材料改性题库

材料改性题库
材料改性题库

1物理改性和化学改性的分类依据是什么?

是否发生化学反应

2物理改性有哪些?有何特点。

Adsorption,complex,hydrogen bonding,sharp transition by forces

Additive modification ,polymer blending ,polymer composition, physical crosslinking btw polymers

Simple, economic and easily processing,normally used modification method

吸附、混合、氢键、sharp transition by forces(力作用的急剧转变)、添加剂改性、聚合物共混、聚合物合成、聚合物间的物理交联。

特点:简单、经济、过程简单、通常采用改性方法

3 化学改性有哪些?有何特点?

Copolymerization, grafting polymerization, chemical crosslinking

Functional groups reaction in polymer

共聚,接枝聚合,化学交联,聚合物的官能团反应。

特点:长期的影响,成本高,难以形成规模,交联改性可以在加工过程中加入交联剂。

4 表面改性有哪些特点?

Medification only at surface of the materials

Homogeneous heterogeneous

Low cost in comparison with bulk modification

Chemical oxidation treatment ,surface corona treatment,surface flame treatment ,surface thermal treatment and surface graft polymerization.

Internal property no change surface property enhanced (luster ,hardness,wear resistance ,antistatic ,flame retardant ,adhesion ,printability, and heat resistance)表面光泽、硬度、耐磨、防静电、阻燃、粘合性、印刷性、热合性

只在材料的表面上改造(均匀的和不均匀的),与本体改性相比成本低,具体有:化学氧化处理,表面电晕处理,表面火焰处理,表面热处理和表面接枝聚合,特点:内部属性: 没有变化;

表面性质:增强(表面光泽、硬度、耐磨、防静电、阻燃、黏合性、印刷性及热合性等

5 list the methods of polymer modification

Polymer blends 共混改性

Chemical modification 化学改性

Additive and polymer fiber reinforce 填充与纤维增强改性

Surface modification 表面改性

Polymer composites 复合改性

6 tell the difference between compatibility and miscibility

Compatibility 相容性

Miscibility: 混溶性,thermodynamic ability to be mixed at the molecular level . compatibility 相容性;

Miscibility 混溶性;thermodynamic ability to be mixed at the molecular level(在分子水平上共混的热力学能力)

7 高分子体系能够混合的热力学条件是?

?G<0 和

8 高密度聚乙烯和低密度聚乙烯具有相似的链结构,为何相容性不好?

要相容性好,两者要有强的相互作用,这两者是非极性的,之间只有范德华力和色散力,所以两者间的相互作用力差,相容性不好。

9 从分子结构角度来说,如何提高聚合物体系的相容性?

增大相互作用力(分子间、偶极作用)

10 举例说明完全相容高分子共混物?

PS/PPO, combines the heat resistance, the inflammability and the toughness of PPO with the good processability and the low cost of PS;This type of blend exhibits only one glass transition temperature (Tg), which is between the Tgs of both blend components in a close relation to the blend composition

(中文部分)PS/PPO,结合了PPO的耐热性、易燃性和韧性与PS的易加工性和低成本性;这种类型的共混物仅有一个玻璃化转变温度(Tg),这个温度是介于混合组分的Tg之间,与共混组成密切相关。

11 举例说明部分相容高分子共混物?

答案:a (small) part of one blend component is dissolved in the other. This type of blend, which exhibits a fine phase morphology and satisfactory properties, is referred to as compatible.

Both blend phases (one being rich in polymer 1, the other phase being rich in polymer 2) are homogeneous, and have their own Tg. Both Tgs are shifted from the values for the pure blend components towards the Tg of the other blend component. PC/ABS blends,

一种共混物组分的一(小)部分是溶解在其他之中的。这种类型的共混物表现出一种很好的相形态和符合要求的性质,也就是相容。

两种共混相(一相在聚合物1中较多,另外一相在聚合物2中较多)是均匀的,有他们各自的Tg。他们的Tg是从纯混合组分的Tg值变化到其他混合组分的Tg。如:PC/ABS共混物

12 list the strategies for compatibilization of polymer blends.

添加预聚的接枝嵌段共聚物,添加反应性高分子,添加低分子量的化学试剂,链交换,力化学,添加有选择性的交联试剂,引入特殊作用,添加离子交联聚合物,添加第三种能与所有共混相(部分)相容的聚合物,增容的其他多方面途径。13比较一下两种提高二元共混午的相容性方法的优略:(1)添加接枝或嵌段共聚物(2)添加反应性高分子原位形成共聚物。

答案:advantages over the addition of premade block or grafted copolymers.:(1)reactive polymers can be generated by free radical copolymerization or by melt grafting of reactive groups on to chemically inert polymer chains;(2)reactive polymers only generate block or grafted copolymers at the site where they are needed, i.e. at the interface of an immiscible polymer blend;(3)the melt viscosity of a (linear) reactive polymer is lower than that of a pre-made block or grafted copolymer, at least

if the blocks of the pre-mad e copolymer and the reactive “blocks” are of similar molecular weights。

优于添加预聚嵌段或接枝共聚物的方面有:(1)通过自由基共聚或熔融接枝活性基团到化学惰性的高分子链上来制备反应性高分子;(2)反应性高分子仅仅在它们所需的位置上产生嵌段或接枝共聚物,例如在不相容的聚合物共混物的界面处(3)(线型)的反应性高分子的熔体粘度是低于预聚嵌段或接枝共聚物的粘度的,至少如果预聚共聚物的的段和反应性的“段”有相似的分子量时。

同时为了成功地应用反应性高分子作为嵌段或接枝共聚物的前驱体,官能团必须满足一定条件:

有合适的反应活性,使反应贯穿熔融相界面在短的共混时间内。

此外,产生的共价键必须足够牢固保证在后续处理条件下一直不断。

14 哪些小分子化合物能有效提高高分子共混物的相容性?

答案:(1). Peroxides and related chemicals;(2). Bifunctional chemicals;(3). Mixtures of peroxides and multifunctional chemical

(1)过氧化物和其相关的化合物(2)双官能团化合物(3)过氧化物和双官能团化合物的混合物

15 通过小分子过氧化物提高高分子共混物相容性的方法有何缺点?

答案:(1). In addition to this in-situ compatibilizer formation, the crosslinking of PE and/or the degradation of PP also occur. These phenomena affect the viscosity match of the two blend components, and thus the blend morphology. In addition, crystallization of the blend components can be affected.;(2) Competition between in-situ compatibilization, crosslinking and degradation makes the control of blend properties very difficult;

(1)、除了这种原味增溶剂形成,PE的交联和/或PP的降解也会发生。这些现象影响两种共混组分的粘度配比,因此也影响共混物的形态。另外,混合组分的结晶也会被影响

(2)、原位增溶、交联和降解之间的竞争使共混物性能的控制很难。

16 共混物形态结构有哪些基本类型?

(1)单相连续结构(即一个相是连续的而另一个相是分散的)

(2)两相互锁或交错结构

(3)相互贯穿的两相连续结构

17 影响共混物形态结构的因素有哪些?

答案:主要的影响因素有两组分的相容性、两组分配比,两组分黏度比及共混条件等。

18 聚合物粘度和配比如何影响共形态结构?

答案:如图2-49中所示,在某一组分含量(体积分数)大于74%时,这一组分一般来说是连续相(如在A-1区域,A组分含量大于74%,A组分为连续相);

当组分含量小于26 %时,这一组分一般来说是分散相。在组分含量介于26%与74%之间时,哪一相为连续相,哪一相为分散相,将取决于配比与熔体黏度的综合影响。

由于受熔体黏度的影响,根据“软包硬”的规律,在A-2区域,当A组分的熔体黏度小于B组分时,尽管B组分的含量接近甚至超过A组分,A组分仍然可以成为连续相。在B-2区域,亦有类似的情况

19弹性体增韧机理有哪些?

答案:(1)微裂纹理论;(2)多重银纹理论(3)剪切屈服理论(4)银纹-剪切带

理论—

20刚性体增韧机理有哪些?

答案:(1)刚性有机粒子ROF的增韧机理:在基体应力的作用下发生塑性形变吸收能量;有冷拉机理和空洞化理论(填空);(2)刚性无机粒子RIF的增韧机理增韧剂起应力集中的作用,诱发基体屈服,吸收大量变形功。

21 比较一下两种制备高分子的方法(1)功能性单体复合(2)普通高分子功能化

答案:(没有找到)带功能性基团的单体比较难聚合;而对普通高分子很难做到每个结构都功能化(老师是这样说的)

22通过乙烯醇的制备方法说明高分子化学改性的方法。

聚醋酸乙烯酯醇解得到

23说明聚氯甲基苯乙烯的制备方法

24 举例说明马来酸酐和1,2-二苯基乙烯的均聚和共聚情况。

答案:马来酸酐和1,2-二苯基乙烯都不能均聚但可共聚得到严格交替共聚物。

25 举例说明聚烯烃的改性方法(聚烯烃的改性方法有哪些?试举例)

(电离辐射(X-射线,γ-射线,电子束),臭氧,紫外线与加速器,和自由基引发剂在单体存在下,都被用来以形成接枝共聚物)

如:硼烷单体/自由基方法

P-MS共聚单体/阴离子的方法

卤化

26 举例说明含氟高分子的制备方法(含氟高分子的改性方法有哪些?试举一例。)

添加全氟烃基碘化物

添加氟化硫醇

decomposition temperatures derease C-C C-S 硅氢加成反应

硼/氧化介导的氟化

不变的低能量表面的制备(省略)

添加氟烯烃

全氟烷基三氯硅烷改性

(举例说明并附有机理)

27按合成方法分互穿网络聚合物有哪些类型?

分步IPN、同步IPN、胶乳IPN、热塑性IPN

28举例说明分步PIN(同步PIN,乳胶PIN)的制备方法。

(1)分步IPN

先合成交联的聚合物1,再用含有引发剂和交联剂的单体2使之溶胀,然后使单体2就地聚合而制得。

『例』将含有交联剂二甲基丙烯酸四甘醇酯(TEGDM)的活化剂安息香的丙烯

酸乙酯单体光引发聚合,生成交联的聚丙烯酸乙酯(PEA),再用含有引发剂和交联剂的等量苯乙烯使其溶胀。

待溶胀均匀之后,将苯乙烯聚合并交联,即制得白色皮革状的IPN 50/50 PEA/PS。(2)同步IPN(SIN)

同步IPN的制备方法是将两种单体混溶在一起,使两者以互不干扰的方式各自聚合并交联。当一种单体进行加聚而另一种单体进行缩聚时即可达此目的。

例如,将聚苯基硅氧烷(PMPs)与甲基丙烯酸乙酯EMA或甲基丙烯酸丁酯BMA 的质量百分比固定为50/50,按不同配方准确称量混合均匀后加入一定量的;偶氮二异丁腈AIBN,;聚丙二醇二丙烯酸酯PPDA,正硅酸乙酯TEOS和辛酸亚锡SnOc,在N2保护下搅拌5 min,于85℃下反应至一定黏度,然后铸模,压制,按程序升温反应并保持若干小时即得到PMPS/PMAc同步IPN。

(3)胶乳IPN(LIPN)的制备

胶乳-IPN(LIPN)是以乳液聚合方法合成的分步IPN。首先以乳液聚合的方法制得由聚合物1组成的“种子”乳胶粒,再加入单体2、交联剂和引发剂,但不再添加乳化剂以免形成新的乳胶粒,然后使单体2聚合、交联、从而形成蕊壳状结构的LIPN。

29 材料表面改性有哪些方法?

(1)电晕放电处理(2)火焰处理与热处理

(3)高分子材料的表面金属化(4)离子注入表面改性技术

(5)难黏高分子材料的化学改性(6)光化学改性

(7)等离子体表面改性(8)表面接枝共聚

30 物理改性表面有何特点?

光照、辐射(稳定性差,产生的活性自由基时间长了就失活,所以应立即使用,改性程度浅)

31 高分子材料表面改性后有哪些表征方法?分别表征哪些性质?

(1)化学成分:FTIR、XPS、元素分析

(2)表征结构:扫描电镜、原子力显微镜

(3)晶体结构:XRD、小角X衍射

(4)表面性质:接触角、表面能、表面张力、导热、导电

32 聚乙烯、聚四氟乙烯等高分子材料表面难黏的原因是什么?

(1)表面能低,临界表面张力一般只有31~34达因/厘米,由于表面能低,接触角大,印墨、黏合剂不能充分润湿基材,从而不能很好黏附在基材上;

(2)结晶度高,化学稳定性好,它们的溶胀和溶解都要比非结晶高分子困难,当溶剂型胶粘剂(或印墨、溶剂) 涂在难黏材料表面,很难发生高分子材料分子链成链或互相扩散和缠结,不能形成较强的黏附力;

(3)聚烯烃、氟塑料等均属非极性高分子材料,聚乙烯分子上基本不带任何极性基团,是非极性高分子。聚丙烯分子中虽然每一个结构单元中有一甲基,但甲基是非常弱的极性基团,所以聚丙烯基本上属于非极性高分子。而聚四氟乙烯等氟塑料,因结构高度对称,也属非极性高分子,印墨、胶黏剂吸附在被材料表面是由范德华力(分子间作用力)所引起的,范德华力包括取向力、诱导力和色散力。对于非极性高分子材料表面,不具备形成取向力和诱导力的条件,而只能形成较弱的色散力,因而黏附性能较差。

(4)聚烯烃类树脂本身含有低分子量物质以及在加工过程中加入的添加剂(如滑爽剂、抗静电剂等),这类小分子物质极容易析出、汇集于树脂表面、形成强度

很低的薄弱界面层,表现出黏附性差,不利用于印刷、复合和黏接等后加工。

33 等离子体处理高分子材料的作用有哪些?

(l)表面交联

等离子体中的高能粒子通过轰击或化学反应,使高分子材料材料表面的C—H、C—C等键断裂,形成自由基。自由基之间重新键合,在材料表面形成网状交联结构,使材料的力学性能、表面性能等得到改善。

(2)引入极性基团

等离子体处理可在高分子材料表面引进各种极性基团。

(3)表面刻蚀

使材料表面产生起伏,变得粗糙,并有键的断裂,因此刻蚀对提高分子材料的黏附性、吸湿性等均有明显作用。

(4)对水的润湿性的改善

由于等离子处理引入极性基团结合到高分子材料表面上,因此改善了表面的润湿性,使高分子材料的表面张力增大,接触角变小。

(5)表面能提高,黏结强度增大

由于经等离子体处理的高分子材料表面引进了大量的极性基团,使其表面能提高,与其他材料的黏结强度大大增强。

34 高分子材料表面接枝共聚的两种方式是什么?

(1)Graft from (2)Graft to

35 纤维增强复合材料中的纤维一般有哪些种类?

(1)晶须(石墨,碳化硅,氮化硅,氧化铝)、

(2)纤维(芳族聚酰胺,玻璃,碳,硼,氮化硅,氧化铝)

(3)网格(一般为金属)

36 哪些因素会影响高分子基复合材料的性能?

浓度、尺寸、形状、分散状态、趋向

37 复合材料中的基体材料的作用是什么?

将压力从环境的保护阶段转移到其他阶段。

金属、陶瓷、高分子(MMC, CMC, PMC)

38 高分子基复合材料中的增强体(分散相)有哪些?其作用是什么?

目的:提高基体性能。

MMC:增加应力,TS,蠕变抵抗。

CMC:增加Kc

PMC:增加E,应力,TS,蠕变抵抗。

39 polymer-layer silicate纳米复合材料的制备方法有哪些?

(1)模板合成法(2)溶液插层(3)原位插层聚合(4)熔融插层

40翻译interealation 和exfoliation,并用示意图表示层状粘土与高分子复合后的这两种状态。

插层

剥离

41 石墨烯的制备方法有哪些?

化学气相沉积(CVD)和外延生长

微机械剥离的石墨,透明胶带“或”剥离“的方法。

对电绝缘的表面,如SiC的外延生长(外延生长)

基于溶液的还原氧化石墨烯

聚合物改性考试考试试题题

名称解释 20分 物共混改性: 是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 转: 聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形错、互锁的共连续形态结构,使共混物的力学性能提高。 性塑料: 热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 作用: 使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连情况的不同而表现为多种形式。 互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结层状结构和互锁结构。 贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 分为热力学相容性和工艺相容性两类。 学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 略 界面层的结构组成和独立相区的区别 10分 ①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; 面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; 面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳界面粘结强度不利。 以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 . 通过共聚改变某聚合物的极性; . 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; . 在某聚合物上引入特殊作用基团;加入第三组分进行增容; . 两相之间产生部分交联,形成物理或化学缠结; . 形成互穿网络结构(IPN); . 改变加工工艺,施加强烈的力剪切作用。 一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态能。 :机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 聚合物共混物的制备方法有那些?各有什么特点?10分 . 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又

材料表面的硅烷化改性

实验64 材料表面的硅烷化改性 一.实验目的 1.利用硅烷偶联剂改性有机或无机材料。 2.制备无机-有机杂化粉体或薄膜材料。 二.实验原理 很多纳米材料都是重要的无机化工产品,是橡胶.塑料.油漆.油墨.造纸.农药及牙膏等行业不可缺少的优良原料。以SiO2纳米颗粒为例,纯粹制备的SiO2颗粒表面上存在着大量的羟基基团,呈极性.亲水性强,众多的颗粒相互联结成链状,链状结构彼此又以氢键相互作用,形成由聚集体组成的立体网状结构,在这种立体网状结构中分子间作用力很强,应用过程中很难均匀分散在有机聚合物中,颗粒的纳米效应很难发挥出来。如何将纳米SiO2均匀分散在高分子材料中,以提高聚合物材料的各项性能是一个重要的研究方向。 硅烷偶联剂发展至今已有一百多种产品,按Y有机官能团的不同,可分为链系基类硅烷偶联剂.氨基硅烷偶联剂.环氧基类硅烷偶联剂.烷基丙烯酰氧基类硅烷偶联剂及双官能基型硅烷偶联剂等。 硅烷偶联剂处理技术原理简单.操作方便,其与材料表面的作用机理一直是研究的重点,目前关于硅烷在材料表面行为的理论有很多假设,主要有化学键理论.物理吸附理论.表面浸润理论.可逆水解平衡理论和酸碱相互作用理论等。 硅烷偶联剂分子含有两种反应性基团,化学结构可以用X3SiRY来表示,其中,X是可进行水解反应并生成硅烃基(Si-OH)的基团,如卤素.氨基.烷氧基和乙酰氧基等,硅醇基团可和无机物(如无机盐类.硅酸盐.金属及金属氧化物等)发生化学反应,生成稳定的化学键,将硅烷与无机材料连接起来。Y是非水解基团,可与有机基团如乙烯基.氨基.巯基.环氧基等起反应,从而提高硅烷与聚合物的粘连性。R是具有饱和键或不饱和键的碳链,将官能团Y 和Si原子连接起来。因此硅烷偶联剂分子被认为是连接无机材料和有机材料的“分子桥”,能将两种性质悬殊的材料牢固地连接在一起,形成无机相/硅烷偶联剂/有机相的结合形态,从而增加了后续有机涂层与基地材料的结合力。 一般来说,硅烷分子中的两个端基团既能分别参与各自的反应,也能同时起反应。通过适当的控制反应条件,可在不改变Y官能团的前提下取代X官能团,或者在保留X官能团的情况下,使Y官能团改性。若在水性介质中对Y官能团改性,那么X基团同时水解。则硅烷的作用过程依照四步反应模型来解释: ①与硅相连的3个Si-X基团水解成Si-OH; ②Si-OH之间缩合反应,脱水生成Si-OH的低聚硅烷; ③低聚物中的Si-OH与基体表面的-OH形成氢键; ④加热固化过程中发生脱水反应,与基材以共价键连接。 界面上硅烷偶联剂只有一个硅与基材表面键合,剩下两个Si-OH可与其他硅烷中的Si-OH 缩合形成Si-O-Si结构。 常用的硅烷偶联剂主要有; (十二烷基三甲氧基硅烷) (乙烯基三乙氧基硅烷)

聚合物共混改性-a(答案)知识讲解

聚合物共混改性2007-A(答案)

四川大学期考试试题(闭卷)A (2006 ——2007学年第 2 学期) 课程号:30004720 课序号:课程名称:聚合物共混改性原理任课教师:成绩: 适用专业年级: 2004级学生人数:印题份数:学号:姓名:

5、根据下图分析啮合型同向旋转双螺杆挤出机可分为哪几个工作区段?各段的作用是什么? 答:1、固体输送区。作用:(1)输送物料;(2)将松散的粉状物料压实或提高粒状物料在螺杆中的充满度,以促进物料在下一区的熔融塑化。(2分) 2、熔融和混合。物料经输送区受到一定的压缩后开始熔融,并发生混合。(2分) 3、混合区(第二混合段)。将组分尺寸进一步细化与均化;侧加料,加入添加剂等。(2分) 4、脱挥、排气。完全熔融状态的物料经压缩后突然减压,可挥发性物料在真空条 件下迅速挥发,脱离熔体。(2分) 5、熔体输送、增压挤出。物料必须建立起一定的压力,使模口处物料有一定的致 密度,一般来说,在此区,物料可进一步混合,主要功能是输送与增压。(2分) 6、简述影响聚合物共混物形变的因素。(10分) 答:1、基体性质。聚合物共混物屈服形变时,银纹和剪切形变两种成分的比例在很大程度上取决于连续相基体的性质。一般而言,连续相的韧性越大,则剪切成分所占的比例越大。(2分) 2、应力的影响。a. 应力大小(1分):形变中银纹成分的比例随应力和形变速率 的增加而增加;b. 形变速率(1分):增加形变速率会使银纹成分的比例提高;c. 应力性质的影响(1分):由于银纹化伴随着体积的增加,所以压应力抑制银纹,张应力则促进银纹的生成。 3、大分子取向的影响。大分子取向常常减小银纹成分的比例。例如橡胶增韧塑 料,拉伸时基体大分子取向,橡胶颗粒会变成椭球状,结果应力集中因子减小。取向的结果使剪切成分的比例增加而银纹化成分的比例下降。(2分)

1多位点氨基改性功能材料的制备及其重金属吸附性能

.128. .化T新型材料第41卷 ==。 成及其重金属吸附性能口].无机化学学报,2011,27(70):1271一图3氨基介孔凝胶材料图4不同氨基改性凝胶材料1276. N-0.2的TEM照片对金属离子的去除率[8]ZhaiShaDgnl,ZhaiBin,AnQingda.[J].JournalofSol-GelSei? 1仕臻’enceandTechnology,2011,59:48叫87? J当日F匕[9]薛晓明,张晶,李风亭.[J].山西能源与节能,2010,6:83—86.采用PMHS、AEPS和TEOS作为反应组分,通过溶胶-凝收lleiJl:2012—02—12(上接第119页)31'2—317. 没有被破坏,所含表面活性剂成分仅占总质量的6%,且易于[8]rangD,GuoGQ,HuJH,WangCc,JiangDLHydrothermal分散于水中。SDBS处理的MWNTs在分散液中主要以2~5 ‘‘ea仃n∞‘‘opreparehydroxylgroupmodifiedmul‘卜waIledca。一 根组合团簇形式存在,经过长时间静置后分散液的浓度保持,,bon mno‘ubes[J].JM8‘erch咖,2008,18(3):350一354? 主竺:麦矍支竺竺芝要竺兰竺翌竺羔竺i茔量.竺篓竺兰,且操p3dSta∞rA。y脚;St,oWdda。rptpJ甜F。,啦Ste。¨ue树rma。甜nD瞰.Pbr∞epanr锄。atio。n曲a。n。d口p,r.oApe埏rt品ies作方法简单实用,有利于碳纳米管在工业中的广泛应用。:磊。三二,;磊i二磊j‘:1荔i::荔:.…………一“’~一” 参考文献[10]O’ConnellMJ’Bo.ulP,EricsonLM,etal-Reversiblewater- [1]niima&Helicalmicrotubuhs。fgraphiticcarbon[J].Nature, wrapping[J].ChemPhysLeft,2001,342:265—271.1991,354:56—58?[11]IslamMF,Roias E,BergeyD MHighweightfractionsurfac.[2]GaoLian’LiuYangqiao.Dispersionandsurfacemodificationof tantsolubilizationofsillgle-wallcarbonnanotubesin、阳ter[J].carbonnanotubes[J].JChinCeramSoc,2005,24(5):114—119.NanoLett,2003,3(2):269—273. [3]LiuJ,RinzlerAG,GaiHJ,etaLFullerenepipes[J].Science,[12]Jim,gLQ,GaoL,S∞J.Produetimaofaqu鲫lscolloidal dispersions 1998,280:1253—1256.ofcarbonnanotubes[J-].JColloidInterfaceSci,2003,260:89-94. [4]ChertJ,HamonMA,HuH'etaLSolutionpropertiesofsingle-[13]WangD,JiWX,LizC,ChenLAbiomimeticpolysoapforsin. walledcarbonnanotubes[J].Science,1998,282:95—98. gle-walled carbon触nOtubesdispersion[J].JAmChemSoc,[5]MickelsonET?HuffmanCB,rimlerAG,eta1.Fluorinationof2006,128:6556—6557. single-walledcarbonnanotubes[J].ChemPhysLett,1998,296:[14]ZhangC,RenLL,WangXY,LiuTXGrapheneoxide-assisted188-194.dispersionofpristinemultiwalledcarbonnanotubesinaqueous[6]GeorgakilasV,KordatosK,PratoM,eta1.Organicfunetionalizationmedial-J].JPhysChemC,2010,114:11435-11440.ofcarbonnaI吼ubes[J].JAmChemSoc,2002,124:760-761.[15]GaoYun,Lil.anm,un,TanPingheng,LiuLuqi,丑如g2hon吕Appli-[7]ChenS,ShenW,WuG,ChenD,JiangMAnewapproachtOcationofm咖spectroscopyincarbonnanotube-basedpolym盯thefunctionalizationofsingle-walledcarbonnanotubeswithc【Ⅱnposites[J].ChineseSdBull,2010,55(22):2165—2176. bothalkylandCarboxylgroupsD].ChemPhysLett,2005,402:收稿日期:2012-03—25

聚合物改性复习题

1、聚合物改性的定义,改性的方法。 答:聚合物改性:通过各种化学的、物理的或二者结合的方法改变聚合物的结构,从而获得具有所希望的新的性能和用途的改性聚合物的过程。主要方法:共混改性、填充改性、复合材料、化学改性、表面改性。共混改性指两种或两种以上的聚合物经混合制成宏观均匀的过程。填充改性指人们在聚合物中添加填充剂有时只是为了降低成本,但也有很多时候是为了改善聚合物的性能。复合材料是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观上组成具有新性能的材料。化学改性是通过化学反应改变聚合物的物理、化学性质的方法。表面改性:改善工件表面层的机械、物理或化学性能的处理方法。 2、化学改性(改变分子链结构)和物理改性(高次结构)的本质区别。 答: 第二章:基本观点: 1、共混物与合金的区别。 答:高分子合金不能简单等同于聚合物共混物,高分子合金是指含多种组分的聚合物均相或多相体系,包括聚合物共混物、嵌段和接枝共聚物,而且一般言,高分子合金具有较高的力学性能。 2、共混改性的分类(熔融、乳液、溶液和釜内) 答:按照共混时物料的形态:熔融共混:机械共混的方法,最具工业价值,是共混改性的重点。溶液共混:用于基础研究领域,工业上用于涂料和黏合剂的制备。乳液共混:共混产品以乳液的形式应用。斧内共混:是两种或两种以上聚合物单体同在一个反应釜中完成其聚合过程,在聚合的同时也完成了共混。 3、共混物形态研究的重要性。 答:共混物的形态与共混物的性能密切相关,而共混物的形态又受到共混工艺条件和共混物组分配方的影响,所以,共混物的形态研究就成了研究共混工艺条件和共混组分分配与共混物性能的关系的重要中间环节。 4、共混物形态的三种基本类型——均相体系、非均相体系(海岛结构、海海结构) 答:一是均相体系。二是非均相体系(两相体系):包括“海-岛结构”------连续相+分散相。“海-海结构”------两相均连续,相互贯穿。 5、相容性对共混物形态结构的影响。 答:在许多情况下,热力学相容性是聚合物之间均匀混合的主要推动力。两种聚合物的相容性越好就越容易相互扩散而达到均匀的混合,过渡区也就宽广,相界面越模糊,相畴越小,两相之间的结合力也越大。有两种极端情况,其一是两种聚合物完全不相容,两种聚合物链段之间相互扩散的倾向极小,相界面很明显,其结果是混合较差,相之间结合力很弱,共混物性能不好。第二种极端情况是两种聚合物完全相容或相容性极好,这时两种聚合物可相互完全溶解而成为均相体系或相畴极小的微分散体系。这两种极端情况都不利于共混改性的目的(尤其指力学性能改性)。 一般而言,我们所需要的是两种聚合物有适中的相容性,从而制得相畴大小适宜、相之间结合力较强的复相结构的共混产物。 6、与形态有关的因素:相容性、分散度和均一性的概念和作用。 答:相容性(compatibility)----共混物各组分彼此互相容纳,形成宏观均匀材料的能力。作用:通过相容性的大小,可以反映共混物聚合物之间的相互容纳能力和共混物的形态。 分散度:两相体系中分散相物料的破碎程度,常用分散相颗粒的大小和平均粒径来表示。均一性:分散相物料分散的均匀程度,亦即分散相浓度的起伏大小。作用:分散度和均一性都是用于表征分散相的分散状况。 7、相容性的概念和相容性的8种判据。 答:A)溶解度参数(δ)相近原则:△H=0,最小,表明此时聚合物对相容性最好; δ是聚合物内聚能密度的平方根,δ越相近的聚合物对相容性越好。 B)共同溶剂原则(试验法):通过实验确定聚合物相容性,方法简单,但是受到温度和浓度的影响较大,不够精确。 C)浊点法则:共混物由均相体系变为非均相体系时,共混物的透光率会发生变化,把该相转变点称为“浊点”。所以通过一定的方法测定浊点,可判断聚合物的相容性。 D)薄膜法:不同的聚合物折射率不同,将共混物制成均相溶液后制成薄膜,如果薄膜的透明度差且脆,则为不相容;反之,弱薄膜透明且有韧性,则相容性良好。缺点:误差较大,对折射率相同的聚合物,不能用此法。 E)显微镜法:目前分析共混物相容性的最准确,最直观,最有用的技术。对不相容或部分相容的体系,还可以进一步确定出分散相的颗粒大小、分布、形态和包藏结构等信息。用透射电镜观察共混物的相结构发现:即使是相容的共混体系,在微观下也是两相分布,而不是达到分子水平的混合。 F)Tg法则:比较科学、常用的方法,关键在于Tg的测定。Tg的测定方法: 动态力学法(DMA)(利用力学性质的变化) 机械分析法(利用力学性质的变化)

材料改性与表面工程

材料改性与表面工程 镁合金被誉为“21世纪最具发展潜力和前途的绿色工程材料”。他是金属结构材料中最轻的一种,镁合金从早期被应用于航空航天工业到目前在汽车材料、光学仪器、电子电信、军工工业等方面的应用有了很大发展。但是镁合金的耐蚀性耐磨性硬度及耐高温性能较差,在某种程度上又制约了镁合金材料的广泛应用。采用冷喷涂技术在镁合金表面喷涂覆盖上一层致密的保护膜,是解决镁合金腐蚀和磨损问题,提高镁合金铸件使用寿命,拓宽镁合金应用范围的关键之一。 1.冷喷涂原理和特点 超音速冷喷涂(简称冷喷涂)是近年发展起来的一种新型涂层制备工艺,常以金属材料(如钛、镍、钨、钴、铜、合金等)[1-5]为喷涂材料进行金属表面改性和功能涂层的制备。 冷喷涂技术[6]就是将经过一定低温预热的高压(1.5~3.5MPa)气体(N2、He 或压缩气体)分两路,一路通过送粉器,携带经预热(100~600℃)的粉末粒子(1~50 m)从轴向送入高速气流中;另一路通过加热器使气体膨胀,提高气流速度(300~1200 m/s),最后两路气流进入喷枪,在其中形成气─固双相流,在完全固态下撞击基体,通过较大的塑性变形而沉积于基体表面形成涂层。在喷涂过程中,喷枪距离为5~30 mm。 冷喷涂实现低温状态下的金属涂层沉积,具有如下主要优点:其一,喷涂粉末在加工过程中工作温度低,几乎无氧化现象,涂层表面组织均匀;其二,涂层密度大、结合强度高;其三,涂层材料适用广泛,可制备硬度大、耐磨性高、强度高的涂层;其四,可以加工具有特殊物理化学性质的涂层;其五,组织稳定;其六,涂层表面具有残余的压应力,使耐疲劳性增加;其七,喷涂粉末可以回收再利用。 2.国内外用冷喷涂技术在镁合金基体上喷涂铝合金涂层的研究现状 Yongshan Tao[7]等人用冷喷涂的方法在AZ91D镁合金表面沉积一层纯铝涂层,发现涂层中存在微米尺寸的裂纹和孔洞,涂层颗粒边界处中形成了新的界面和亚晶相;在质量分数为3.5%的中性NaCl溶液中浸渍后发现涂层的抗点蚀性能比具有相似纯度的铝块好。在浸渍过程中,由于在涂层中存在着相互独立的微米级或纳米级的孔洞而发生了传质现象。在浸渍十天之后,由于涂层致密细颗粒的结构,它仍然可以为AZ91D 镁合金基体提供良好的耐蚀性保护。 他们还在铝粉中加入α-Al2O3作为增强颗粒,发现涂层和纯铝涂层相比有较小的气孔率,由于α-Al2O3在基体上的渗透和侵蚀,涂层和基体之间的结合力也增强;α-Al2O3在铝基体上的捣固和增强作用涂层具

聚合物共混改性-作业题答案

1. 聚合物共混改性的主要目的有哪些? 物性(谋求新的功能提高性能):功能化、高性能化、耐久性 成型加工性:流动性、收缩性、离型性、尺寸稳定性、结晶性、结晶速度、热熔融强度等 经济性:增量、代用、省资源、循环利用等 2. 聚合物共混改性的主要方法有哪些? 物理共混:是指两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀的新材料的过程。 化学共混:聚合物的化学共混改性是通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类共混改性方法。 物理/化学共混:是在物理共混的过程中发生某些化学反应 3. 简述混合的基本方式及其特点。 基本方式:分配混合(分布混合、层流混合)、分散混合 特点:在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程,称为分配混合。 分布混合:只改变分散相的空间分布状况,增加分散相分布的随机性。分散相物料主要通过对流作用来实现;层流混合:是分布混合的一种特定形式,其理论基于一种假设,即在层流混合的过程中,层与层之间不发生扩散。分散混合:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。 4. 试述聚合物共混物的形态及特点。 海-岛结构:是一种两相体系,一相为连续相,另一相为分散相,分散相分散在连续相中,亦即单相连续体系。 海-海结构:也是一种二相体系,但两相皆为连续相,相互贯穿,亦即两相连续体系。 两相互锁或交错结构:也是一种二相体系,这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。 梯度结构:为二相体系,特殊的共连续体系(两相连续体系)其组成在空间上互为增减。 阶跃结构:为二相体系,特殊的共连续体系(两相连续体系),在极小过渡区域内,其组成在空间上互为增减。 单相连续体系:海-岛结构、两相互锁或交错结构 共连续体系:海-海结构、梯度结构、阶跃结构 5. 影响熔融共混的主要因素有哪些? (1)聚合物两相体系的熔体黏度(比值)及熔体弹性。(2)聚合物两相体系的界面张力。(3)聚合物两相体系的组分含量以及物料的初始状态。(4)流动场形式和强度。(5)共混时间。 1. 试述聚合物共混的概念。 聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2. 共混物的形态学要素有哪些? 分散相和连续相、分散相的分散状况、两相体系的形貌、相界面 3. 简述分散相颗粒分散过程的两种主要机理。 液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4. 依据“液滴模型”,讨论影响分散相变形的因素。 Weber数:We很小时,σ占据主导作用,形成稳定的液滴。“液滴模型”认为,对于特定的体系和在一定条件下,We可以有特定的Wecrit,当We < Wecrit,液滴稳定;We>Wecrit,液滴会变得不稳定,进而破裂。 γ γ :↑→We ↑→D ↑。

材料表面改性方法

材料表面改性方法 材料表面改性是指不改变材料整体(基体)特性,仅改变材料近表面层的物理、化学特性的表面处理手段,材料表面改性也可以称为材料表面强化处理。 现代材料表面改性目的:是把材料表面与基体看作为一个统一的系统进行设计与改性,以最经济、最有效的方法改变材料近表面层的形态、化学成份和组织结构,赋予新的复合性能,以新型的功能,实现新的工程应用。现代材料表面改性技术就是应用物理、化学、电子学、机械学、材料学的知识,对产品或材料进行处理,赋予材料表面减磨、耐磨、耐蚀、耐热、隔热、抗氧化、防辐射以及声光电磁热等特殊功能的技术。 分类: 1、传统的表面改性技术: 表面热处理:通过对钢件表面的加热、冷却而改变表层力学性能的金属热处理工艺。表面淬火是表面热处理的主要内容,其目的是获得高硬度的表面层和有利的内应力分布,以提高工件的耐磨性能和抗疲劳性能。 表面渗碳:面渗碳处理:将含碳(0.1~0.25)的钢放到碳势高的环境介质中,通过让活性高的碳原子扩散到钢的内部,形成一定厚度的碳含量较高的渗碳层,再经过淬火\回火,使工件的表面层得到碳含量高的M,而心部因碳含量保持原始浓度而得到碳含量低的M,M的硬度主要与其碳含量有关,故经渗碳处理和后续热处理可使工件获得外硬内韧的性能. 2、60年代以来:传统的淬火已由火焰加热发展为高频加热 高频加热设备是采用磁场感应涡流加热原理,利用电流通过线圈产生磁场,当磁场内磁力线通过金属材质时,使锅炉体本身自行高速发热,然后再加热物质,并且能在短时间内达到令人满意的温度。 3、70年代以来: 化学镀:是指在不用外加电流的情况下,在同一溶液中使用还原剂使金属离子在具有催化活性的表面上沉积出金属镀层的方法。 4、近30年来: 热喷涂:热喷涂是指一系列过程,在这些过程中,细微而分散的金属或非金属的涂层材料,以一种熔化或半熔化状态,沉积到一种经过制备

表面改性技术在陶瓷材料中的应用

表面改性技术在陶瓷材料中的应用 引言: 材料表面处理是材料表面改性和新材料制备的重要手段,材料表面改性是目前材料科学最活跃的领域之一。传统的表面改性技术,方法有渗氮、阳极氧化、化学气相沉积、物理气相沉积、离子束溅射沉积等。随着人们对材料表面重要性认识的提高,在传统的表面改性技术和方法的基础上,研究了许多用于改善材料表面性能的技术,主要包括两个方面:利用激光束或离子束的高能量在短时间内加热和熔化表面区域,从而形成一些异常的亚稳表面;离子注入或离子束混合技术把原子直接引进表面层中。陶瓷材料多具有离子键和共价键结构,键能高,原子间结合力强,表面自由能低,原子间距小,堆积致密,无自由电子运动。这些特性赋予了陶瓷材料高熔点、高硬度、高刚度、高化学稳定性、高绝缘绝热性能、热导率低、热膨胀系数小、摩擦系数小、无延展性等鲜明的特性。但陶瓷材料同样具有一些致命的弱点,如:塑性变形差,抗热震和抗疲劳性能差,对应力集中和裂纹敏感、质脆以及在高温环境中其强度、抗氧化性能等明显降低等。 正文: 一、陶瓷材料表面改性技术的应用 1.不同添加剂对陶瓷材料性能的影响。 由于陶瓷材料的耐高温特性经常被应用到高温环境中,特别是高温结构 陶瓷,其高温抗氧化性受到人们的关注。Si 3N 4 是一种强共价结合陶瓷,具有高 硬度、高强度、耐磨和耐腐蚀性好的性能。但是没有添加剂的Si 3N 4 几乎不 能烧结,陶瓷材料的高温强度强烈地受材料组成和显微结构的影响,而材料的显微结构特别是晶界相组成是受添加剂影响的,晶界相的组成对高温力学性能的影响极其敏感。对致密氮化硅而言,坯体中的物质传递对材料的氧化起着决定性作用,一般认为,在测试条件下,具有抛物线规律的氮化硅材料,其决定氧化的主要因素取决于晶界的添加剂离子和杂质离子的扩散速率,不同的添加剂对氮化硅陶瓷的氧化行为影响有所不同[1,2,3]。 2.离子注入技术。 离子注入就是用离子化粒子,经过加速和分离的高能量离子束作用于材料表面,使之产生一定厚度的注入层而改变其表面特性。可根据需要选择要注入的元素,并根据工艺条件控制注入元素的浓度分布和注入深度,形成所需要的过饱和固溶体、亚稳相和各种平衡相,以及一般冶金方法无法得到的合金相或金属间化合物,可直接获得马氏体硬化表面,得到所需要的表面结构和性能由于形成的改性表面不受热力学条件的限制(相平衡、固溶度),所以具有独特的优点。离子注入表面处理技术有:金属蒸汽真空弧离子源离子注入,等离子源注入等。在相同的条件下,重离子比轻离子有更强烈的辐射硬化,因此其对抗弯强度的增加更显著;由于单晶的表面缺陷少所以增加效果 更好]7,6[。

聚合物共混改性考试试题及答案

聚合物共混改性考试试卷 一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST 相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容;

聚合物共混改性原理及应用

聚合物共混改性原理及应用 ``````` 4057 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对

于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能( A ) A.小于零 B 大于零 C 等于零 D 不确定 2.共混物形态的三种基本类型不包括( D ) 3. A.均相体系 4. B 海-岛结构 5.C 海--海结构 6. D 共混体系 3.影响熔融共混过程的因素不包括(B )

A 聚合物两相体系的熔体黏度 B 聚合物两相体系的表面张力 C 聚合物两相体系的界面张力 D 流动场的形式和强度 4.共混物形态研究的主要内容不包括( D ) A 连续相和分散相祖分的确定 B 两相体系的形貌 C 相界面 D 分散相的物理性能 5.熔体黏度调节的方法不包括(B) A 温度 B 时间 C 剪切应力 D 用助剂调节 6.聚合物共混物的使用性能影响要素不包括( A ) A 结晶时间 B 结晶温度 C 结晶速度

聚合物改性砂浆粘结强度及测试方法的研究

聚合物改性砂浆粘结强度及测试方法的研究 吴敬龙,李家和,王政 (哈尔滨工业大学材料学院,哈尔滨15006) 【摘要】粘结强度是建筑砂浆一项主要的性能指标,但我国目前还没有测试砂浆粘结强度试验方法及试件类型的通用标准方法。本文对几种测试砂浆粘结强度的方法进行了比较,并对“8”字模方法进行了改进,利用改进后的“8”字模法对水泥砂浆和聚合物改性砂浆与几种墙体和保温材料的粘结强度进行了测定及分析。 【关键词】聚合物改性砂浆?粘结强度?测试方法 【中图分类号】【文献标识码】【文章编号】 RESEARCH ON BONDING STRENGTH AND THE TESTING METHOD OF POLYMER MODIFIED MORTAR (WU Jing-long,LI Jia-he,W ANG Zheng) (School of Material Science Engineering,Harbin Institue of Technology,Harbin150006,China) Abstract:The bonding strength is the very important performance of building mortar,but our country still haven`t current testing method and sample style of the bonding strength.In this paper,we compare several testing method of mortar,and improve the method of“8”.Then use the improved method of“8”,we test and analyse the bonding strength of between the polymer modified mortar and several the walling and heat preservation material. Key words:polymer modified mortar?bonding strength?testing method 0引言 对于砂浆粘结强度的测试方法,我国目前还没有测试砂浆粘结强度试验方法及试件类型的国家标准,国际上也无通用的试验方法和试件形式[1]同时,随着国家对绿色建材的的重视,墙体改造的大力推广,目前市场上已经出现了很多种新型墙体材料来取代以前应用最为广泛的粘土红砖,应用较多的有各种砌块和板材。然而在推广使用新型墙体材料的过程中,普遍存在严重的墙体开裂和渗漏问题,严重影响了工程质量和正常使用,也严重制约了新型墙体材料的推广应用。这主要是由于墙体材料与传统水泥砂浆粘结强度不高造成的。聚合物改性砂浆具有与墙体材料粘结强度大、韧性高等特点。使其在新型材料应用中,受到研究者和施工单位的广泛关注。 本文针对以上现状,查阅大量国内外文献资料,并根据自己的试验,研究了一种聚合物改性砂浆与普通砂浆粘结强度,同时比较了几种不同粘结强度测试方法,提出一种较为合理的粘结强度测试方法。在此基础上,讨论该聚合物砂浆对苯板、砌块、轻质保温墙板、粉煤灰砖等几种墙体材料的粘结强度。 1原材料及测试方法 1.1原材料及聚合物砂浆配比 水泥:本文中水泥采用哈尔滨水泥厂生产的P?O42.5水泥。 砂:本文中所采用的砂为松花江的中砂,模数为2.6。 聚合物:本文中采用的聚合物是可再分散胶粉。 消泡剂:本文采用磷酸三丁酯。 聚合物砂浆配比:试验中固定灰砂比为1:3,调节用水量使水泥砂浆和聚合物砂浆的稠度在65mm~75mm之间,在聚合物砂浆中掺加了为水泥用量的0.5%可再分散胶粉和水泥用量0.2%的消泡剂。 1.2粘结强度测试方法 现存的粘结强度测试方法主要有以下几种: (1)“8”字模法(A)这种方法是文献中应用最多的一种方法[2]。“8”字模的中间截面的面积为2cm×2cm。示意图见图1 所示。 图1“8”字模法模具 测试时首先将普通砂浆用八字模成型,插捣抹

聚合物共混改性

1.高分子的来源是来自天然高分子、半天然高分子、以及合成高分子。而其中天然高分子是自然界存在的高分子 2.共混方法:物理方法:机械混合溶液混合胶乳混合粉末混合 化学方法:接枝共聚(组分间有化学反应)嵌段共聚(组分间有化学应) 互穿网络(组分间没有化学反应)渐变处理(组分间没有化学反应) 3.高分子材料共混技术进展 相容剂技术(见离聚体进展报告) 互穿聚合物网络技术(见第五章内容) 动态硫化技术(见第三章) 反应挤出成型技术 形态结构研究 增韧机理研究 4.反应挤出成型技术特点: 可连续且小批量的生产; 投资少; 不使用溶剂,节省能源和减少公害; 对制品和原料有较大选择余地; 可方便地进行混炼、聚合等操作,简化脱挥发物、造粒和成型加工等过程,并可使其一体化; 在控制化学结构的同时还可控制微相等物理结构,以制备具有良好性能的新物质。 5.弹性体增韧理论 a 多重银纹理论 Mertz等人首次提出了聚合物的增韧理论。该理论认为,作增韧体的部分橡胶粒子会横跨在材料变形所产生的很多微细的裂缝上,阻止其迅速发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。此理论的主要弱点是注意了橡胶而忽视了母体。后来Newman等人计算了拉伸断裂过程中橡胶断裂所耗散的能量仅占总能量的10%,这说明该理论并未真正揭示橡胶增韧的本质原因。 Bucknall等人发展了Mertz等人的微缝理论,提出了多重银纹理论。该理论认为,在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。当材料受到冲击时,它能引发大量的银纹,但由于大量银纹之间的应力场的相互干扰并且如果生产着的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,则银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。材料受到冲击时产生的大量银纹可吸收大量的冲击能量,从而保护了材料不受破坏 6.弹性体增韧和非弹性体增韧两种理论比较 a 增韧剂种类不同:前者是橡胶或热塑性弹性材料,模量低、易于挠曲、流动性差;后者是脆性塑料或刚性无机粒子,模量高,几乎不发生塑性形变,流动性好。 b 增韧对象不同:前者可增韧脆性或韧性材料;后者则要求基体本身有—定韧性。 c 增韧剂含量变化的效果不同:前者随加入量的增加韧性一直增加;后者有一合适的增韧范围,超过这一范围后无增韧效果。 d 复合体系性质不同:前者在提高材料韧性的同时,材料的模量、强度和热变形温度等大幅度降低;后者则在提高材料韧性的同时,提高材料的模量、强度和热变形温度,不过,前者对基体韧性提高幅度大;后者则通常不能大幅度提高韧性。

材料改性教学总结

材料改性

浅谈表面改性 摘要:本文主要总结了各种材料的改性及改性剂对其的影响,其中还涉及到各种改性方法及对材料改性的展望。 关键字:表面改性纳米金属 1 引言 表面改性是指在保持材料或制品原性能的前提下,赋予其表面新的性能,如亲水性、生物相容性、抗静电性能、染色性能等。表面改性的方法有很多报道,大体上可以归结为:表面化学反应法、表面接枝法、表面复合化法等。 表面改性技术(surface modified technique) 则是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 2表面改性对不同材料性能的影响 2.1 对SF/PP复合材料性能的影响 剑麻纤维(SF)因具有较高的比强度和比模量而成为树脂基体较好的天然纤维增强材料,适用于制备成本低、比模量高和耐冲击的纤维/树脂复合材料。国内常用马来酸酐接枝聚丙烯或有机硅烷为界面相容剂,来提高SF/PP复合材料的力学性能,表面改性可以提高纤维与PP基体的黏合性。使SF/PP复合材料的力学性能和流动性能提高,吸水率下降【1】。 2.2对羟基磷灰石蛋白吸附的影响 羟基磷灰石因为与人体骨组织中的无机组分相近而被广泛应用于有机/ 无机复合物中。但是, HAP 表面具有亲水性, 大多数应用于骨修复的有机材料具有疏水性, 两者的极性差异导致了界面相容性下降, 进而降低复合物的力学性能。克服这一困难最常用的方法

聚合物共混改性考试试题及答案教学内容

聚合物共混改性考试试题及答案

3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态和力学性能。 原因:机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 七、聚合物共混物的制备方法有那些?各有什么特点?10分 答:1. 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又包括:粉料(干粉)共混,熔体共混,溶液共混,乳液共混 2. 共聚-共混法 特点:特点:共聚—共混法制取聚合物共混物是一种化学方法,这一点是与机械共混法显然不同的。 3. 互穿聚合物网络法 八、增容作用的本质是什么?通常采用哪些增容方法?15分 答:增容作用的物理本质:降低共混组分之间的界面张力,促进分散程度的提高;提高相结构的稳定性,使得共混塑料的性能得以提高;改善共混组分之间的界面粘结,有利于传递外力。 常用的增容方法: 1. 利用氢键作用导致相容 2. 利用离子间相互作用 3. 利用电荷转移作用 4. 加入增容剂 5. 混合过程中化学反应所引起的增容作用 6. 共聚物/均聚物共混体系 7. 共溶剂法和IPN法

相关文档
最新文档