高中物理动量守恒定律技巧(很有用)及练习题含解析

高中物理动量守恒定律技巧(很有用)及练习题含解析
高中物理动量守恒定律技巧(很有用)及练习题含解析

高中物理动量守恒定律技巧(很有用)及练习题含解析

一、高考物理精讲专题动量守恒定律

1.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】0

2Mv m nv

= 【解析】

试题分析:以人和小车、小球组成的系统为研究对象,车上的人第一次将小球抛出,规定向右为正方向,由动量守恒定律:Mv 0-mv=Mv 1+mv 得:102mv

v v M

=-

车上的人第二次将小球抛出,由动量守恒: Mv 1-mv=Mv 2+mv 得:2022mv

v v M

=-?

同理,车上的人第n 次将小球抛出后,有02n mv

v v n M

=-? 由题意v n =0, 得:0

2Mv m nv

=

考点:动量守恒定律

2.如图,质量分别为

的两个小球A 、B 静止在地面上方,B 球距地面的高度

h=0.8m ,A 球在B 球的正上方. 先将B 球释放,经过一段时间后再将A 球释放. 当A 球下落t=0.3s 时,刚好与B 球在地面上方的P 点处相碰,碰撞时间极短,碰后瞬间A 球的速度恰为零.已知,重力加速度大小为

,忽略空气阻力及碰撞中的动

能损失.

(i )B 球第一次到达地面时的速度;

(ii )P 点距离地面的高度. 【答案】4/B v m s =0.75p h m = 【解析】

试题分析:(i )B 球总地面上方静止释放后只有重力做功,根据动能定理有

21

2

B B B m gh m v =

可得B 球第一次到达地面时的速度24/B v gh m s ==

(ii )A 球下落过程,根据自由落体运动可得A 球的速度3/A v gt m s == 设B 球的速度为'B v , 则有碰撞过程动量守恒

'''A A B B B B m v m v m v +=

碰撞过程没有动能损失则有

222111

'''222

A A

B B B B m v m v m v += 解得'1/B v m s =,''2/B v m s =

小球B 与地面碰撞后根据没有动能损失所以B 离开地面上抛时速度04/B v v m s ==

所以P 点的高度22

0'0.752B p v v h m g

-=

= 考点:动量守恒定律 能量守恒

3.如图所示,一条带有圆轨道的长轨道水平固定,圆轨道竖直,底端分别与两侧的直轨道相切,半径R =0.5m ,物块A 以v 0=6m/s 的速度滑入圆轨道,滑过最高点Q ,再沿圆轨道滑出后,与直轨道上P 处静止的物块B 碰撞,碰后粘在一起运动,P 点左侧轨道光滑,右侧轨道呈粗糙段、光滑段交替排列,每段长度都为L =0.1m ,物块与各粗糙段间的动摩擦因数都为μ=0.1,A 、B 的质量均为m =1kg(重力加速度g 取10m/s 2;A 、B 视为质点,碰撞时间极短).

(1)求A 滑过Q 点时的速度大小v 和受到的弹力大小F ; (2)若碰后AB 最终停止在第k 个粗糙段上,求k 的数值; (3)求碰后AB 滑至第n 个(n <k )光滑段上的速度v n 与n 的关系式. 【答案】(1)5m/s v =, F =22 N (2) k =45 (3)90.2m/s ()n v n n k =-<

【解析】

⑴物块A 从开始运动到运动至Q 点的过程中,受重力和轨道的弹力作用,但弹力始终不做功,只有重力做功,根据动能定理有:-2mgR =

解得:v==4m/s

在Q点,不妨假设轨道对物块A的弹力F方向竖直向下,根据向心力公式有:mg+F=

解得:F=-mg=22N,为正值,说明方向与假设方向相同。

⑵根据机械能守恒定律可知,物块A与物块B碰撞前瞬间的速度为v0,设碰后A、B瞬间一起运动的速度为v0′,根据动量守恒定律有:mv0=2mv0′

解得:v0′==3m/s

设物块A与物块B整体在粗糙段上滑行的总路程为s,根据动能定理有:-2μmgs=0-

解得:s==4.5m

所以物块A与物块B整体在粗糙段上滑行的总路程为每段粗糙直轨道长度的=45倍,即

k=45

⑶物块A与物块B整体在每段粗糙直轨道上做匀减速直线运动,根据牛顿第二定律可知,其加速度为:a==-μg=-1m/s2

由题意可知AB滑至第n个(n<k)光滑段时,先前已经滑过n个粗糙段,根据匀变速直

线运动速度-位移关系式有:2naL=-

解得:v n==m/s(其中n=1、2、3、 (44)

【考点定位】动能定理(机械能守恒定律)、牛顿第二定律、匀变速直线运动速度-位移式关系、向心力公式、动量守恒定律的应用,以及运用数学知识分析物理问题的能力。

【规律总结】牛顿定律、动能定理、功能关系、动量守恒定律等往往是求解综合大题的必备知识,因此遇到此类问题,要能习惯性地从以上几个方面进行思考,并正确结合运用相关数学知识辅助分析、求解。

4.匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示.图中E0和d均为已知量.将带正电的质点A在O点由能止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A、B间的相互作用力及相互作用能均为零;B离开电场后,A、B间的相作用视为静电作用.已知A的电荷量为Q,A和B的质量

分别为m和.不计重力.

(1)求A在电场中的运动时间t,

(2)若B的电荷量q =Q,求两质点相互作用能的最大值E pm

(3)为使B离开电场后不改变运动方向,求B所带电荷量的最大值q m

【答案】(1)(2)1

45

QE0d (3)Q

【解析】

【分析】

【详解】

解:(1)由牛顿第二定律得,A在电场中的加速度 a ==

A在电场中做匀变速直线运动,由d =a得

运动时间 t ==

(2)设A、B离开电场时的速度分别为v A0、v B0,由动能定理得

QE0d =m

qE0d =

A、B相互作用过程中,动量和能量守恒.A、B相互作用为斥力,A受力与其运动方向相同,B受的力与其运动方向相反,相互作用力对A做正功,对B做负功.A、B靠近的过程中,B的路程大于A的路程,由于作用力大小相等,作用力对B做功的绝对值大于对A做功的绝对值,因此相互作用力做功之和为负,相互作用能增加.所以,当A、B最接近时相互作用能最大,此时两者速度相同,设为v,,

由动量守恒定律得:(m +)v,= mv A0 +v B0

由能量守恒定律得:E Pm= (m+)—)

且 q =Q

解得相互作用能的最大值 E Pm=1

45

QE0d

(3)A、B在x>d区间的运动,在初始状态和末态均无相互作用

根据动量守恒定律得:mv A+v B= mv A0 +v B0

根据能量守恒定律得:m+=m+

解得:v B = -+

因为B不改变运动方向,所以v B = -+≥0

解得:q≤Q

则B所带电荷量的最大值为:q m =Q

5.冰球运动员甲的质量为80.0kg。当他以5.0m/s的速度向前运动时,与另一质量为

100kg、速度为3.0m/s的迎面而来的运动员乙相撞。碰后甲恰好静止。假设碰撞时间极短,求:

(1)碰后乙的速度的大小;

(2)碰撞中总动能的损失。

【答案】(1)1.0m/s(2)1400J

【解析】

试题分析:(1)设运动员甲、乙的质量分别为m、M,碰前速度大小分别为v、V,碰后乙的速度大小为V′,规定甲的运动方向为正方向,由动量守恒定律有:mv-MV=MV′…①

代入数据解得:V′=1.0m/s…②

(2)设碰撞过程中总机械能的损失为△E,应有:mv2+MV2=MV′2+△E…③

联立②③式,代入数据得:△E=1400J

考点:动量守恒定律;能量守恒定律

6.如图所示,质量为m的由绝缘材料制成的球与质量为M=19m的金属球并排悬挂.现将绝缘球拉至与竖直方向成θ=600的位置自由释放,下摆后在最低点与金属球发生弹性碰撞.在平衡位置附近存在垂直于纸面的磁场.已知由于磁场的阻尼作用,金属球将于再次碰撞前停在最低点处.求经过几次碰撞后绝缘球偏离竖直方向的最大角度将小于

450.

【答案】最多碰撞3次

【解析】

解:设小球m的摆线长度为l

小球m在下落过程中与M相碰之前满足机械能守恒:①

m和M碰撞过程是弹性碰撞,故满足:

mv0=MV M+mv1 ②

联立②③得:④

说明小球被反弹,且v1与v0成正比,而后小球又以反弹速度和小球M再次发生弹性碰撞,满足:

mv1=MV M1+mv2 ⑤

解得:

整理得:

故可以得到发生n次碰撞后的速度:

而偏离方向为450的临界速度满足:

联立①⑨⑩代入数据解得,当n=2时,v2>v临界

当n=3时,v3<v临界

即发生3次碰撞后小球返回到最高点时与竖直方向的夹角将小于45°.

考点:动量守恒定律;机械能守恒定律.

专题:压轴题.

分析:先根据机械能守恒定律求出小球返回最低点的速度,然后根据动量守恒定律和机械能守恒定律求出碰撞后小球的速度,对速度表达式分析,求出碰撞n次后的速度表达式,再根据机械能守恒定律求出碰撞n次后反弹的最大角度,结合题意讨论即可.

点评:本题关键求出第一次反弹后的速度和反弹后细线与悬挂点的连线与竖直方向的最大角度,然后对结果表达式进行讨论,得到第n次反弹后的速度和最大角度,再结合题意求解.

7.如图,两块相同平板P1、P2置于光滑水平面上,质量均为m=0.1kg.P2的右端固定一

轻质弹簧,物体P 置于P 1的最右端,质量为M =0.2kg 且可看作质点.P 1与P 以共同速度v 0=4m/s 向右运动,与静止的P 2发生碰撞,碰撞时间极短,碰撞后P 1与P 2粘连在一起,P 压缩弹簧后被弹回(弹簧始终在弹性限度内).平板P 1的长度L =1m ,P 与P 1之间的动摩擦因数为μ=0.2,P 2上表面光滑.求:

(1)P 1、P 2刚碰完时的共同速度v 1; (2)此过程中弹簧的最大弹性势能E p .

(3)通过计算判断最终P 能否从P 1上滑下,并求出P 的最终速度v 2. 【答案】(1)v 1=2m/s (2)E P =0.2J (3)v 2=3m/s 【解析】 【分析】 【详解】

(1)P 1、P 2碰撞过程,由动量守恒定律 01m 2v mv = 解得0

12/2

v v m s =

=,方向水平向右 ; (2)对P 1、P 2、P 系统,由动量守恒定律 102

2(2)mv Mv m M v '+=+ 解得2

03

3/4

v v m s ='=,方向水平向右, 此过程中弹簧的最大弹性势能22

2102

111?2+Mv 2m )0.2222

P E mv M v J =

-='+(; (3)对P 1、P 2、P 系统,由动量守恒定律 103222mv Mv mv Mv +=- 由能量守恒定律得

2222

103211112+Mv 2mv +Mg 2222

mv Mv L ?=?+μ 解得P 的最终速度23/0v m s =>,即P 能从P 1上滑下,P 的最终速度23/v m s =

8.如图所示,在光滑的水平面上有一长为L 的木板B ,其右侧边缘放有小滑块C ,与木板

B 完全相同的木板A 以一定的速度向左运动,与木板B 发生正碰,碰后两者粘在一起并继

续向左运动,最终滑块C 刚好没有从木板A 上掉下.已知木板A 、B 和滑块C 的质量均为

m ,C 与A 、B 之间的动摩擦因数均为μ.求:

(1)木板A 与B 碰前的速度v 0; (2)整个过程中木板B 对木板A 的冲量I . 【答案】(1)2

(2)-

,负号表示B 对A 的冲量方向向右

【解析】(1)木板A 、B 碰后瞬时速度为v 1,碰撞过程中动量守恒,以A 的初速度方向为正

方向,由动量守恒定律得mv 0=2mv 1.

A 、

B 粘为一体后通过摩擦力与

C 发生作用,最后有共同的速度v 2,此过程中动量守恒,以A 的速度方向为正方向,由动量守恒定律得2mv 1=3mv 2. C 在A 上滑动过程中,由能量守恒定律得 -μmgL =·3mv -·2mv . 联立以上三式解得v 0=2

.

(2)根据动量定理可知,B 对A 的冲量与A 对B 的冲量等大反向,则I 的大小等于B 的动量变化量,即I =-mv 2=-

,负号表示B 对A 的冲量方向向右。

9.如图所示,光滑平行金属导轨的水平部分处于竖直向下的B=4T 的匀磁场中,两导轨间距L=0.5m ,导轨足够长金属棒a 和b 的质量都为m=1kg ,电阻1a b R R ==Ω.b 棒静止于轨道水平部分,现将a 棒从h=80cm 高处自静止沿弧形轨道下滑,通过C 点进入轨道的水平部分,已知两棒在运动过程中始终保持与导轨垂直,且两棒始终不相碰.求a 、b 两棒的最终速度大小以及整个过程中b 棒中产生的焦耳热(已知重力加速度g 取10m/s 2)

【答案】 2m/s 2J 【解析】

a 棒下滑至C 点时速度设为v 0,则由动能定理,有: 2

0102

mgh mv =

- (2分) 解得v 0=4m/s ; (2分)

此后的运动过程中,a 、b 两棒达到共速前,两棒所受安培力始终等大反向,因此a 、b 两棒组成的系统动量守恒,有:

()0m v m m v =+ (2分)

解得a 、b 两棒共同的最终速度为v =2m/s ,此后两棒一起做匀速直线运动; 由能量守恒定律可知,整个过程中回路产生的总的焦耳热为: ()22011

22

Q mv m m v =

-+ (2分) 则b 棒中的焦耳热1

2

b Q Q =

(2分) 联立解得:Q b =2J (2分)

10.如图所示,质量均为M =4 kg 的小车A 、B ,B 车上用轻绳挂有质量为m =2 kg 的小球C ,与B 车静止在水平地面上,A 车以v 0=2 m/s 的速度在光滑水平面上向B 车运动,相碰后粘在一起(碰撞时间很短).求:

(1)碰撞过程中系统损失的机械能;

(2)碰后小球C 第一次回到最低点时的速度大小. 【答案】(1) 4 J (2) 1.6 m/s 【解析】 【详解】

解:(1)设A 、B 车碰后共同速度为1v ,由动量守恒得:012Mv Mv = 系统损失的能量为:220112 4 2

12E Mv Mv J -?==

损 (2)设小球C 再次回到最低点时A 、B 车速为2v ,小球C 速度为3v ,对A 、B 、C 系统由水平方向动量守恒得:12322Mv Mv mv =+ 由能量守恒得:

22

212311122222

Mv Mv mv ?=?+ 解得:3 1.6 /v m s =

11.如图所示,内壁粗糙、半径R =0.4 m 的四分之一圆弧轨道AB 在最低点B 与光滑水平轨道BC 相切。质量m 2=0.2 kg 的小球b 左端连接一轻质弹簧,静止在光滑水平轨道上,另一质量m 1=0.2 kg 的小球a 自圆弧轨道顶端由静止释放,运动到圆弧轨道最低点B 时对轨道的压力为小球a 重力的2倍,忽略空气阻力,重力加速度g =10 m/s 2。求:

(1)小球a 由A 点运动到B 点的过程中,摩擦力做功W f ;

(2)小球a 通过弹簧与小球b 相互作用的过程中,弹簧的最大弹性势能E p ; (3)小球a 通过弹簧与小球b 相互作用的整个过程中,弹簧对小球b 的冲量I 。 【答案】(1) (2)E P =0.2J (3) I =0.4N ?s

【解析】

(1)小球由静止释放到最低点B 的过程中,据动能定理得

小球在最低点B 时:

据题意可知

,联立可得

(2)小球a 与小球b 把弹簧压到最短时,弹性势能最大,二者速度相同,

此过程中由动量守恒定律得:

由机械能守恒定律得

弹簧的最大弹性势能E p=0.4J

小球a与小球b通过弹簧相互作用的整个过程中,a球最终速度为,b求最终速度为,由动量守恒定律

由能量守恒定律:

根据动量定理有:

得小球a通过弹簧与小球b相互作用的整个过程中,弹簧对小球b的冲量I的大小为

I=0.8N·s

12.如图所示,固定点O上系一长L=0.6 m的细绳,细绳的下端系一质量m=1.0 kg的小球(可视为质点),原来处于静止状态,球与平台的B点接触但对平台无压力,平台高h=0.80 m,一质量M=2.0 kg的物块开始静止在平台上的P点,现对物块M施予一水平向右的初速度v0,物块M沿粗糙平台自左向右运动到平台边缘B处与小球m发生正碰,碰后小球m在绳的约束下做圆周运动,经最高点A时,绳上的拉力恰好等于小球的重力,而物块M落在水平地面上的C点,其水平位移x=1.2 m,不计空气阻力,g=10 m/s2.

(1)求物块M碰撞后的速度大小;

(2)若平台表面与物块M间的动摩擦因数μ=0.5,物块M与小球的初始距离为x1=1.3 m,求物块M在P处的初速度大小.

【答案】(1)3.0m/s(2)7.0m/s

【解析】

试题分析:(1)碰后物块M做平抛运动,设其平抛运动的初速度为V

① (2分)

S = Vt ② (2分)

得:=" 3.0" m/s ③ (2分)

(2)物块与小球在B处碰撞,设碰撞前物块的速度为V1,碰撞后小球的速度为V2,由动量守恒定律:

MV1= mV2+ MV ⑥ (2分)

碰后小球从B处运动到最高点A过程中机械能守恒,设小球在A点的速度为V A:

⑦(2分)

小球在最高点时依题给条件有:⑧ (2分)

由⑦⑧解得:V2=" 6.0" m/s ⑨ (1分)

由③⑥⑨得:=" 6.0" m/s ⑩ (1分)

物块M从P运动到B处过程中,由动能定理:

⑾(2分)

解得:=" 7.0" m/s ⑿(2分)

考点:本题考查了平抛运动的规律、动量守恒定律、机械能守恒定律及动能定理的应用

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理答题技巧归纳大全

高中物理答题技巧归纳大全 一,考场中心态的保持 心态“安静”:心静自然“凉”,脑子自然清醒,精力自然集中,思路自然清晰。心静如水,超然物外,成为时间的主人、学习的主人。情绪稳定,效率提高。心不静,则心乱如麻,心神不定,心不在焉,如坐针毡,眼在此而心在彼,貌似用功,实则骗人。 二,高中物理选择题的答题技巧 选择题一般考查学生对基本知识和基本规律的理解及应用这些知识进行一些定性推理和定量计算。解答选择题时,要注意以下几个问题: 每一选项都要认真研究,选出最佳答案,当某一选项不敢确定时,宁可少选也不错选。 注意题干要求,让你选择的是“不正确的”、“可能的”还是“一定的”。 相信第一判断:凡已做出判断的题目,要做改动时,请十二分小心,只有当你检查时发现第一次判断肯定错了,另一个百分之百是正确答案时,才能做出改动,而当你拿不定主意时千万不要改。特别是对中等程度及偏下的同学这一点尤为重要。 做选择题的常用方法: 筛选(排除)法:根据题目中的信息和自身掌握的知识,从易到难,逐步排除不合理选项,最后逼近正确答案。

特值(特例)法:让某些物理量取特殊值,通过简单的分析、计算进行判断。它仅适用于以特殊值代入各选项后能将其余错误选项均排除的选择题。 极限分析法:将某些物理量取极限,从而得出结论的方法。 直接推断法:运用所学的物理概念和规律,抓住各因素之间的联系,进行分析、推理、判断,甚至要用到数学工具进行计算,得出结果,确定选项。 观察、凭感觉选择:面对选择题,当你感到确实无从下手时,可以通过观察选项的异同、长短、语言的肯定程度、表达式的差别、相应或相近的物理规律和物理体验等,大胆的做出猜测,当顺利的完成试卷后,可回头再分析该题,也许此时又有思路了。 物理实验题的做题技巧 实验题一般采用填空题或作图题的形式出现。作为填空题,数值、单位、方向或正负号都应填全面;作为作图题:对函数图像应注明纵、横轴表示的物理量、单位、标度及坐标原点。对电学实物图,则电表量程、正负极性,电流表内、外接法,变阻器接法,滑动触头位置都应考虑周全。对光路图不能漏箭头,要正确使用虚、实线,各种仪器、仪表的读数一定要注意有效数字和单位;实物连接图一定要先画出电路图(仪器位置要对应);各种作图及连线要先用铅笔(有利于修改),最后用黑色签字笔涂黑。 常规实验题:主要考查课本实验,几年来考查比较多的是试验器材、原理、步骤、读数、注意问题、数据处理和误差分析,解答常

人教版高中物理相互作用好题难题教学内容

2017年04月30日高中物理相互作用组卷 一.选择题(共14小题) 1.把一个薄板状物体悬挂起来,静止时如图所示,则对于此薄板状物体所受重力的理解,下列说法正确的是() A.重力就是地球对物体的引力 B.重力大小和物体运动状态有关 C.重力的方向总是指向地心的 D.薄板的重心一定在直线AB上 2.下列关于常见力的说法中正确的是() A.弹力、重力、支持力、摩擦力都是按照性质命名的 B.有规则形状的物体,其重心就在物体的几何中心 C.两接触面间有摩擦力存在,则一定有弹力存在 D.物体之间接触就一定产生弹力 3.下列说法中,正确的是() A.有受力物体,就必定有施力物体 B.力只能产生在相互接触的物体之间 C.施力物体施力在先,受力物体受力在后 D.力是一个物体就能产生的,而并不需要其他物体的存在 4.如图所示,一被吊着的空心的均匀球壳内装满了细沙,底部有一阀门,打开阀门让细沙慢慢流出的过程中,球壳与球壳内剩余细沙组成的系统的重心将会() A.一直下降B.一直不变C.先下降后上升D.先上升后下降 5.弹簧秤的秤钩上挂一个重2N的物体,当弹簧秤与所挂物体一起匀加速竖直上升时,弹簧秤示数可能出现下列哪个图所示情况?()

A.B.C.D. 6.如图所示,一轻弹簧竖直固定在地面上,一物体从弹簧上方某高处自由下落,并落在弹簧上,弹簧在压缩过程中始终遵守胡克定律.从球接触弹簧开始,直到把弹簧压缩到最短为止,小球的加速度大小() A.一直变大B.一直变小C.先变大后变小D.先变小后变大 7.如图所示,某同学在擦黑板.已知黑板擦对黑板的压力为8N,与黑板间的动摩擦因数为0.4,则黑板擦与黑板间的滑动摩擦力为() A.2N B.3.2N C.20N D.32N 8.已知一些材料间动摩擦因数如下: 材料钢﹣钢木﹣木木﹣金属木﹣冰 动摩擦因数0.250.300.200.03 质量为1kg的物块放置于水平面上,现用弹簧秤沿水平方向匀速拉动此物块时, 读得弹簧秤的示数为3N,则关于两接触面的材料可能是(取g=10m/s2)()A.钢﹣钢B.木﹣木C.木﹣金属D.木﹣冰 9.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg,m2=2kg,A、B间动摩擦因数μ=0.2,如图.现用一水平向右的拉力F作用于物体A上,g=10m/s2,则下列说法中正确的是() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止

高中物理动量定理解题技巧(超强)及练习题(含答案)

高中物理动量定理解题技巧(超强)及练习题(含答案) 一、高考物理精讲专题动量定理 1.如图所示,一质量m 1=0.45kg 的平顶小车静止在光滑的水平轨道上.车顶右端放一质量m 2=0.4 kg 的小物体,小物体可视为质点.现有一质量m 0=0.05 kg 的子弹以水平速度v 0=100 m/s 射中小车左端,并留在车中,已知子弹与车相互作用时间极短,小物体与车间的动摩擦因数为μ=0.5,最终小物体以5 m/s 的速度离开小车.g 取10 m/s 2.求: (1)子弹从射入小车到相对小车静止的过程中对小车的冲量大小. (2)小车的长度. 【答案】(1)4.5N s ? (2)5.5m 【解析】 ①子弹进入小车的过程中,子弹与小车组成的系统动量守恒,有: 0011()o m v m m v =+,可解得110/v m s =; 对子弹由动量定理有:10I mv mv -=-, 4.5I N s =? (或kgm/s); ②三物体组成的系统动量守恒,由动量守恒定律有: 0110122()()m m v m m v m v +=++; 设小车长为L ,由能量守恒有:22220110122111()()222 m gL m m v m m v m v μ= +-+- 联立并代入数值得L =5.5m ; 点睛:子弹击中小车过程子弹与小车组成的系统动量守恒,由动量守恒定律可以求出小车的速度,根据动量定理可求子弹对小车的冲量;对子弹、物块、小车组成的系统动量守恒,对系统应用动量守恒定律与能量守恒定律可以求出小车的长度. 2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。已知sin37o=0.60,cos37o=0.80,重力加速度g 取10m/s 2,不计空气阻力。求: (1)物体沿斜面向上运动的加速度大小; (2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。 【答案】(1)6.0m/s 2(2)18J (3)20N· s ,方向竖直向下。 【解析】 【详解】

高考物理复习高中物理解题方法归类总结高中物理例题解析,原来还有这么巧妙的方法!

高考物理复习高中物理解题方法归类总结 (高中物理例题解析) 方法一:图像法解题 一、方法简介 图像法是根据题意把抽像复杂的物理过程有针对性地表示成物理图像,将物理量间的代数关系转变为几何关系,运用图像直观、形像、简明的特点,来分析解决物理问题,由此达到化难为易、化繁为简的目的. 高中物理学习中涉及大量的图像问题,运用图像解题是一种重要的解题方法.在运用图像解题的过程中,如果能分析有关图像所表达的物理意义,抓住图像的斜率、截距、交点、面积、临界点等几个要点,常常就可以方便、简明、快捷地解题. 二、典型应用 1.把握图像斜率的物理意义

在v-t图像中斜率表示物体运动的加速度,在s-t图像中斜率表示物体运动的速度,在U-I图像中斜率表示电学元件的电阻,不同的物理图像斜率的物理意义不同. 2.抓住截距的隐含条件 图像中图线与纵、横轴的截距是另一个值得关注的地方,常常是题目中的隐含条件. 例1、在测电池的电动势和内电阻的实验中,根据得出的一组数据作出U-I图像,如图所示,由图像得出电池的电动势E=______ V,内电阻r=_______ Ω. 【解析】电源的U-I图像是经常碰到的,由图线与纵轴的截距容易得出电动势E=1.5 V,图线与横轴的截距0.6 A是路端电压为0.80伏特时的电流,(学生在这里常犯的错误是把图线与横轴的截距0.6 A当作短路电流,而得出r=E/I 短=2.5Ω的错误结论.)故电源的内阻为:r=△U/△I=1.2Ω 3.挖掘交点的潜在含意

一般物理图像的交点都有潜在的物理含意,解题中往往又是一个重要的条件,需要我们多加关注.如:两个物体的位移图像的交点表示两个物体“相遇”. 例2、A、B两汽车站相距60 km,从A站每隔10 min向B站开出一辆汽车,行驶速度为60 km/h.(1)如果在A站第一辆汽车开出时,B站也有一辆汽车以同样大小的速度开往A站,问B站汽车在行驶途中能遇到几辆从A站开出的汽车?(2)如果B站汽车与A站另一辆汽车同时开出,要使B站汽车在途中遇到从A站开出的车数最多,那么B站汽车至少应在A站第一辆车开出多长时间后出发(即应与A站第几辆车同时开出)?最多在途中能遇到几辆车?(3)如果B站汽车与A站汽车不同时开出,那么B站汽车在行驶途中又最多能遇到几辆车? 【解析】依题意在同一坐标系中作出分别从A、B站由不同时刻开出的汽车做匀速运动的s一t图像,如图所示. 从图中可一目了然地看出:(1)当B站汽车与A站第一辆汽车同时相向开出时,B站汽车的s一t图线CD与A站汽车的s-t图线有6个交点(不包括在t轴上的交点),这表明B站汽车在途中(不包括在站上)能遇到6辆从A站开出的汽车.(2)要使B站汽车在途中遇到的车最多,它至少应在A站第一辆车开出50 min后出发,即应与A站第6辆车同时开出此时对应B站汽车的s—t图线MN与A 站汽车的s一t图线共有11个交点(不包括t轴上的交点),所以B站汽车在途中(不包括在站上)最多能遇到1l辆从A站开出的车.(3)如果B站汽车与A站汽

高中物理题库难题解析

第二章 直线运动 运动学基本概念 变速直线运动 (P .21) ***12.甲、乙、丙三辆汽车以相同的速度经过某一路标,以后甲车一直做匀速直线运动,乙车先加速后减速运动,丙车先减速后加速运动,它们经过下一路标时的速度又相同,则( )。[2 ] (A)甲车先通过下一个路标 (B)乙车先通过下一个路标 (C)丙车先通过下一个路标 (D)三车同时到达下一个路标 解答 由题知,三车经过二路标过程中,位移相同,又由题分析知,三车的平均速度之间存在:乙v > 甲v > 丙v ,所以三车经过二路标过程中,乙车所需时间最短。 本题的正确选项为(B )。 (P .21) ***14.质点沿半径为R 的圆周做匀速圆周运动,其间最大位移等于_______,最小位移等于________,经过 9 4 周期的位移等于_________.[2 ] 解答 位移大小为连接初末位置的线段长,质点做半径为R 的匀速圆周运动,质点的最大位移等于2R ,最小位移等于0,又因为经过T 49周期的位移与经过T 4 1 周期的位移相同,故经过 T 4 9 周期的位移的大小等于R 2。 本题的正确答案为“2R ;0;R 2” (P .22) ***16.一架飞机水平匀速地在某同学头顶飞过,当他听到飞机的发动机声从头顶正上方传来时,发现飞机在他前上方约与地面成60°角的方向上,据此可估算出此飞机的速度约为声速的____________倍.(2000年,上海卷)[5] 解答 飞机发动机的声音是从头顶向下传来的,飞机水平作匀速直线运动,设飞机在人头顶正上方时到地面的距离为Y ,发动机声音从头顶正上方传到地面的时间为t ,声音的速度为v 0,于是声音传播的距离、飞机飞行的距离和飞机与该同学的距离组成了一直角三角形,由图2-1可见: X =v t , ① Y =v 0t , ② =Y X tan300 , ③ 图2-1

(完整版)高中物理解题技巧

物理快速解题技巧 技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所 示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木 块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块 有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解 木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2 所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置 用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻 绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的 θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高中物理之动量和动量定理知识点

高中物理之动量和动量定理知识点 动量、冲量 动量变化量和动量变化率 (1)物体末态动量和初态动量的矢量差叫物体的动量变化量。△P=mv'-mv,其方向与速度变化量的方向相同。 (2)物体的动量变化率等于它所受的合力。 动量定理 (1)物体在一个过程中的动量变化量等于它在这个过程中的所受理的合冲量。 (2)△P=I合或mv'-mv=F合t 应用动量定理解题的一般步骤 (1)选定研究对象,明确运动过程

(2)受力分析和运动的初、末状态分析 (3)选正方向,根据动量定理列方程求解 应用 动量定理揭示了冲量和动量变化量之间的关系. 1.应用动量定理的两类简单问题 (1)应用I=ΔP求变力的冲量和平均作用力. 物体受到变力作用,不能直接用I=Ft求变力的冲量。(2)应用ΔP=Ft求恒力作用下的曲线运动中物体动量的变化。 曲线运动中,作用力是恒力,可求恒力的冲量,等效代换动量的变化量。 2.动量定理使用的注意事项 (1)用牛顿第二定律能解决的问题,用动量定理也能解决,题目不涉及加速度和位移,用动量定理求解更简便。 (2)动量定理的表达式是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F是物体或系统所受的合力。 3.动量定理在电磁感应现象中的应用 在电磁感应现象中,安培力往往是变力,可用动量定理求解有关运动过程中的时间、位移、速度等物理量。

习题演练 1. 关于动量和冲量,下列说法中正确的是() A 动量和冲量都是标量 B 动量和冲量都是过程量 C 动量和冲量都是过程量 D 动量和冲量都是矢量 2. 某物体受到一个-6N*s的冲量作用,则下列说法正确的是() A 物体的动量一定减小 B 物体的末动量一定是负值 C 物体动量增量的方向一定与规定的正方向相反 D 物体原来动量的方向一定与这个冲量的方向相反 习题解析 1. D 动量是状态量,冲量是过程量。 2. B 冲量和动量都是方向,矢量的正负号仅表示方向。

高中物理解题方法+高考物理知识点总结

高中物理解题方法指导高考物理 知识点及易错点 物理题解常用的两种方法: 分析法的特点是从待求量出发,追寻待求量公式中每一个量的表达式,(当然结合题目所给的已知量追寻),直至求出未知量。这样一种思维方式“目标明确”,是一种很好的方法应当熟练掌握。 综合法,就是“集零为整”的思维方法,它是将各个局部(简单的部分)的关系明确以后,将各局部综合在一起,以得整体的解决。 综合法的特点是从已知量入手,将各已知量联系到的量(据题目所给条件寻找)综合在一起。 实际上“分析法”和“综合法”是密不可分的,分析的目的是综合,综合应以分析为基础,二者相辅相成。

正确解答物理题应遵循一定的步骤 第一步:看懂题。所谓看懂题是指该题中所叙述的现象是否明白?不可能都不明白,不懂之处是哪?哪个关键之处不懂?这就要集中思考“难点”,注意挖掘“隐含条件。”要养成这样一个习惯:不懂题,就不要动手解题。 若习题涉及的现象复杂,对象很多,须用的规律较多,关系复杂且隐蔽,这时就应当将习题“化整为零”,将习题化成几个过程,就每一过程进行分析。 第二步:在看懂题的基础上,就每一过程写出该过程应遵循的规律,而后对各个过程组成的方程组求解。 第三步:对习题的答案进行讨论.讨论不仅可以检验答案是否合理,还能使读者获得进一步的认识,扩大知识面。 一、静力学问题解题的思路和方法 1.确定研究对象:并将“对象”隔离出来-。必要时应转换研究对象。这种转换,一种情况是换为另一物体,一种情况是包括原“对象”只是扩大范围,将另一物体包括进来。 2.分析“对象”受到的外力,而且分析“原始力”,不要边分析,边处理力。以受力图表示。 3.根据情况处理力,或用平行四边形法则,或用三角形法则,或用正交分解法则,提高力合成、分解的目的性,减少盲目性。 4.对于平衡问题,应用平衡条件∑F=0,∑M=0,列方

高中物理动量守恒专题训练

1.在如图所示的装置中,木块B与水平桌面间的接触是光滑的,子弹A沿水平方向 射入木块后留在其中,将弹簧压缩到最短.若将子弹、木块和弹簧合在一起作为系统, 则此系统在从子弹开始射入到弹簧被压缩至最短的整个过程中() A. 动量守恒,机械能守恒 B. 动量守恒,机械能不守恒 C. 动量不守恒,机械能不守恒 D. 动量不守恒,机械能守恒 2.车厢停在光滑的水平轨道上,车厢后面的人对前壁发射一颗子弹。设子弹质量为m,出口速度v,车厢和人的质量为M,则子弹陷入前车壁后,车厢的速度为() A. mv/M,向前 B. mv/M,向后 C. mv/(m M),向前 D. 0 3.质量为m、速度为v的A球与质量为3m的静止B球发生正碰.碰撞可能是弹性的,也可能是非弹性的,因此,碰撞后B球的速度可能有不同的值.碰撞后B球的速度大小可能是( ). A. 0.6v B. 0.4v C. 0.3v D. v 4.两个质量相等的小球在光滑水平面上沿同一直线同向运动,A球的动量是8kg·m/s,B球的动量是6kg·m/s,A球追上B球时发生碰撞,则碰撞后A、B两球的动量可能为 A. p A=0,p B=l4kg·m/s B. p A=4kg·m/s,p B=10kg·m/s C. p A=6kg·m/s,p B=8kg·m/s D. p A=7kg·m/s,p B=8kg·m/s 5.如图所示,在光滑水平面上停放质量为m装有弧形槽的小车.现有一质量也为m的小 球以v0的水平速度沿切线水平的槽口向小车滑去,不计一切摩擦,则() A. 在相互作用的过程中,小车和小球组成的系统总动量守恒 B. 小球离车后,可能做竖直上抛运动 C. 小球离车后,可能做自由落体运动 D. 小球离车后,小车的速度有可能大于v0 6.如图甲所示,光滑水平面上放着长木板B,质量为m=2kg的木块A以速度v0=2m/s滑上原来静止的长木板B的上表面,由于A、B之间存在有摩擦,之后,A、B的速度随时间变化情况如乙图所示,重力加速度g=10m/s2。则下列说法正确的是() A. A、B之间动摩擦因数为0.1 B. 长木板的质量M=2kg C. 长木板长度至少为2m D. A、B组成系统损失机械能为4J 7.长为L、质量为M的木块在粗糙的水平面上处于静止状态,有 一质量为m的子弹(可视为质点)以水平速度v0击中木块并恰好未穿出。设子弹射入木块过程时间极短,子弹受到木块的阻力恒定,木块运动的最大距离为s,重力加速度为g,(其中M=3m)求: (1)木块与水平面间的动摩擦因数μ; (2)子弹受到的阻力大小f。(结果用m ,v0,L表示) 8.如图所示,A、B两点分别为四分之一光滑圆弧轨道的最高点和最低点,O为圆心,OA连线水平,OB连线竖直,圆弧轨道半径R=1.8m,圆弧轨道与水平地面BC平滑连接。质量m1=1kg的物体P由A点无初速度下滑后,与静止在B点的质量m2=2kg的物体Q发生弹性碰撞。已知P、Q两物体与水平地面间的动摩擦因数均为0.4,P、Q两物体均可视为质点,当地重力加速度g=10m/s2。求P、Q两物体都停止运动时二者之间的距离。

高中物理解题方法整体法和隔离法

高中物理解题方法---整体法和隔离法 选择研究对象是解决物理问题的首要环节.在很多物理问题中,研究对象的选择方案是多样的,研究对象的选取方法不同会影响求解的繁简程度。合理选择研究对象会使问题简化,反之,会使问题复杂化,甚至使问题无法解决。隔离法与整体法都是物理解题的基本方法。 隔离法就是将研究对象从其周围的环境中隔离出来单独进行研究,这个研究对象可以是一个物体,也可以是物体的一个部分,广义的隔离法还包括将一个物理过程从其全过程中隔离出来。 整体法是将几个物体看作一个整体,或将看上去具有明显不同性质和特点的几个物理过程作为一个整体过程来处理。隔离法和整体法看上去相互对立,但两者在本质上是统一的,因为将几个物体看作一个整体之后,还是要将它们与周围的环境隔离开来的。 这两种方法广泛地应用在受力分析、动量定理、动量守恒、动能定理、机械能守恒等问题中。 对于连结体问题,通常用隔离法,但有时也可采用整体法。如果能够运用整体法,我们应该优先采用整体法,这样涉及的研究对象少,未知量少,方程少,求解简便;不计物体间相互作用的内力,或物体系内的物体的运动状态相同,一般首先考虑整体法。对于大多数动力学问题,单纯采用整体法并不一定能解决,通常采用整体法与隔离法相结合的方法。 一、静力学中的整体与隔离 通常在分析外力对系统的作用时,用整体法;在分析系统内各物体(各部分)间相互作用时,用隔离法.解题中应遵循“先整体、后隔离”的原则。 【例1】在粗糙水平面上有一个三角形木块a ,在它的两个粗糙斜面上分别放有质量为m1和m2的两个木块b 和c ,如图所示,已知m1>m2,三木块均处于静止,则粗糙地面对于三角形木块( ) A .有摩擦力作用,摩擦力的方向水平向右 B .有摩擦力作用,摩擦力的方向水平向左 C .有摩擦力作用,但摩擦力的方向不能确定 D .没有摩擦力的作用 【解析】由于三物体均静止,故可将三物体视为一个物体,它静止于水平面上,必无摩擦力作用,故选D . 【点评】本题若以三角形木块a 为研究对象,分析b 和c 对它的弹力和摩擦力,再求其合力来求解,则把问题复杂化了.此题可扩展为b 、c 两个物体均匀速下滑,想一想,应选什么? 【例2】有一个直角支架AOB ,AO 水平放置,表面粗糙,OB 竖直向下,表面光滑,AO 上套有小环P ,OB 上套有小环Q ,两环质量均为m ,两环间由一根质量可忽略、不可伸展的细绳相连,并在某一位置平衡,如图。现将P 环向左移一小段距离,两 环再次 A O B P Q

高一物理实验题解题方法归纳

高一物理实验题解题方法归纳 实验,是自然科学的研究方法之一,高中物理实验是解决物理问题的一种途径,学好高中物理实验的复就至关重要。下面是给大家带来的高一物理实验题方法,希望能帮助到大家! 高一物理实验题方法1 常用的高中物理实验方法之控制变量法 在高中物理实验中,常有多个因素在变化,造成规律不易表现出来,这时可以先控制一些物理量不变,依次研究某一个因素的影响和利用。控制变量法是科学探究中的重要思想方法,广泛地运用在各种科学探索和科学实验研究之中。 常用的高中物理实验方法之等效替代法 等效替代法是在保证某种效果相同的前提下,将实际的、复杂的物理问题和物理过程转化为等效的、简单的、易于研究的物理实验问题和物理实验过程来研究和处理的方法。等效替代法是物理方法既是科学家研究问题的方法,也是高中学生在学习物理中常用的方法。 常用的高中物理实验方法之累积法

爱高中物理实验中把某些难以用常规仪器直接准确测量的物理量用累积的方法,将小量变大量,不仅可以便于测量,而且还可以提高测量的准确程度,减小误差。 常用的高中物理实验方法之放大法 对于高中物理实验中微小量或小变化的观察,可采用放大的方法。例如游标卡尺、放大镜、显微镜等仪器都是按放大原理制成的。 高一物理实验题方法2 解题技巧1.对于多体问题,要正确选取研究对象,善于寻找相互联系 选取研究对象和寻找相互联系是求解多体问题的两个关键。选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 解题技巧2.对于多过程问题,要仔细观察过程特征,妥善运用物理规律 观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键。分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律

高中物理难点分类解析滑块与传送带模型问题(经典)

滑块—木板模型 例1如图1所示,光滑水平面上放置质量分别为m、2m的物块A和木板B,A、B间的最大静摩擦力为μmg,现用水平拉力F拉B,使A、B以同一加速度运动,求拉力F的最大值。 分析:为防止运动过程中A落后于B(A不受拉力F的直接作用,靠A、B间的静摩擦力加速),A、B 一起加速的最大加速度由A决定。解答:物块A能获得的最大加速度为:.∴A、B 一起加速运动时,拉力F的最大值为:. 变式1例1中若拉力F作用在A上呢如图2所示。解答:木板B能获得的最大加速度为:。∴A、B一起加速运动时,拉力F的最大值为: . 变式2在变式1的基础上再改为:B与水平面间的动摩擦因数为(认为最大静摩擦力等于滑动摩擦力),使A、B以同一加速度运动,求拉力F的最大值。 解答:木板B能获得的最大加速度为:,设A、B一起加速运动时,拉力F的最大值为F m,则: 解得: 《 例2 如图3所示,质量M=8kg的小车放在光滑的水平面上,在小车右端加一水平恒 力F,F=8N,当小车速度达到1.5m/s时,在小车的前端轻轻放上一大小不计、质量m=2kg的物体,物体与小车间的动摩擦因数μ=0.2,小车足够长,求物体从放在小车上开始经t=1.5s通过的位移大小。(g 取10m/s2) 解答:物体放上后先加速:a1=μg=2m/s2,此时小车的加速度为:,当小车与物体达到共同速度时:v共=a1t1=v0+a2t1,解得:t1=1s ,v共=2m/s,以后物体与小车相对静止: (∵,物体不会落后于小车)物体在t=1.5s内通过的位移为:s= a1t12+v共(t-t1)+ a3(t-t1)2=2.1m

练习1如图4所示,在水平面上静止着两个质量均为m=1kg、长度均为L=1.5m的木板A和B,A、B 间距s=6m,在A的最左端静止着一个质量为M=2kg的小滑块C,A、B与C之间的动摩擦因数为μ1=0.2,A、B与水平地面之间的动摩擦因数为μ2=0.1。最大静摩擦力可以认为等于滑动摩擦力。现在对C施加一个水平向右的恒力F=4N,A和C开始运动,经过一段时间A、B相碰,碰后立刻达到共同速度,C瞬间速度不变,但A、B并不粘连,求:经过时间t=10s时A、B、C的速度分别为多少(已知重力加速度g=10m/s2) 解答:假设力F作用后A、C一起加速,则:,而A能获得的最 大加速度为:,∵,∴假设成立,在A、C滑行6m的过程中:,∴v1=2m/s,,A、B相碰过程,由动量守恒定律可得:mv1=2mv2 ,∴v2=1m/s,此后A、C相对滑动:,故C匀速运动; ,故AB也匀速运动。设经时间t2,C从A右端滑下:v1t2-v2t2=L∴t2=1.5s,然后A、B分离,A减速运动直至停止:a A=μ2g=1m/s2,向 左,,故t=10s时,v A=0.C在B上继 续滑动,且C匀速、B加速:a B=a0=1m/s2,设经时间t4,C.B速度相 等:∴t4=1s。此过程中,C.B的相对位移为:,故C没有从B的右端滑下。然后C.B一起加速,加速度为a1,加速的时间为: ,故t=10s时,A、B、C的速度分别为0,2.5m/s,2.5m/s. $ 练习2如图5所示,质量M=1kg的木板静止在粗糙的水平地面上,木板与地面间的动摩擦因数,在木板的左端放置一个质量m=1kg、大小可以忽略的铁块,铁块与木板间的动摩擦因数 ,取g=10m/s2,试求: (1)若木板长L=1m,在铁块上加一个水平向右的恒力F=8N,经过多长时间铁块运动到木板的右端 (2)若在铁块上施加一个大小从零开始连续增加的水平向右的力F,通过分析和计算后。(解答略)答案如下:(1)t=1s,(2)①当F≤N时,A、B相对静止且对地静止,f2=F;,②当2N6N时,A、B发生相对滑动,N. 滑块问题 1.如图所示,有一块木板静止在光滑且足够长的水平面上,木板质量为M=4kg,长为L=;木板右端放着一

高中物理-专题 动量

动量 动量守恒定律 基础热身 1.2012?佛山质检如图K18-1所示,两个同学穿旱冰鞋,面对面站立不动,互推后向相反的方向运动,不计 图K18-2 A .7 m/s ,向右 B .7 m/s ,向左 C .1 m/s ,向左 D .1 m/s ,向右 4.如图K18-3所示,在光滑的水平直线导轨上,有质量分别为2m 和m 、带电荷量分别为2q 和q 的两个小球A 、B 正相向运动,某时刻A 、B 两球的速度大小分别为v A 、v B .由于静电斥力作用,A 球先开始反向运动,最终两球都反向运动且它们不会相碰.下列判断正确的是( ) 图K18-3 A .v A >v B B .v A <1 2v B 图K18-1 摩擦阻力.下列判断正确的是( ) A .互推后两个同学的总动量增加 B .互推后两个同学的动量大小相等,方向相反 C .分离时质量大的同学的速度小一些 D .互推过程中机械能守恒 2.2012?泉州质检甲、乙两物体在光滑的水平面上沿同一直线相向运动,两物体的速度大小分别为3 m/s 和1 m/s ;碰撞后甲、乙两物体都反向运动,速度大小均为2 m/s ,则甲、乙两物体的质量之比为( ) A .2∶3 B .2∶5 C .3∶5 D .5∶3 3.在光滑的水平面上有两个在同一直线上相向运动的小球,其中甲球的质量m 1=2 kg ,乙球的质量m 2=1 kg ,规定向右为正方向,碰撞前后甲球的速度随时间变化的情况如图K18-2所示.已知两球发生正碰后粘在一起,则碰前乙球速度的大小和方向分别为( )

C .v A =13v B D .v B >v A >1 2v B 5.2012?福州质检某人站在平板车上,与车一起在光滑的水平面上做直线运动,当人相对于车竖直向上跳起时,车的速度大小将( ) A .增大 B .减小 C .不变 D .无法判断 6.如图K18-4所示,质量M =20 kg 的空箱子放在光滑的水平面上,箱子中有一个质量m =30 kg 的铁块,铁块与箱子的左端ab 壁相距d =1 m ,它一旦与ab 壁接触后就不会分开,铁块与箱底间的摩擦可以忽略不计.用F =10 N 水平向右的恒力作用于箱子,2 s 末立即撤去作用力,最后箱子与铁块的共同速度大小是( ) A.25 m/s B.1 4 m/s C.23 m/s D.5 32 m/s K18-4 K18-5 技能强化 7.2012?厦门质检如图K18-5所示,a 、b 两辆质量相同的平板小车成一直线排列,静止在光滑的水平地面上,a 车上一个小孩跳到b 车上,接着又立即从b 车上跳回a 车,他跳回a 车并相对a 车保持静止,此后( ) A .a 、b 两车的速率相等 B .a 车的速率大于b 车的速率 C .a 车的速率小于b 车的速率 D .a 、b 两车均静止 8.如图K18-6所示,A 、B 两物体用轻质弹簧相连,静止在光滑的水平面上.现同时对A 、B 两物体施加等大反向的水平恒力F 1、F 2,使A 、B 同时由静止开始运动.在弹簧由原长伸到最长的过程中,对A 、B 两物体及弹簧组成的系统,下列说法不正确的是( ) 图K18-6 A .A 、 B 先做变加速运动,当F 1、F 2和弹簧弹力相等时,A 、B 的速度最大;之后,A 、B 做变减速运动,直至速度减为零 B .A 、B 做变减速运动,速度减为零时,弹簧伸长最长,系统的机械能最大 C .A 、B 、弹簧组成的系统的机械能在这一过程中先增大后减小

高中物理总复习 15种快速解题技巧

技巧一、巧用合成法解题 【典例1】 一倾角为θ的斜面放一木块,木块上固定一支架,支架末端用丝线悬挂一小球,木块在斜面上下滑时,小球与木块相对静止共同运动,如图2-2-1所示,当细线(1)与斜面方向垂直;(2)沿水平方向,求上述两种情况下木块下滑的加速度. 解析:由题意可知小球与木块相对静止共同沿斜面运动,即小球与木块有相同的加速度,方向必沿斜面方向.可以通过求小球的加速度来达到求解木块加速度的目的. (1)以小球为研究对象,当细线与斜面方向垂直时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力必沿斜面向下,如图2-2-2所示.由几何关系可知F 合=mgsin θ 根据牛顿第二定律有mgsin θ=ma 1 所以a 1=gsin θ (2)当细线沿水平方向时,小球受重力mg 和细线的拉力T ,由题意可知,这两个力的合力也必沿斜面向下,如图2-2-3所示.由几何关系可知F 合=mg /sin θ 根据牛顿第二定律有mg /sin θ=ma 2 所以a 2=g /sin θ. 【方法链接】 在本题中利用合成法的好处是相当于把三个力放在一个直角三角形中,则利用三角函数可直接把三个力联系在一起,从而很方便地进行力的定量计算或利用角边关系(大角对大边,直角三角形斜边最长,其代表的力最大)直接进行力的定性分析.在三力平衡中,尤其是有直角存在时,用力的合成法求解尤为简单;物体在两力作用下做匀变速直线运动,尤其合成后有直角存在时,用力的合成更为简单. 技巧二、巧用超、失重解题 【典例2】 如图2-2-4所示,A 为电磁铁,C 为胶木秤盘,A 和C (包括支架)的总质量为M ,B 为铁片,质量为m ,整个装置用轻绳悬挂于O 点,当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F 的大小满足 A.F=Mg B.Mg <F <(M+m )g C .F=(M+m )g D.F >(M+m )g 解析:以系统为研究对象,系统中只有铁片在电磁铁吸引下向上做加速运动,有向上的加速度(其它部分都无加速度),所以系统有竖直向上的加速度,系统处于超重状态,所以轻绳对系统的拉力F 与系统的重力(M+m )g 满足关系式:F >(M+m )g ,正确答案为D. 【方法链接】对于超、失重现象大致可分为以下几种情况: θ 图2-2-1 θ mg T F 合 图2-2-2 θ mg F 合 T 图2-2-3 图2-2-4

高考物理解题技巧与时间分配

高考物理解题技巧与时间分配 (一)选择题 1、分时间以课标卷高考为例,高考物理一共8个选择题,按照高考选择题总时间在35--45 分钟的安排,物理选择题时间安排在15一25 分钟为宜,大约占所有选择题的一半时间(由于生物选择题和化学选择题的计算量不大,很多题目可以直接进行判断,所以物理选择题所占的时间比例应稍大些).在物理的8个选择题中,时间也不能平均分配,一般情况下,选择题的难度会逐渐增加,物理选择题也不会例外,难度大的题目大约需要 3 分钟甚至更长一点的时间,而难度较小的选择题一般 1 分钟就能够解决了, 7、8个选择题中,按照 2 : 5 : 1 的关系,一般有 2 个简单题目, 4、5个中档题目和 1 个难度较大的题目(开始时难题较少)。 2 .析本质 选择题一般考查的是考生对基本知识和基本规律的理解及应用这些知识进行一些定性推理,很少有较复杂的计算.解题时一定要注意一些关键词,例如“不正确的”“可能”与“一定”的区别,要讨论多种可能性.不要挑题做,应按题号顺序做,而且开始应适当慢一点,这样刚上场的紧张心情会逐渐平静下来,做题思维会逐渐活跃,不知不觉中能全身心进入状态.一般地

讲,如遇熟题,题图似曾相识,应陈题新解;如遇陌生题,题图陌生、物理情景陌生,应新题常规解,如较长时间分析仍无思路,则应暂时跳过去,先做下边的试题,待全部能做的题目做好后,再来慢慢解决(此时解题的心情已经会相对放松,状态更易发挥).确实做不出来时,千万不要放弃猜答案的机会,先用排除法排除能确认的干扰项,如果能排除两个,其余两项肯定有一个是正确答案,再随意选其中一项,即使一个干扰项也不能排除仍不要放弃,四个选项中随便选一个.尤其要注意的是,选择题做完后一定要立即涂卡. 3 .巧应对 高考物理选择题是所有学科中选择题难度最大的,主要难点有以下几种情况:一是物理木身在各个学科中就属于比较难的学科;二是物理选择题是不定项选择,题目答案个数不确定,造成在选择的时候瞻前顾后,不得要领;三是大部分选择题综合性很高,涉及的知识点比计算题和填空题还要多,稍有不慎,就会顾此失彼;四是有些选择题本身就是小型的计算题,计算量并不比简单的计算题小. 虽然说高考物理选择题在解决的时候有这样那样的困难,但是如果方法选择好,解决起来还是有章可循的,为了能够在处理高考选择题时游刃有余,我们首先要了解选择题一般的特点,把高考选择题进行分类,然后根据各自的类型研究对策.

高中物理传送带问题知识难点讲解汇总(带答案)讲解

弄死我咯,搞了一个多钟 传送带问题 一、难点形成的原因: 1、对于物体与传送带之间是否存在摩擦力、是滑动摩擦力还是静摩擦力、摩擦力的方向如何,等等,这些关于摩擦力的产生条件、方向的判断等基础知识模糊不清; 2、对于物体相对地面、相对传送带分别做什么样的运动,判断错误; 3、对于物体在传送带上运动过程中的能量转化情况考虑不全面,出现能量转化不守恒的错误过程。 二、难点突破策略: (1)突破难点1 在以上三个难点中,第1个难点应属于易错点,突破方法是先让学生正确理解摩擦力产生的条件、方向的判断方法、大小的决定因素等等。通过对不同类型题目的分析练习,让学生做到准确灵活地分析摩擦力的有无、大小和方向。 摩擦力的产生条件是:第一,物体间相互接触、挤压;第二,接触面不光滑;第三,物体间有相对运动趋势或相对运动。 前两个产生条件对于学生来说没有困难,第三个条件就比较容易出问题了。若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。 若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带前进方向的摩擦力。 若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。 若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。 若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。 若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。 例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在 传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已 知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少? 图2—1

相关文档
最新文档