链队列——队列的链式表示和实现(源代码)(数据结构)

链队列——队列的链式表示和实现(源代码)(数据结构)
链队列——队列的链式表示和实现(源代码)(数据结构)

链队列——队列的链式表示和实现(数据结构)

#include

#include

#include

#define TURE 1

#define FALSE 0

#define OK 1

#define ERROR 0

#define INEEASLIBE -1

#define OVERFLOW -2

typedefint status;

typedefintelemtype;

typedefstruct node

{

elemtype data;

struct node *next;

}lnode,*queueptr;

typedefstruct

{

queueptr front;

queueptr rear;

}linkqueue;

statusinitqueue(linkqueue&q)

{

q.front=q.rear=(queueptr)malloc(sizeof(lnode));

if(!q.front)

return ERROR;

q.front->next=NULL;

return OK;

}

statusenqueue(linkqueue&q,elemtype e)

{

queueptr p;

p=(queueptr)malloc(sizeof(lnode));

if(!p)

return ERROR;

p->data=e;

p->next=NULL;

q.rear->next=p;

q.rear=p;

return OK;

}

statusdestroyqueue(linkqueue&p)

{

if(p.front==p.rear)

{

free(p.front);

return OK;

}

else

while(1)

{

queueptr q;

q=p.front;

if(p.front==p.rear)

{

free(p.front);

return OK;

}

p.front=p.front->next;

free(q);

}

}

statusdequeue(linkqueue&q,elemtype&e) {

if(q.front==q.rear)

{

printf("该队列中没有数据元素\n");

return ERROR;

}

e=q.front->next->data;

queueptr p;

p=q.front->next;

if(p==q.rear)

{

q.rear=q.front;

q.rear->next=NULL;

}

else

q.front->next=p->next;

return OK;

}

statusvist(linkqueue q)

{

if(q.front==q.rear)

{

printf("没有数据元素\n");

return ERROR;

}

queueptr p;

p=q.front->next;

printf("队列中元素有:\n");

while(1)

{

printf("%d ",p->data);

if(p->next==NULL)

break;

p=p->next;

}

printf("\n");

return OK;

}

main()

{

linkqueue p;

char c;

elemtype e;

printf("进行测试前一定要先对对队列进行初始化\n");

while(1)

{

printf("1:初始化队列\n2:销毁队列\n3:进入队列\n4:出队列\n5:遍历队列\n0:退出\n");

scanf("%c",&c);

getchar();

system("cls");

switch(c)

{

case '1':

if(initqueue(p)==OK)

printf("初始化成功\n");

else

printf("初始化失败\n");

exit(0);

}

break;

case '2':

if(destroyqueue(p)==OK)

printf("销毁成功\n");

break;

case '3':

printf("请输入需要进入队列的元素e\n");

scanf("%d",&e);

getchar();

if(enqueue(p,e)==OK)

printf("入队列成功\n");

else

printf("入队失败\n");

break;

case '4':

if(dequeue(p,e)==OK)

printf("从队列中取到得元素为%d\n",e);

break;

case '5':

vist(p);

break;

case '0':

exit(0);

}

}

}

数据结构-堆栈和队列实验报告

实验二堆栈和队列 实验目的: 1.熟悉栈这种特殊线性结构的特性; 2.熟练并掌握栈在顺序存储结构和链表存储结构下的基本运算; 3.熟悉队列这种特殊线性结构的特性; 3.熟练掌握队列在链表存储结构下的基本运算。 实验原理: 堆栈顺序存储结构下的基本算法; 堆栈链式存储结构下的基本算法; 队列顺序存储结构下的基本算法;队列链式存储结构下的基本算法;实验内容: 3-18链式堆栈设计。要求 (1)用链式堆栈设计实现堆栈,堆栈的操作集合要求包括:初始化Stacklnitiate (S), 非空否StackNotEmpty(S),入栈StackiPush(S,x), 出栈StackPop (S,d),取栈顶数据元素StackTop(S,d); (2)设计一个主函数对链式堆栈进行测试。测试方法为:依次把数据元素1,2,3, 4,5 入栈,然后出栈并在屏幕上显示出栈的数据元素; (3)定义数据元素的数据类型为如下形式的结构体, Typedef struct { char taskName[10]; int taskNo; }DataType; 首先设计一个包含5个数据元素的测试数据,然后设计一个主函数对链式堆栈进行测试,测试方法为:依次吧5个数据元素入栈,然后出栈并在屏幕上显示出栈的数据元素。 3-19对顺序循环队列,常规的设计方法是使用対尾指针和对头指针,对尾指针用于指示当 前的対尾位置下标,对头指针用于指示当前的対头位置下标。现要求: (1)设计一个使用对头指针和计数器的顺序循环队列抽象数据类型,其中操作包括:初始化,入队列,出队列,取对头元素和判断队列是否为空; (2)编写一个主函数进行测试。 实验结果: 3-18 typedef struct snode { DataType data; struct snode *n ext; } LSNode; /* 初始化操作:*/

完整版数据结构习题集第3章栈和队列

第3章栈和队列 一、选择题 1.栈结构通常采用的两种存储结构是(A )。 A、顺序存储结构和链表存储结构 B、散列和索引方式 C、链表存储结构和数组 D、线性链表结构和非线性存储结构 2.设栈ST 用顺序存储结构表示,则栈ST 为空的条件是( B ) A、ST.top-ST.base<>0 B、ST.top-ST.base==0 C、ST.top-ST.base<>n D、ST.top-ST.base==n 3.向一个栈顶指针为HS 的链栈中插入一个s 结点时,则执行( C ) A、HS->next=s; B、s->next=HS->next;HS->next=s; C、s->next=HS;HS=s; D、s->next=HS;HS=HS->next; 4.从一个栈顶指针为HS 的链栈中删除一个结点,用x 保存被删除结点的值,则执行( C) A 、x=HS;HS=HS->next; B 、HS=HS->next;x=HS->data; C 、x=HS->data;HS=HS->next; D 、s->next=Hs;Hs=HS->next; 5.表达式a*(b+c)-d 的后缀表达式为( B ) A、abcdd+- B、abc+*d- C、abc*+d- D、-+*abcd 6.中缀表达式A-(B+C/D)*E 的后缀形式是( D ) A、AB-C+D/E* B、ABC+D/E* C、ABCD/E*+- D、ABCD/+E*- 7.一个队列的入列序列是1,2,3,4,则队列的输出序列是( B ) A、4,3,2,1 B、1,2,3,4 C、1,4,3,2 D、3,2,4,1 8.循环队列SQ 采用数组空间SQ.base[0,n-1]存放其元素值,已知其头尾指针分别是front 和rear,则判定此循环队列为空的条件是() A、Q.rear-Q.front==n B、Q.rear-Q.front-1==n C、Q.front==Q.rear D、Q.front==Q.rear+1 9.循环队列SQ 采用数组空间SQ.base[0,n-1]存放其元素值,已知其头尾指针分别是front 和rear,则判定此循环队列为满的条件是() A、Q.front==Q.rear B、Q.front!=Q.rear C、Q.front==(Q.rear+1)%n D、Q.front!=(Q.rear+1)%n 10.若在一个大小为6 的数组上实现循环队列,且当前rear 和front 的值分别为0 和3,当从 队列中删除一个元素,再加入两个元素后,rear 和front 的值分别为() A、1,5 B、2, 4 C、4,2 D、5,1 11.用单链表表示的链式队列的队头在链表的()位置 A、链头 B、链尾 C、链中 12.判定一个链队列Q(最多元素为n 个)为空的条件是() A、Q.front==Q.rear B、Q.front!=Q.rear C、Q.front==(Q.rear+1)%n D、Q.front!=(Q.rear+1)%n 13.在链队列Q 中,插入s 所指结点需顺序执行的指令是() A 、Q.front->next=s;f=s; B 、Q.rear->next=s;Q.rear=s;

栈和队列

栈和队列 一、单项选择题(共59题) 1. 假定一个链式队列的队首和队尾指针分别用front和rear表示,每个结点的结构为: ,当出列时所进行的指针操作为() A. front = front->next; B. rear = rear->next; C. front->next = rear; rear = rear->next; D. front = front->next; front->next = rear; 答案:A 2. 向一个栈顶指针为HS的链栈中插入一个s所指结点时,则执行()。 A. HS->next = s; B. s->next = HS->next; HS->next = s; C. s->next = HS; HS = s; D. s->next = HS; HS = HS->next; 答案:C 3. 假定一个带头结点的循环链式队列的队首和队尾指针分别用front和rear表示,则判断队空的条件为()。 A. front == rear >next B. rear == NULL C. front == NULL D. front == rear 答案:D 4. 若让元素1, 2, 3, 4依次进栈,则出栈次序不可能出现()的情况。 A. 3, 2, 1, 4 B. 2, 1, 4, 3 C. 4, 3, 2, 1 D. 1, 4, 2, 3 答案:D 5. 假定一个顺序循环队列存储于数组a[N]中,其队首和队尾指针分别用f和r表示,则判断队满的条件为()。 A. (r - 1) % N == f B. (r + l) % N == f C. (f - 1) % N == r D. (f + l) % N == r 答案:B 6. 假定利用数组a[N]循环顺序存储一个队列,用f和r分别表示队首和队尾指针,并已知

数据结构_实验三_栈和队列及其应用

实验编号:3四川师大《数据结构》实验报告2016年10月29日 实验三栈和队列及其应用_ 一.实验目的及要求 (1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们; (2)本实验训练的要点是“栈”的观点及其典型用法; (3)掌握问题求解的状态表示及其递归算法,以及由递归程序到非递归程序的转化方法。 二.实验内容 (1)编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等); (2)应用栈的基本操作,实现数制转换(任意进制); (3)编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列); (4)利用栈实现任一个表达式中的语法检查(括号的匹配)。 (5)利用栈实现表达式的求值。 注:(1)~(3)必做,(4)~(5)选做。 三.主要仪器设备及软件 (1)PC机 (2)Dev C++ ,Visual C++, VS2010等 四.实验主要流程、基本操作或核心代码、算法片段(该部分如不够填写,请另加附页)(1)编程实现栈在两种存储结构中的基本操作(栈的初始化、判栈空、入栈、出栈等); A.顺序储存: 代码部分: 栈" << endl; cout << " 2.出栈" << endl; cout << " 3.判栈空" << endl; cout << " 4.返回栈顶部数据" << endl; cout << " 5.栈长" << endl; cout << " 0.退出系统" << endl;

cout << "你的选择是:" ; } 链式储存: 代码部分: 栈"<>select; switch (select){ case 0:break; case 1: cout<<"push data:"; cin>>e; if(push(L,e)){

数据结构(C语言)队列的基本操作

实验名称:实验四队列的基本操作 实验目的 掌握队列这种抽象数据类型的特点及实现方法。 实验内容 从键盘读入若干个整数,建一个顺序队列或链式队列,并完成下列操作: (1)初始化队列; (2)队列是否为空; (3)出队; (4)入队。 算法设计分析 (一)数据结构的定义 单链表存储结构定义为: struct Node; //链表单链表 typedef struct Node *PNode; int dui; dui =1; struct Node { int info; PNode link; }; struct LinkQueue { PNode f; PNode r; }; typedef struct LinkQueue *PLinkQueue; (二)总体设计 程序由主函数、创建队列函数、判断是否为空队列函数、入队函数、出队函数、取数函数、显示队列函数、菜单函数组成。其功能描述如下: (1)主函数:调用各个函数以实现相应功能 main() { PLinkQueue a; //定义链表a int b,c,e; //b 菜单选择c选择继续输入e输入元素 do { //菜单选择 mune(); scanf("%d",&b);

switch(b) { case 1://初始化 a=create(); //初始化队列 case 2: //入队 do { printf("\n请输入需要入队的数:"); if(e!=NULL) { scanf("%d",&e); enQueue(a,e); } printf("是否继续入队?(是:1 否:0)\n"); scanf("%d",&c); } while(c==1); break; case 3: //出队 c=frontQueue(a); deQueue(a); if(dui!=0) { printf("\n出队为:%d\n",c); } dui=1; break; case 4: //显示队中元素 showQueue(a); break; case 5: return; default: printf("输入错误,程序结束!\n"); return; } } while(a!=5); { return 0; } } (三)各函数的详细设计: Function1: PLinkQueue create(void)//创队

队列实验报告

一.实验项目名称 循环队列和链式队列的创建 二、实验目的 1、掌握队列的特点(先进先出FIFO)及基本操作,如入队、出队等, 2、队列顺序存储结构、链式存储结构和循环队列的实现,以便在 实际问题背景下灵活应用。 三、实验内容 1.链式队列的实现和运算 2.循环队列的实现和运算 四、主要仪器设备及耗材 VC++6.0运行环境实现其操作 五.程序算法 (1) 循环队列操作的算法 1>进队列 V oid enqueue (seqqueue &q, elemtype x) { if ((q.rear+1)%maxsize = = q.front) cout<<”overflow”; else { q.rear=(q.rear+1)%maxsize; //编号加1或循环回第一个单元 q.queue[q.rear]=x; } } 2>出队列 V oid dlqueue(seqqueue &q ) { if (q.rear= =q.front) cout<<”underflow”; else q.front =(q.front+1)%maxsize; } 3>取对头元素

elemtype gethead(seqqueue q ) { if (q.rear= =q.front) { cout<<”underflow”; return NULL;} else return q.queue[(q.front+1)%maxsize]; //front指向队头前一个位置 } 4>判队列空否 int empty(seqqueue q ) { if (q.rear= =q.front) reurn 1; else return 0; } (2).链队列操作的算法 1>.链队列上的初始化 void INIQUEUE( linkqueue &s) { link *p; p=new link; p->next=NULL; //p是结构体指针类型,用-> s.front=p; //s是结构体变量,用. s.rear=p; //头尾指针都指向头结点 } 2>.入队列 void push(linkqueue &s, elemtype x) { link *p; //p是结构体指针类型,用-> p=new link; p->data=x; p->next=s.rear->next; //s是结构体变量,用. s.rear->next=p; s.rear=p; //插入最后 } 3>判队空 int empty( linkqueue s ) { if (s.front= =s.rear) return 1; else return 0; } 4>.取队头元素 elemtype gethead( linkqueue s ) { if (s.front= =s.rear) return NULL; else retuen s.front->next->data; }

数据结构第三章栈和队列3习题

第三章栈和队列试题 一、单项选择题 1.栈的插入和删除操作在()进行。 A. 栈顶 B. 栈底 C. 任意位置 D. 指定位置 2.当利用大小为n的数组顺序存储一个栈时,假定用top==n表示栈空,则向这个栈插入一个元素时, 首先应执行()语句修改top指针。 A. top++; B. top--; C. top = 0; D. top; 3.若让元素1,2,3依次进栈,则出栈次序不可能出现()种情况。 A. 3, 2, 1 B. 2, 1, 3 C. 3, 1, 2 D. 1, 3, 2 4.在一个顺序存储的循环队列中,队头指针指向队头元素的()位置。 A. 前一个 B. 后一个 C. 当前 D. 后面 5.当利用大小为n的数组顺序存储一个队列时,该队列的最大长度为()。 A. n-2 B. n-1 C. n D. n+1 6.从一个顺序存储的循环队列中删除一个元素时,需要()。 A. 队头指针加一 B. 队头指针减一 C. 取出队头指针所指的元素 D. 取出队尾指针所指的元素 7.假定一个顺序存储的循环队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front+1 == rear B. rear+1 == front C. front == 0 D. front == rear 8.假定一个链式队列的队头和队尾指针分别为front和rear,则判断队空的条件为()。 A. front == rear B. front != NULL C. rear != NULL D. front == NULL 9.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想在链式栈的栈顶插入一 个由指针s所指的结点,则应执行操作()。 A. top->link = s; B.s->link = top->link; top->link = s; C. s->link = top; top = s; D. s->link = top; top = top->link; 10.设链式栈中结点的结构为(data, link),且top是指向栈顶的指针。若想摘除链式栈的栈顶结点, 并将被摘除结点的值保存到x中,则应执行操作()。 A. x = top->data; top = top->link; B. top = top->link; x = top->data; C. x = top; top = top->link; D. x = top->data; 11.设循环队列的结构是 #define MaxSize 100 typedef int ElemType;

数据结构-队列实验报告

《数据结构》课程实验报告 一、实验目的和要求 (1)熟悉C语言的上机环境,进一步掌握C语言的结构特点。 (2)掌握队列的顺序表示和实现。 二、实验环境 Windows7 ,VC 三、实验内容及实施 实验三:队列 【实验要求】 构建一个循环队列, 实现下列操作 1、初始化队列(清空); 2、入队; 3、出队; 4、求队列长度; 5、判断队列是否为空; 【源程序】 #include #define MAXSIZE 100 #define OK 1; #define ERROR 0; typedef struct { int *base; int front; int rear; }SqQueue;//队列的存储结构 int InitQueue(SqQueue &Q) {

Q.base=new int[MAXSIZE]; Q.front=Q.rear=0; return OK; }//队列的初始化 int EnQueue(SqQueue &Q,int e) { if((Q.rear+1)%MAXSIZE==Q.front) return ERROR; Q.base[Q.rear]=e; Q.rear=(Q.rear+1)%MAXSIZE; return OK; }//队列的入队 int DeQueue(SqQueue &Q,int &e) { if(Q.front==Q.rear) return ERROR; e=Q.base[Q.front]; Q.front=(Q.front+1)%MAXSIZE; return OK; }//队列的出队 int QueueLength(SqQueue &Q) { int i; i=(Q.rear-Q.front+MAXSIZE)%MAXSIZE; return i; }//求队列长度 void JuQueue(SqQueue &Q) { if(Q.rear==Q.front) printf("队列为空"); else printf("队列不为空"); }//判断队列是否为空 void QueueTraverse(SqQueue &Q)

数据结构练习 第三章 栈和队列

数据结构练习第三章栈和队列 一、选择题 1.栈和队列的共同特点是( )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2.向顺序栈中压入新元素时,应当()。 A.先移动栈顶指针,再存入元素 B.先存入元素,再移动栈顶指针C.先后次序无关紧要 D.同时进行 3.允许对队列进行的操作有( )。 A. 对队列中的元素排序 B. 取出最近进队的元素 C. 在队头元素之前插入元素 D. 删除队头元素 4.用链接方式存储的队列,在进行插入运算时( ). A. 仅修改头指针 B. 头、尾指针都要修改 C. 仅修改尾指针 D.头、尾指针可能都要修改 5.设用链表作为栈的存储结构则退栈操作()。 A. 必须判别栈是否为满 B. 必须判别栈是否为空 C. 判别栈元素的类型 D.对栈不作任何判别 6.设指针变量front表示链式队列的队头指针,指针变量rear表示链式队列的队尾指针,指针变量s指向将要入队列的结点X,则入队列的操作序列为()。 A.front->next=s;front=s; B. s->next=rear;rear=s; C. rear->next=s;rear=s; D. s->next=front;front=s; 7.设指针变量top指向当前链式栈的栈顶,则删除栈顶元素的操作序列为()。 A.top=top+1; B. top=top-1; C. top->next=top; D. top=top->next; 8.队列是一种()的线性表。 A. 先进先出 B. 先进后出 C. 只能插入 D. 只能删除 9.设输入序列1、2、3、…、n经过栈作用后,输出序列中的第一个元素是n,则输出序列中的第i个输出元素是()。 A. n-i B. n-1-i C. n+l -i D.不能确定 10.设输入序列为1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列为()。 A. 5,3,4,6,1,2 B. 3,2,5,6,4,1 C. 3,1,2,5,4,6 D. 1,5,4,6,2,3 11.队列的删除操作是在()进行。 A.队首 B.队尾 C.队前 D.队后 12.当利用大小为N 的数组顺序存储一个栈时,假定用top = = N表示栈空,则退栈时,用()语句修改top指针。 A.top++; B.top=0; C.top--; D.top=N; 13.队列的插入操作是在()进行。

数据结构实验报告及心得体会

2011~2012第一学期数据结构实验报告 班级:信管一班 学号:201051018 姓名:史孟晨

实验报告题目及要求 一、实验题目 设某班级有M(6)名学生,本学期共开设N(3)门课程,要求实现并修改如下程序(算法)。 1. 输入学生的学号、姓名和 N 门课程的成绩(输入提示和输出显示使用汉字系统), 输出实验结果。(15分) 2. 计算每个学生本学期 N 门课程的总分,输出总分和N门课程成绩排在前 3 名学 生的学号、姓名和成绩。 3. 按学生总分和 N 门课程成绩关键字升序排列名次,总分相同者同名次。 二、实验要求 1.修改算法。将奇偶排序算法升序改为降序。(15分) 2.用选择排序、冒泡排序、插入排序分别替换奇偶排序算法,并将升序算法修改为降序算法;。(45分)) 3.编译、链接以上算法,按要求写出实验报告(25)。 4. 修改后算法的所有语句必须加下划线,没做修改语句保持按原样不动。 5.用A4纸打印输出实验报告。 三、实验报告说明 实验数据可自定义,每种排序算法数据要求均不重复。 (1) 实验题目:《N门课程学生成绩名次排序算法实现》; (2) 实验目的:掌握各种排序算法的基本思想、实验方法和验证算法的准确性; (3) 实验要求:对算法进行上机编译、链接、运行; (4) 实验环境(Windows XP-sp3,Visual c++); (5) 实验算法(给出四种排序算法修改后的全部清单); (6) 实验结果(四种排序算法模拟运行后的实验结果); (7) 实验体会(文字说明本实验成功或不足之处)。

三、实验源程序(算法) Score.c #include "stdio.h" #include "string.h" #define M 6 #define N 3 struct student { char name[10]; int number; int score[N+1]; /*score[N]为总分,score[0]-score[2]为学科成绩*/ }stu[M]; void changesort(struct student a[],int n,int j) {int flag=1,i; struct student temp; while(flag) { flag=0; for(i=1;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1; } for(i=0;ia[i+1].score[j]) { temp=a[i]; a[i]=a[i+1]; a[i+1]=temp; flag=1;

数据结构栈和队列实验报告.doc

南京信息工程大学实验(实习)报告 实验(实习)名称栈和队列日期2017.11.8 得分指导老师崔萌萌 系计算机系专业软件工程年级2016 班次(1) 姓名学号 一、实验目的 1、学习栈的顺序存储和实现,会进行栈的基本操作 2、掌握递归 3、学习队列的顺序存储、链式存储,会进行队列的基本操作 4、掌握循环队列的表示和基本操作 二、实验内容 1、用栈解决以下问题: (1)对于输入的任意一个非负十进制数,显示输出与其等值的八进制数,写出程序。(2)表达式求值,写出程序。 2、用递归写出以下程序: (1)求n!。 (2)汉诺塔程序,并截图显示3、4、5个盘子的移动步骤,写出移动6个盘子的移动次数。

3、编程实现:(1)创建队列,将asdfghjkl依次入队。(2)将队列asdfghjkl依次出队。 4、编程实现创建一个最多6个元素的循环队列、将ABCDEF依次入队,判断循环队列是否队满。 三、实验步骤 1.栈的使用 1.1 用栈实现进制的转换: 代码如下: #include #include using namespace std; int main() { stack s; //栈s; int n,radix; printf("请输入要转换的十进制非负整数: "); scanf("%d",&n); printf("请输入目标进制: "); scanf("%d",&radix);

printf("转换为%d进制: ",radix); while(n) { s.push(n%radix); n /= radix; } while(!s.empty()) { //非空 printf("%d",s.top()); s.pop(); } printf("\n"); return 0; } 运行结果如下: 2.2 求表达式的值 代码如下: #include #include #include #include #define true 1 #define false 0 #define OPSETSIZE 8 typedef int Status;

数据结构栈和队列习题及答案

习题三栈和队列 一单项选择题 1. 在作进栈运算时,应先判别栈是否(① ),在作退栈运算时应先判别栈是否(② )。当栈中元素为n个,作进栈运算时发生上溢,则说明该栈的最大容量为(③ )。 ①, ②: A. 空 B. 满 C. 上溢 D. 下溢 ③: A. n-1 B. n C. n+1 D. n/2 2.若已知一个栈的进栈序列是1,2,3,…,n,其输出序列为p1,p2,p3,...,pn,若p1=3,则p2为( )。 A 可能是2 B 一定是2 C 可能是1 D 一定是1 3. 有六个元素6,5,4,3,2,1 的顺序进栈,问下列哪一个不是合法的出栈序列?() A. 5 4 3 6 1 2 B. 4 5 3 1 2 6 C. 3 4 6 5 2 1 D. 2 3 4 1 5 6 4.设有一顺序栈S,元素s1,s2,s3,s4,s5,s6依次进栈,如果6个元素出栈的顺序是s2,s3,s4, s6, s5,s1,则栈的容量至少应该是() A.2 B. 3 C. 5 D.6 5. 若栈采用顺序存储方式存储,现两栈共享空间V[1..m],top[i]代表第i个栈( i =1,2)栈顶,栈1的底在v[1],栈2的底在V[m],则栈满的条件是()。 A. |top[2]-top[1]|=0 B. top[1]+1=top[2] C. top[1]+top[2]=m D. top[1]=top[2] 6. 执行完下列语句段后,i值为:() int f(int x) { return ((x>0) ? x* f(x-1):2);} int i ; i =f(f(1)); A.2 B. 4 C. 8 D. 无限递归 7. 表达式3* 2^(4+2*2-6*3)-5求值过程中当扫描到6时,对象栈和算符栈为(),其中^为乘幂。 A. 3,2,4,1,1;(*^(+*- B. 3,2,8;(*^- C. 3,2,4,2,2;(*^(- D. 3,2,8;(*^(- 8. 用链接方式存储的队列,在进行删除运算时()。 A. 仅修改头指针 B. 仅修改尾指针 C. 头、尾指针都要修改 D. 头、尾指针可能都要修改 9. 递归过程或函数调用时,处理参数及返回地址,要用一种称为()的数据结构。 A.队列 B.多维数组 C.栈 D. 线性表 10.设C语言数组Data[m+1]作为循环队列SQ的存储空间, front为队头指针,rear为队尾指针,则执行出队操作的语句为() A.front=front+1 B. front=(front+1)% m C.rear=(rear+1)%(m+1) D. front=(front+1)%(m+1) 11.循环队列的队满条件为 ( ) A. (sq.rear+1) % maxsize ==(sq.front+1) % maxsize; B. (sq.front+1) % maxsize ==sq.rear C. (sq.rear+1) % maxsize ==sq.front D.sq.rear ==sq.front

环形队列实现原理 链式实现

环形队列实现原理/链式实现 环形队列是在实际编程极为有用的数据结构,它有如下特点。 它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。 因为有简单高效的原因,甚至在硬件都实现了环形队列. 环形队列广泛用于网络数据收发,和不同程序间数据交换(比如内核与应用程序大量交换数据,从硬件接收大量数据)均使用了环形队列. 一.环形队列实现原理 ------------------------------------------------------------ 内存上没有环形的结构,因此环形队列实上是数组的线性空间来实现。那当数据到了尾部如何处理呢?它将转回到0位置来处理。这个的转回是通过取模操作来执行的。 因此环列队列的是逻辑上将数组元素q[0]与q[MAXN-1]连接,形成一个存放队列的环形空间。 为了方便读写,还要用数组下标来指明队列的读写位置。head/tail.其中head指向可以读的位置,tail指向可以写的位置。 环形队列的关键是判断队列为空,还是为满。当tail追上head时,队列为满时,当head 追上tail时,队列为空。但如何知道谁追上谁。还需要一些辅助的手段来判断. 如何判断环形队列为空,为满有两种判断方法。 1.是附加一个标志位tag 当head赶上tail,队列空,则令tag=0, 当tail赶上head,队列满,则令tag=1,

2.限制tail赶上head,即队尾结点与队首结点之间至少留有一个元素的空间。 队列空:head==tail 队列满:(tail+1)% MAXN ==head 二.附加标志实现算法 采用第一个环形队列有如下结构 typedef struct ringq { int head; /* 头部,出队列方向*/ int tail; /* 尾部,入队列方向*/ int tag ; int size ; /* 队列总尺寸*/ int space[RINGQ_MAX]; /* 队列空间*/ }RINGQ; 初始化状态: q->head = q->tail = q->tag = 0; 队列为空:(q->head == q->tail) && (q->tag == 0) 队列为满: ((q->head == q->tail) && (q->tag == 1)) 入队操作:如队列不满,则写入 q->tail = (q->tail + 1) % q->size ; 出队操作:如果队列不空,则从head处读出。 下一个可读的位置在 q->head = (q->head + 1) % q->size 完整代码 头文件ringq.h #ifndef __RINGQ_H__ #define __RINGQ_H__ #ifdef __cplusplus extern "C" { #endif #define QUEUE_MAX 20 typedef struct ringq { int head; /* 头部,出队列方向*/ int tail; /* 尾部,入队列方向*/ int tag ; /* 为空还是为满的标志位*/ int size ; /* 队列总尺寸*/ int space[QUEUE_MAX]; /* 队列空间*/ } RINGQ; /* 第一种设计方法: 当head == tail 时,tag = 0 为空,等于= 1 为满。 */

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include >验目的 掌握顺序栈的基本操作:初始化栈、判栈空否、入栈、出栈、取栈顶数据元素等运算以及程序实现方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)分析问题的要求,编写和调试完成程序。 (3)保存和打印出程序的运行结果,并分析程序的运行结果。 3.实验内容 利用栈的基本操作实现一个判断算术表达式中包含圆括号、方括号是否正确配对的程序。具体完成如下:

(1)定义栈的顺序存取结构。 (2)分别定义顺序栈的基本操作(初始化栈、判栈空否、入栈、出栈等)。 (3)定义一个函数用来判断算术表达式中包含圆括号、方括号是否正确配对。其中,括号配对共有四种情况:左右括号配对次序不正确;右括号多于左括号;左括号多于右括号;左右括号匹配正确。 (4)设计一个测试主函数进行测试。 (5)对程序的运行结果进行分析。 实验代码: #include < > #define MaxSize 100 typedef struct { int data[MaxSize]; int top; }SqStack;

数据结构栈和队列

实验二栈和队列 一、实验目的 1. 掌握栈的顺序表示和实现 2. 掌握队列的链式表示和实现 二、实验内容 1. 编写一个程序实现顺序栈的各种基本运算。 2. 实现队列的链式表示和实现。 三、实验步骤 1. 初始化顺序栈 2. 插入元素 3. 删除栈顶元素 4. 取栈顶元素 5. 遍历顺序栈 6. 置空顺序栈 7. 初始化并建立链队列 8. 入链队列 9. 出链队列 10. 遍历链队列 四、实现提示 1. /*定义顺序栈的存储结构*/ typedef struct { ElemType stack[MAXNUM]; int top; }SqStack; /*初始化顺序栈函数*/ void InitStack(SqStack *p) {q=(SqStack*)malloc(sizeof(SqStack) /*申请空间*/) /*入栈函数*/ void Push(SqStack *p,ElemType x)

{if(p->toptop=p->top+1; /*栈顶+1*/ p->stack[p->top]=x; } /*数据入栈*/ } /*出栈函数*/ ElemType Pop(SqStack *p) {x=p->stack[p->top]; /*将栈顶元素赋给x*/ p->top=p->top-1; } /*栈顶-1*/ /*获取栈顶元素函数*/ ElemType GetTop(SqStack *p) { x=p->stack[p->top];} /*遍历顺序栈函数*/ void OutStack(SqStack *p) { for(i=p->top;i>=0;i--) printf("第%d个数据元素是:%6d\n",i,p->stack[i]);} /*置空顺序栈函数*/ void setEmpty(SqStack *p) { p->top= -1;} 2. /*定义链队列*/ typedef struct Qnode { ElemType data; struct Qnode *next; }Qnodetype; typedef struct { Qnodetype *front; Qnodetype *rear; }Lqueue; /*初始化并建立链队列函数*/ void creat(Lqueue *q)

数据结构栈和队列实验报告

《数据结构》课程实验报告 实验名称栈和队列实验序号实验日期 姓名院系班级学号 专业指导教师成绩 教师评语 一、实验目的和要求 (1)理解栈和队列的特征以及它们之间的差异,知道在何时使用那种数据结构。 (2)重点掌握在顺序栈上和链栈上实现栈的基本运算算法,注意栈满和栈空的条件。 (3)重点掌握在顺序队上和链队上实现队列的基本运算算法,注意循环队队列满和队空的条件。 (4)灵活运用栈和队列这两种数据结构解决一些综合应用问题。 二、实验项目摘要 编写一个程序algo3-1.cpp,实现顺序栈的各种基本运算,并在此基础上设计一个主程序并完成如下功能:(1)初始化栈s; (2)判断栈s是否非空; (3)依次进栈元素a,b,c,d,e; (4)判断栈s是否非空; (5)输出栈长度; (6)输出从栈顶到栈底元素; (7)输出出栈序列; (8)判断栈s是否非空; (9)释放栈。 编写一个程序algo3-3.cpp,实现顺序环形队列的各种基本运算,并在此基础上设计一个主程序并完成如下功能: (1)初始化队列q; (2)判断队列q是否非空; (3)依次进队列a,b,c; (4)出队一个元素,输出该元素; (5)输出队列q的元素个数; (6)依次进队列元素d,e,f; (7)输出队列q的元素个数; (8)输出出队序列; (9)释放队列。

三、实验预习内容 栈的顺序存储结构及其基本运算实现(初始化栈,销毁栈,求栈的长度,判断栈是否为空,进栈,取栈顶元素,显示栈中元素) 队列的顺序存储结构及其基本运算实现(初始化队列,销毁队列,判断队列是否为空,入队列,出队列) 三、实验结果与分析 3-1 #define maxsize 100 #include #include using namespace std; typedef char ElemType; typedef struct { ElemType data[maxsize]; int top; } SqStack; void InitStack(SqStack * &s) { s=(SqStack *)malloc(sizeof(SqStack)); s->top=-1; } int StackEmpty(SqStack *s) { return(s->top==-1); } int Push(SqStack *&s,ElemType e) { if(s->top==maxsize-1) return 0; s->top++; s->data[s->top]=e; return 1; } int Pop(SqStack *&s,ElemType &e) { if(s->top==-1) return 0; e=s->data[s->top];

4 队列的链式结构实现

>>>>>>>>>>>>>>>>>> >>>>>>>>>>>>> >>>>>> >>>>>>>>>>>>>>> >>> > >>> >>> > >>> >> >>> ! "# $ %&'() *+,-./01 >> >>> %&2() 3+,-.401 > >>> >> >>> /%5

4%5 >>> 67 >>> 89 :;< >>> + => ? => >>> @ABCDE >>> FE >>> GH >>> IJ >>> KL M N >>>

OPQR.%53SDTUVW%5 X3 %5YZ:;<3[2\]^.W%5%& _`a b c d !# 3efg?h 89 :;< >>>> ijk"!lmDWnopq3TUrstpquv FEwR stxyijk"!lm + =>pq zz++ N zz >>> zz z zz++ zz >>>> zz z

zz zzzczz zz z GH zGH zz 67pq z 67zz zcz IJ%? pq zz+tIJ zzz zz z >>> > > zz z zz Nzzzcz >>>> zzJzz zzcz ? =>pq zz+? N zz

zz z >>>> > z? zz zcz >>>> ztz? zz3? zzzzcz 67pq z? uzz 67zz zcz GH z? uzzGH zz FE pq GH zFEuGH zz

>>> > :;< >>> >> >> >> >>> > > > /%5%&/) > 4%5%&/) > + =>*401 z + QRz+++3SD++++? => KLz+.

数据结构实验报告

数据结构实验报告 想必学计算机专业的同学都知道数据结构是一门比较重要 的课程,那么,下面是小编给大家整理收集的数据结构实验报告,供大家阅读参考。 数据结构实验报告1 一、实验目的及要求 1)掌握栈和队列这两种特殊的线性表,熟悉它们的特性,在实际问题背景下灵活运用它们。 本实验训练的要点是“栈”和“队列”的观点; 二、实验内容 1) 利用栈,实现数制转换。 2) 利用栈,实现任一个表达式中的语法检查(选做)。 3) 编程实现队列在两种存储结构中的基本操作(队列的初始化、判队列空、入队列、出队列); 三、实验流程、操作步骤或核心代码、算法片段

顺序栈: Status InitStack(SqStack S) { S.base=(ElemType*)malloc(STACK_INIT_SIZE*sizeof(ElemType)); if(!S.base) return ERROR; S.top=S.base; S.stacksize=STACK_INIT_SIZE; return OK; } Status DestoryStack(SqStack S) { free(S.base); return OK; } Status ClearStack(SqStack S)

{ S.top=S.base; return OK; } Status StackEmpty(SqStack S) { if(S.base==S.top) return OK; return ERROR; } int StackLength(SqStack S) { return S.top-S.base; } Status GetTop(SqStack S,ElemType e) {

相关文档
最新文档