的图像是以点11(,()),(,())k k k k A a f a B a f a ++为折点的“平 底形”图像 (a )当且仅当1[,]k k x a a +∈,min 12122[()]|()()|k k k k f x a a a a a a ++=+++-+++ (b ) 函数()f x 在1(,],[,)k k a a +-∞↓+∞↑,在1[,]k k x a a +∈无单调性。若{}i a 为等差数列, 则图像关于1 2 k k a a x ++= 对称 这一结论从一次绝对值函数图像上了不难看出,当1x a < 及 n x a >时,图像是分别向左、右两边向上无限伸展的两条射线,中间各段在区间1[,](1,2,1)i i a a i n +=- 上均为线段.它们首尾相连形成折线形,在中间点或中间段处最低,此时函数有最小值. 证明:当21()n k k N * =-∈时,1221()||||||k f x x a x a x a -=-+-++- , 1221k a a a -<<< 设由绝对值不等式性质得: 121121211|||||()()|k k k x a x a x a x a a a ----+-≥---=-,当且仅当121[,]k x a a -∈时取“=” 222222222|||||()()|k k k x a x a x a x a a a ----+-≥---=-, 当且仅当222[,]k x a a -∈时取“=”

绝对值函数最值问题(含答案修改版)

绝对值函数最值问题 一、准备在两个小区所在街道上建一所医院,使得两个小区到医院的距离之和最小,问医院应该建在何处? 先来证明一个引理: 引理:||||||y x y x +≥+……(1),当且仅当0≥xy 时等号成立 要证(1)式成立,只需证xy xy xy y x xy y x ≥++≥++||,2||22 2 2 2 也即是,上式显然成立,故原命题得证。 将上式的y y -换成可得 ||||||y x y x -≥+……(2),当且仅当0≤xy 时等号成立 定理:对于任意123,,a a a ……,n a 如果123a a a ≤≤≤……1n n a a -≤, 当n 为奇数时 ()12 3||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 等于123,,a a a ……n a 的中位 数时取到,即12 n x a +=时有最小值, 即是()123||||||f x x a x a x a =-+-+-+ (112) ||||n n n x a x a f a -+??+-+-≥ ?? ? 当n 为偶数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 属于123,,a a a ……n a 的中间 两个数的范围时取到,即1 22,n n x a a +?? ∈???? 时有最小值。此时 ()123 ||||||f x x a x a x a =-+-+-+ (11) 22||||n n n n x a x a f a o r f a -+?? ??+-+-≥ ? ??? ?? 该定理的证明,只需最小的与最大的结合,在中位数时同时取到最小值。 二、求下列函数的最小值: 1、()|2||1|-+-=x x x f

高中数学 含绝对值的函数图象的画法及其应用素材

含绝对值的函数图象的画法及其应用 一、三点作图法 三点作图法是画函数)0(||≠++=ak c b ax k y 的图象的一种简捷方法(该函数图形形状似“V ”,故称V 型图)。 步骤是:①先画出V 型图顶点?? ? ?? - c a b ,; ②在顶点两侧各找出一点; ③以顶点为端点分别与另两个点画两条射线,就得到函数)0(||≠++=ak c b ax k y 的图象。 例1. 作出下列各函数的图象。 (1)1|12|--=x y ;(2)|12|1+-=x y 。 解:(1)顶点?? ? ??-12 1 ,,两点(0,0) ,(1,0)。其图象如图1所示。 图1 (2)顶点?? ? ?? - 121 ,,两点(-1,0) ,(0,0)。其图象如图2所示。 图2 注:当k>0时图象开口向上,当k<0时图象开口向下。函数图象关于直线a b x -=对称。 二、翻转作图法 翻转作图法是画函数|)(|x f y =的图象的一种简捷方法。 步骤是:①先作出)(x f y =的图象;②若)(x f y =的图象不位于x 轴下方,则函数 )(x f y =的图象就是函数|)(|x f y =的图象; ③若函数)(x f y =的图象有位于x 轴下方的,则可把x 轴下方的图象绕x 轴翻转180°到x 轴上方,就得到了函数|)(|x f y =的图象。 例2. 作出下列各函数的图象。 (1)|1|||-=x y ;(2)|32|2 --=x x y ;(3)|)3lg(|+=x y 。 解:(1)先作出1||-=x y 的图象,如图3,把图3中x 轴下方的图象翻上去,得到图4。图4就是要画的函数图象。 图3 图4

数列求和的常用方法(新)

数列求和的常用方法 永德二中 王冬梅 数列是高中数学的重要内容,又是学习高等数学的基础。在高考和各种数学竞赛中都占有重要的地位。数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧。 下面,简单介绍下数列求和的基本方法和技巧。 第一类:公式法 利用下列常用求和公式求和是数列求和的最基本最重要的方法。 1 S n 2S n 3(1(2(3的前n 例1解:Ⅰ、若q =0, 则n S =0 Ⅱ、若q =1,则)1(2 1321+= +?+++=n n n S n Ⅲ、若q ≠0且q ≠1, 则12321-+?+++=n n nq q q S ① n n nq q q q qS +?+++=3232 ② ①式—②式:n n n nq q q q q S q -+?++++=--1321)1(

?)1(11132n n n nq q q q q q S -+?++++-=- ?)11(11n n n nq q q q S ----= ?q nq q q S n n n ----=1)1(12 ?1(1(2(3(42、根式形式,如: n n n n a n -+=++=111 例2:求数列211?,321?,4 31?,…,)1(1+n n ,…的前n 项和n S 解:∵)1(1+n n =1 11+-n n

1 11313121211+-+?++-+-=n n S n ?1 11+-=n S n 例3:求数列 311?,421?,531?,…,)2(1+n n ,…的前n 项和n S 解:由于:)2(1+n n =2 11(21+-n n ) ? ? 例3例4(1 (2则,由条件:对任意R x ∈都有2)1()(=-+x f x f 。 ?)( 1222222+=+?+++=n a n ?1+=n a n ?21+=+n a n ?11=-+n n a a 从而:数列}{n a 是1,21==d a 的等差数列。

(完整word版)数列求和的各种方法

数列求和的方法 教学目标 1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法. 3.能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1.求数列的前n 项和的方法 (1)公式法 ①等差数列的前n 项和公式 S n = ()21n a a n +=na 1+()d n n 2 1-. ②等比数列的前n 项和公式 (Ⅰ)当q =1时,S n =na 1; (Ⅱ)当q ≠1时,S n =() q q a n --111=a 1-a n q 1-q . ③常见的数列的前n 项和:, 1+3+5+……+(2n -1)= ,等 (2)分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3)裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4)倒序相加法 这是推导等差数列前n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5)错位相减法 这是推导等比数列的前n 项和公式时所用的方法,主要用于求{a n ·b n }的前n 项和,其中{a n }和{b n }分别是等差数列和等比数列. (6)并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 例如,S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050. 123+++……+n= (1)2 n n +2 n 2222123+++……+n =(1)(21)6n n n ++3333 123+++……+n =2 (1)2n n +??????

含绝对值的函数问题

含绝对值的函数问题专练 1.画出函数y = 31x -的图象,并利用图象回答:k 为何值时,方程 31x -=k 无解?有一个解?有两个解? 【答案】当k =0或k≥1时,方程有一个解;当0x2,都有m[g(x1)-g(x2)]>x1f(x1)-x2f(x2)恒成立,求实数m 的取值范围. 【答案】(1) 102 x y -+=;(2)答案见解析;(3) [)1,+∞. 4.已知函数()3f x mx =+, ()22g x x x m =++. (1)判断函数()()()F x f x g x =-是否有零点; (2)设函数()()()1G x f x g x =--,若()G x 在[]1,0-上是减函数,求实数m 的取值范围. 【答案】(1)函数()()f x g x -有零点(2)0m ≤或2m ≥ 5.设a 为实数,函数f(x)=x2+|x -a|+1,x ∈R. (1)讨论f(x)的奇偶性; (2)求f(x)的最小值. 【答案】(1)当0a =时, ()f x 偶函数,当0a ≠时, ()f x 为非奇非偶函数;(2)34 a -+. 6.已知函数2()1f x x =-,()|1|g x a x =-. (1)若关于x 的方程|()|()f x g x =只有一个实数解,求实数a 的取值范围;

高考数学:求解含绝对值函数问题的基本策略

纵观近几年的高考试卷,有关含绝对值函数的问题呈现出综合性强、立意新颖、难度大等特点,正日益成为高考的热点. 利用绝对值函数的图象和性质 在解有关含绝对值函数的客观题时,要运用好绝对值函数的图象和性质,根据题意,利用函数y=f(x)图象的翻折和平移得到y=f(x),y=f(x),y=f(x-m)等含绝对值函数的图象,然后利用图象求解. 对于常见的含绝对值的函数的图象和性质,要熟练掌握,才有利于提升解题速度.如:y=ax(a>0,a≠1),y=ax-1,y=logax,y=logax(a>0,a≠1),y=ax2+bx+c,y=,y=x+(a>0),y=ax-b,y=ax2+bx+c等. 例1 函数f(x)=2xlog0.5x-1的零点个数为 . (A)1 (B)2 (C)3 (D)4 解析:由f(x)=2xlog0.5x-1=0可得log0.5x=x,设h(x)=x,g(x)=log0.5x,在同一坐标系中分别画出函数g(x)和h(x)的图象(如图1所示),可以发现两个函数的图象有2个交点,即函数f(x)有2个零点.所以答案选B. 点评:解例1的关键是作出g(x)=log0.5x的图象,然后观察它与函数h(x)=x 的图象的交点个数,交点个数即为函数f(x)零点的个数. 例2 已知函数f(x)=x-4+,x∈(0,4),当x=a时,f(x)取得最小值b,则函数g(x)=x+b的图象为 . 解析:f(x)=x-4+=(x+1)+-5≥2-5=1,当且仅当x+1=时函数f(x)取到最小值1,即(x+1)2=9. 因为x∈(0,4),故x=2.由题意可知:a=2,b=1,故g(x)=x+1,其图象可由函数y=x的图象先进行翻折变换得到函数y=x的图象,然后再将所得图象向左平移1个单位后得到,所以答案为B.

含绝对值的函数问题处理

含绝对值的函数问题处理 1.(2005年江苏卷)已知a ∈R ,函数f(x)=x 2|x-a|. (I)当a=2时,求使f(x)=x 成立的x 的集合; (II)求函数y=f(x)在区间[1,2]上的最小值. 解析:(I)若a=2,则有:22 2(2),2()2(2),2x x x f x x x x x x ì?- ?=-=í ?--0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递增在区间递减. ②当x 0时, 函数f(x)在区间() 2a 2a ,0(,),(0, )3 3 -ト+ 递减在区间递增. 由于所求区间为[1,2],故a 按所求区间进行讨论: ①若a ≤1,则 22,33 a £取f 1(x)图象在x>a 部分,因函数f1(x)在区间[1,2]部分单调递增,故当x=1 时取最小值,即m=f 1(1)=1-a; ②若1a 时,f 1(x)从0单调递增;当xa ≥2, 则242,33 a > 函数f 2(x)在区间为先增后减,当x= 23 a 时取最大值,则最小值为 m 1=f 2(1)=-1+a 或m 2=f 2(2)=-8+4a,下面讨论m 1与m 2的大小问题: a. 若2≤a< 73 ,则m 1>m 2,最小值为m 2=-8+4a;b.若 73 ≤a<3,则则m 2>m 1,最小值为m 1=-1+a.

关于某绝对值函数的问题解决精华(含问题详解)

. 下载可编辑 . 关于绝对值函数的问题解决 有一道某地高三模拟考试题,涉及到绝对值函数,用来说明数学中的分类讨论思想非常有代表性。 试题 已知函数1)(2 -=x x f ,|1|)(-=x a x g . (1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,数a 的取值围; (2) 若当R x ∈时,不等式)()(x g x f ≥恒函数成立,数a 的取值围; (3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演..... 算步骤... ). 解答 (1)方程|()|()f x g x =,即2|1||1|x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a < . (2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;

. 下载可编辑 . ②当1x ≠时,(*)可变形为21|1| x a x -≤-,令21,(1),1()(1),(1).|1|x x x x x x x ?+>?-==?-+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-, 所以()2x ?>-,故此时2a -≤. 综合①②,得所数a 的取值围是2a -≤. (3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ?+--?--++->即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ② 当01,22 a a 即0≤≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③ 当10,02 a a -<<即-2≤≤时,结合图形可知()h x 在[2,1]--,[,1]2a -上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2()124a a h a -=++, 经比较,知此时()h x 在[2,2]-上的最大值为3a +. ④ 当3 1,222a a -<-<-即-3≤≤时,结合图形可知()h x 在[2,]2a -,[1,]2 a -上递减,

高中一轮复习__含绝对值的函数

学案17 含绝对值的函数 一、课前准备: 【自主梳理】含绝对值的函数本质上是分段函数,往往需要先去绝对值再结合函数图像进行研究,主要有以下3类: 1.形如)(x f y =的函数,由于0 )(0)()()()(<≥???-==x f x f x f x f x f y ,因此研究此类函数往往结合函数图像,可以看成由)(x f y =的图像在x 轴上方部分不变,下方部分关于x 轴对称得到; 2.形如)(x f y =的函数,此类函数是偶函数,因此可以先研究0≥x 的情况,0”之一). (2)函数2ln -=x y 的图像与函数1=y 的图像的所有交点的横坐标之和为________. (3)函数x y 21log =的定义域为],[b a ,值域为[0,2],则b -a 的最小值为_______.

(完整word版)数列中裂项求和的几种常见模型.docx

数列中裂项求和的几种常见模型 数列问题是高考的一大热点,而且综合性较强,既注重基础知识 的掌握,又注重数学思想与方法的运用。而此类问题大多涉及数列求 和,所以数列求和方法是学生必须掌握的,主要的求和方法有:公式 法、拆项重组法、并项求和法,裂项相消法、错位相加法、倒序相加 法等等,而裂项相消法是其中较为基础、较为灵活的一种,也是出现 频率最高,形式最多的一种。下面就例举几种裂项求和的常见模型,以供参考。 模型一:数列 { a n } 是以 d 为公差的等差数列,且 d 0,a n 0(n 1,2,3, ),则 1 1 1 1 a n a n 1 ( ) d a n a n 1 例 1 已知二次函数 y f ( x) 的图像经过坐标原点,其导函数为 f ' (x) 6x 2 ,数列 { a n } 的前 n 项和为 S n ,点 (n, S n )(n N ) 均在函数 y f ( x) 的 图像上。 (Ⅰ)求数列 { a n } 的通项公式; (Ⅱ)设 b n 1 ,T n 是数列 {b n } 的前 n 项和,求使得 T n m 对所有 a n a n 1 20 n N 都 成 立 的 最 小 正 整 数 m ; (2006 年湖北省数学高考理科试题) 解:(Ⅰ)设这二次函数 f(x) =ax 2+bx (a ≠0) , 则 f`(x)=2ax+b, 由于 f`(x)=6x -2, 得 a=3 , b= -2, 所以 f(x) =3x 2- 2x. 又因为点 (n, S n )( n N ) 均在函数 y f ( x) 的图像上,所以 S n =3n 2-2n. 当 n ≥2 时, a =S -S =( 2 n =6n -5. 3n -2n )- ( n 1) 2 2( 1) n n n -1 3 1 1 2 n n N ) 当 n =1 时,a = S =3×1-2=6×1- 5,所以,a =6n -5 ( (Ⅱ)由(Ⅰ)得知 b n 3 = 3 = 1 ( 1 1 ) , a n a n 1 (6n 5) 6(n 1) 5 2 6n 5 6n 1

关于绝对值函数的问题解决

关于绝对值函数的问题解决 张家港高级中学 储聪忠 有一道某地高三模拟考试题,涉及到绝对值函数,用来说明数学中的分类讨论思想非常有代表性。 试题 已知函数1)(2-=x x f ,|1|)(-=x a x g . (1) 若关于x 的方程)(|)(|x g x f =只有一个实数解,求实数a 的取值范围; (2) 若当R x ∈时,不等式)()(x g x f ≥恒函数成立,求实数a 的取值范围; (3) 求函数)(|)(|)(x g x f x h +=在区间[-2,2]上的最大值(直接写出结果......,不需给出演算...... 步骤.. ). 解答 (1)方程|()|()f x g x =,即2|1||1| x a x -=-,变形得|1|(|1|)0x x a -+-=,显然,1 x =已是该方程的根,从而欲原方程只有一解,即要求方程|1|x a +=,有且仅有一个等于1的解或无解 ,结合图形得0a <. (2)不等式()()f x g x ≥对x ∈R 恒成立,即2(1)|1|x a x --≥(*)对x ∈R 恒成立, ①当1x =时,(*)显然成立,此时a ∈R ;

②当1x ≠时,(*)可变形为2 1|1| x a x -≤ -,令2 1,(1), 1 ()(1),(1).|1|x x x x x x x ?+>?-= =? -+<-? 因为当1x >时,()2x ?>,当1x <时,()2x ?>-, 所以()2x ?>-,故此时2a -≤. 综合①②,得所求实数a 的取值范围是2a -≤ . (3)因为2()|()|()|1||1|h x f x g x x a x =+=-+-=2 221,(1),1,(11),1,(1).x ax a x x ax a x x ax a x ?+--? --++->即时,结合图形可知()h x 在[2,1]-上递减,在[1,2]上递增, 且(2)33,(2)3h a h a -=+=+,经比较,此时()h x 在[2,2]-上的最大值为33a +. ② 当01,22a a 即0≤ ≤≤≤时,结合图形可知()h x 在[2,1]--,[,1]2 a - 上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2 ()12 4 a a h a -= ++, 经比较,知此时()h x 在[2,2]-上的最大值为33a +. ③ 当10,02a a -<<即-2≤ ≤时,结合图形可知()h x 在[2,1]--,[,1]2 a - 上递减, 在[1,]2 a --,[1,2]上递增,且(2)33,(2)3h a h a -=+=+,2 ()12 4 a a h a -= ++, 经比较,知此时()h x 在[2,2]-上的最大值为3a +. ④ 当31,222 a a - <-<-即-3≤≤时,结合图形可知()h x 在[2, ]2a -,[1,]2 a - 上递减,

探究绝对值函数最值的求法

探究绝对值函数最值的求法

探究绝对值函数最值的求法及应用 2011年陕西省理科高考试题第14题。题目是:植树节某班20名同学在一段直线公路一侧植树,每人植一棵,相邻两棵树相距10米,开始时需将树苗集中放置在某一树坑旁 边,使每位同学从各自树坑出发前来领取树苗往返所走的路程总和最小,这个最小值为 米。该题考查了求绝对值函数的最小值问题,转化为求函数y=|x-10|+|x-20|+|x-30|+|x -200|g g g ——的最小值问题。另外2009年上海高考有一道数学试题;其题目是:某地街道呈现东—西、南—北向的网络格状,相邻街距都为1。两街道相交的点称为格点。若以互相垂直一两条街道为轴建立直角坐标系,现有下述格点(-2,2),(3,1),(3,4),(-2,3),(4,5)(6,6)为报刊零售点,请确定一个格点(除零售点外) 为发行站,使6个零售点沿街道发行站之同路程的和最短。该题也需要转化为求绝对值函数 z=2|x+2|+2|x-3|+|x-4|+|x-6|+|y-1|+|y-2|+|y-3|+|y-4|+|y-5|+|y-6|的最小值问题。 那么如何求这种多个绝对值和的函数的最小值问题呢?对此,笔者运用以下方法进行了探索研究,得出了解决这种问题的基本方法,以此与各位同仁商榷。 一、 利用函数图象研究这类函数的值域,从而达到求函数的最值:由于含绝对值函数可以等价化为分段函数,因此运用函数的图象求函数的最值。 例1求函数y=|2x-1|的最小值。 解:由于函数 12x-1x 2y=|2x-1|=1-2x+1x<)2 ? ≥??? ???()(, 作出其图象如右图:由图象可知其当12 x =时,

高考数学提分专练绝对值函数最值问题(含答案)

绝对值函数最值问题 一、准备在两个小区所在街道上建一所医院,使得两个小区到医院的 距离之和最小,问医院应该建 在何处? 来证明一个引理: 引理:||||||y x y x +≥+……(1),当且仅当0≥xy 时等号成立 要证(1)式成立,只需证xy xy xy y x xy y x ≥++≥++||,2||22222也即是,上式显然成立,故原命题得证。 将上式的y y -换成可得 ||||||y x y x -≥+……(2),当且仅当0≤xy 时等号成立 定理:对于任意123,,a a a ……,n a 如果123a a a ≤≤≤……1n n a a -≤, 当n 为奇数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 等 于123,,a a a ……n a 的中位数时取到,即12 n x a +=时有最小值, 即是()123||||||f x x a x a x a =-+-+-+ (112) ||||n n n x a x a f a -+??+-+-≥ ?? ? 当n 为偶数时 ()123||||||f x x a x a x a =-+-+-+……1||||n n x a x a -+-+-的最小值在x 属

于123,,a a a ……n a 的中间两个数的范围时取到,即1 2 2 ,n n x a a +??∈??? ? 时有最 小值。此时 ()123||||||f x x a x a x a =-+-+-+…… 1122||||n n n n x a x a f a or f a -+???? +-+-≥ ? ????? 该定理的证明,只需最小的与最大的结合,在中位数时同时取到最小值。 二、求下列函数的最小值: 1、()|2||1|-+-=x x x f ()()1|21||2||1|=---≥-+-x x x x ,当且仅当()(),021等号成立≤--x x 也即是[]2,1∈x 时等号成立。 1)(≥∴x f 2、()|3||2||1|-+-+-=x x x x f ()()[]时等号成立。 当且仅当时等号成立当2,0|2|3,1,2|31||3||1|=≥-∈=---≥-+-x x x x x x x ()()时等号成立当且仅当22=≥∴x x f 2.1、求x 的范围使得函数|1||||2|)(-+++=x x x x f 为增函数(12年北约自招试题) 对于绝对值函数(也称“折线函数”)问题,主要有两种解决思路:1、利用绝对值的几何意义(求最值时非常方便),2、找零点直接去绝对值,转化为分段函数。

(完整word版)数列求和的各种方法

教学目标 1熟练掌握等差、等比数列的前 n 项和公式. 2 ?掌握非等差、等比数列求和的几种常见方法. 3?能在具体的问题情境中识别数列的等差关系或等比关系,并能用相关知识解决相应的问题. 教学内容 知识梳理 1求数列的前n 项和的方法 (1) 公式法 ①等差数列的前n 项和公式 n n 1 , =na i + d . 2 ②等比数列的前n 项和公式 (I )当 q = 1 时,S n = na i ; (2) 分组转化法 把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解. (3) 裂项相消法 把数列的通项拆成两项之差求和,正负相消剩下首尾若干项. (4) 倒序相加法 这是推导等差数列前 n 项和时所用的方法,将一个数列倒过来排序,如果原数列相加时,若有公因式 可提,并且剩余项的和易于求得,则这样的数列可用倒序相加法求和. (5) 错位相减法 这是推导等比数列的前 n 项和公式时所用的方法,主要用于求 {a n ? b n }的前n 项和,其中{a n }和{b n } 分 别是等差数列和等比数列. ⑹并项求和法 一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如 a n = (— 1)n f (n)类型,可采用两项 合并求解. 例如,S n = 1002— 992+ 982 — 972+…+ 22 — 12= (100 + 99) + (98 + 97)+…+ (2 + 1) = 5 050. 数列求和的方法 n a i a n Si=— 2 (n )当q 丰1时, a i 1 q n 1 q a 1 — a n q 1 - q ③常见的数列的前 n 项和:1 +n=垃 1) , 1+3+5+??…+(2r — 1)= n 2 2 12 22 32 +n 2 n(n 罟,13 23 33 +n 3 2 n(n 1)等 2

相关文档
最新文档