神经网络分类

神经网络分类
神经网络分类

实验一

利用神经网络进行分类

(转载于陕西理工学院数学系中心实验室周涛副教授的工作,在此表示感谢)

一个经过训练的2输入神经元对5个输入向量进行分类(2类)。结合一个例子给出步骤。

实验内容(说明:这里的许多参数都可以更改,希望大家能对这个程序的参数进行修改;同时也欢迎大家提问)

步骤一:

两个长度为5的向量构成输入样本矩阵P,行向量T为指导向量。利用PLOTPV画出这个向量的图像。例如:

P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5];

T = [1 1 0 0 1];

plotpv(P,T);//plotpv函数利用感知器的输入向量和监督向量来画输入向量的图像注意:在上面的式子中,4输入向量比5输入向量有更小的数量级,这个感知器必须把P中的5个输入向量分成两类(依赖于T)。

步骤二建立神经网络

MATLAB提供函数newp来创建一个指定的感知器。第一个参数指定了期望的两个输入向量的取值范围,第二个参数指定了只有一个神经元。

net = newp([-40 1;-1 50],1);

注意:这个神经元的激励函数是hardlim函数,也就是阶越函数。取0,1两个值。Hardlim三函数,也就是阶越函数。取-1,1两个值。

步骤三添加神经元的初始化值到分类图

初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会出现在这个图中,不用害怕,我们会继续训练这个神经网。

hold on

linehandle = plotpc(net.IW{1},net.b{1});//plotpc函数用来画神经网络的分类线

步骤四训练感知器

Matlab提供了adapt函数来训练感知器,adapt函数返回一个新的能更好的执行分类、网络的输出、和误差的神经网络,这个划线函数允许网络从3个角度去调整,画分类线一直到误差为0为止。

E = 1;//E为误差

net.adaptParam.passes = 3;

while (sse(E))//sse函数是用来判定误差E的函数

[net,Y,E] = adapt(net,P,T);//利用输入样本调节神经网net

linehandle = plotpc(net.IW{1},net.b{1},linehandle);//画出调整以后的分类线

drawnow;//延迟一段时间

end

注意:这将会花费感知器的许多时间来训练。这对这样一个简单问题来说时间是非常长的。追究其原因在于outlier vector,尽管需要很长的训练时间,这个感知器仍然适当的学习并且被用于划分别的输入。

步骤五模拟sim

SIM函数能被用来划分任何别的输入向量,例如划分一个输入向量[0.7; 1.2].这个新点的图像为红色,他将用来显示这个感知器如何把这个新点从最初的训练集取分开来。

p = [0.7; 1.2];

a = sim(net,p);//利用模拟函数sim计算出新输入p的神经网络的输出

plotpv(p,a);

circle = findobj(gca,'type','line');

set(circle,'Color','red');

打开Hold,以便于以前的图像不被删除。增加训练装置和分类线在图中。

hold on;

plotpv(P,T);

plotpc(net.IW{1},net.b{1});

hold off;

axis([-2 2 -2 2]);

最后放大感兴趣的区域。这个感知器正确的区分了我们的新点(用红色表示)作为”zero”类(用圆圈表示),而不是”one”类(用+号表示),尽管需要比较长的训练时间,这个感知器仍然适当的进行了学习。想知道在outlier vectors的情况下如何减少训练时间,需要做实验一的优化实验"Normalized Perceptron Rule"

练习1 熟悉并理解plotpv,plotpc函数

The code below defines and plots the inputs and targets for a perceptron:

p = [0 0 1 1; 0 1 0 1];

t = [0 0 0 1];

plotpv(p,t)

The following code creates a perceptron with inputs ranging over the values in P, assigns values to its weights and biases, and plots the resulting classification line.

net = newp(minmax(p),1);

net.iw{1,1} = [-1.2 -0.5];

net.b{1} = 1;

plotpc(net.iw{1,1},net.b{1})

newp函数解释

NEWP Create a perceptron.

Syntax

net = newp

net = newp(pr,s,tf,lf)

Description

Perceptrons are used to solve simple (i.e. linearly separable) classification problems.

NET = NEWP creates a new network with a dialog box.

NET = NEWP(PR,S,TF,LF) takes these inputs,

PR - Rx2 matrix of min and max values for R input elements. S - Number of neurons.

TF - Transfer function, default = 'hardlim'.

LF - Learning function, default = 'learnp'.

Returns a new perceptron.

The transfer function TF can be HARDLIM or HARDLIMS. The learning function LF can be LEARNP or LEARNPN.

Examples

This code creates a perceptron layer with one 2-element input (ranges [0 1] and [-2 2]) and one neuron. (Supplying only two arguments to NEWP results in the default perceptron learning function LEARNP being used.)

net = newp([0 1; -2 2],1);

Now we define a problem, an OR gate, with a set of four

2-element input vectors P and the corresponding four

1-element targets T.

P = [0 0 1 1; 0 1 0 1];

T = [0 1 1 1];

Here we simulate the network's output, train for a maximum of 20 epochs, and then simulate it again.

Y = sim(net,P)

net.trainParam.epochs = 20;

net = train(net,P,T);

Y = sim(net,P)

Notes

Perceptrons can classify linearly separable classes in a

finite amount of time. If input vectors have a large variance

in their lengths, the LEARNPN can be faster than LEARNP.

Properties

Perceptrons consist of a single layer with the DOTPROD

weight function, the NETSUM net input function, and the specified

transfer function.

The layer has a weight from the input and a bias.

Weights and biases are initialized with INITZERO.

Adaption and training are done with TRAINS and TRAINC,

which both update weight and bias values with the specified

learning function. Performance is measured with MAE.

实验一的优化Normalized Perceptron Rule

一个经过训练的2输入神经元对5个输入向量进行分类(2类)。结合一个例子给出步骤。

实验内容:

步骤一:

两个长度为5的向量构成输入样本矩阵P,行向量T为指导向量。利用PLOTPV画出这个向量的图像。例如:

P = [-0.5 -0.5 +0.3 -0.1 -40; -0.5 +0.5 -0.5 +1.0 50];

T = [1 1 0 0 1];

plotpv(P,T);

注意:在上面的式子中,4输入向量比5输入向量有更小的数量级,这个感知器必须把P中的5个输入向量分成两类(依赖于T).

步骤二建立神经网络

MATLAB提供函数newp来创建一个指定的感知器。第一个参数指定了期望的两个输入向量的取值范围,第二个参数指定了只有一个神经元。第三个参数指定了激励函数,Learnpn对输入向量大小的变化比learnp(默认的)不敏感。

net = newp([-40 1;-1 50],1,'hardlim','learnpn');

第三步添加神经元的初始化值到分类图

初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会出现在这个图中,不用害怕,我们会继续训练这个神经网。

hold on

linehandle = plotpc(net.IW{1},net.b{1});

第四步训练感知器

Matlab提供了adapt函数来训练感知器,adapt函数返回一个新的能更好的执行分类、网络的输出、和误差的神经网络,这个划线函数允许网络从3个角度去调整,画分类线一直到误差为0为止。

注意:这将会花费感知器的许多时间来训练。这对这样一个简单问题来说时间是非常长的。追究其原因在于outlier vector,尽管需要很长的训练时间,这个感知器仍然适当的学习并且被用于划分别的输入。

E = 1;

net.adaptParam.passes = 3;

while (sse(E))

[net,Y,E] = adapt(net,P,T);

linehandle = plotpc(net.IW{1},net.b{1},linehandle);

drawnow;

end

注意:用learnp进行训练需要3个时间单位,而用learnpn解决同样的问题需要32个时间单位,因此,当输入向量的大小发生很大变化时,learnpn比learnp 要用的普遍。

第5步模拟sim

SIM函数能被用来划分任何别的输入向量,例如划分一个输入向量[0.7; 1.2].这个新点的图像为红色,他将用来显示这个感知器如何把这个新点从最初的训练集取分开来。

p = [0.7; 1.2];

a = sim(net,p);

plotpv(p,a);

circle = findobj(gca,'type','line');

set(circle,'Color','red');

打开Hold,以便于以前的图像不被删除。增加训练装置和分类线在图中。

hold on;

plotpv(P,T);

plotpc(net.IW{1},net.b{1});

hold off;

axis([-2 2 -2 2]);

最后放大感兴趣的区域

这个感知器正确的区分了我们的新点(用红色表示)作为”zero”类(用圆圈表示),而不是”one”类(用+号表示),这个感知器在较短的时间内适当的学习。

线性不可分向量

一个2输入神经元对模为5的输入向量不能进行分类。因为他们是线性不可分的。

P = [ -0.5 -0.5 +0.3 -0.1 -0.8;-0.5 +0.5 -0.5 +1.0 +0.0 ];

T = [1 1 0 0 0];

plotpv(P,T);

net = newp([-40 1;-1 50],1);

hold on

plotpv(P,T);

linehandle=plotpc(net.IW{1},net.b{1});

net.adaptParam.passes = 3;

linehandle=plotpc(net.IW{1},net.b{1});

for a = 1:25

[net,Y,E] = adapt(net,P,T);

linehandle = plotpc(net.IW{1},net.b{1},linehandle); drawnow;

end;

注意:误差为0的情况从来不会出现,尽管进行了训练,这个感知器没有变成一个可以接受的分类器。仅仅能进行线性可分数据是感知器的基本限制。

基于人工神经网络的通信信号分类识别

基于人工神经网络的通信信号分类识别 冯 涛 (中国电子科技集团公司第54研究所,河北石家庄050081) 摘 要 通信信号的分类识别是一种典型的统计模式识别问题。系统地论述了通信信号特征选择、特征提取和分类识别的原理和方法。设计了人工神经网络分类器,包括神经网络模型的选择、分类器的输入输出表示、神经网络拓扑结构和训练算法,并提出了分层结构的神经网络分类器。 关键词 模式识别;特征提取;分类器;神经网中图分类号 TP391 文献标识码 A Classification and Identification of Communication Signal Using Artificial Neural Networks FE NG Tao (T he 54th Research Institute of CETC,Shijia zhuan g Hebei 050081,China) Abstract The classification and identificati on of communication signal is a typical statistical pattern identification.The paper discusses the theory and method of feature selection,feature extraction and classi fication &identificaiton of communication signal.A classifier based on artificial neural networks is designed,includin g the selection of neural network model,the input and output expression of the classifier,neural network topology and trainin g algorithm.Finally a hierarchical archi tecture classifier based on artificial neural networks is presented. Key words pattern recognition;features extraction;classifier;neural networks 收稿日期:2005-12-16 0 引言 在通信对抗侦察中,侦察接收设备在截获敌方通信信号后,必须经过对信号的特征提取和对信号特征的分析识别,才能变为有价值的通信对抗情报。通过对信号特征的分析识别,可以得到信号种类、通信体制、网路组成等方面的情报,从而为研究通信对抗策略、研制和发展通信对抗装备提供重要参考依据。 1 通信信号分类识别的原理 通信信号的分类识别是一种典型的模式识别应用,其作用和目的就是将某一接收到的信号正确地归入某一种类型中。一般过程如图1 所示。 图1 通信信号分类识别的一般过程 下面简单介绍这几部分的作用。 信号获取:接收来自天线的信号x (t),并对信号进行变频、放大和滤波,输出一个中频信号; A/D 变换:将中频模拟信号变换为计算机可以运算的数字信号x (n); 以上2步是信号空间x (t)到观察空间x (n )的变换映射。 特征提取:为了有效地实现分类识别,必须对原始数据进行变换,得到最能反映分类差别的特征。这些特征的选择和提取是非常重要的,因为它强烈地影响着分类器的设计和性能。理想情况下,经过特征提取得到的特征向量对不同信号类型应该有明显的差别; 分类器设计和分类决策:分类问题是根据识别对象特征的观察值将其分到某个类别中去。首先,在样本训练集基础上确定合适的规则和分类器结构,然后,学习训练得到分类器参数。最后进行分类决策,把待识别信号从特征空间映射到决策空间。 2 通信信号特征参数的选择与特征提取 2 1 通信信号特征参数的选择 选择好的特征参数可以提高低信噪比下的正确 识别率,降低分类器设计的难度,是基于统计模式识别方法最为关键的一个环节。试图根据有限的信号 信号与信息处理 24 2006Radio Engineering Vo1 36No 6

BP神经网络的数据分类MATLAB源代码.doc

%%%清除空间 clc clear all ; close all ; %%%训练数据预测数据提取以及归一化 %%%下载四类数据 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %%%%四个特征信号矩阵合成一个矩阵data ( 1:500 , : ) = data1 ( 1:500 , :) ; data ( 501:1000 , : ) = data2 ( 1:500 , : ) ; data ( 1001:1500 , : ) = data3 ( 1:500 , : ) ; data ( 1501:2000 , : ) = data4 ( 1:500 , : ) ; %%%%%%从1到2000间的随机排序 k = rand ( 1 , 2000 ) ; [ m , n ] = sort ( k ) ; %%m为数值,n为标号

%%%%%%%%%%%输入输出数据 input = data ( : , 2:25 ) ; output1 = data ( : , 1) ; %%%%%%把输出从1维变到4维 for i = 1 : 1 :2000 switch output1( i ) case 1 output( i , :) = [ 1 0 0 0 ] ; case 2 output( i , :) = [ 0 1 0 0 ] ; case 3 output( i , :) = [ 0 0 1 0 ] ; case 4 output( i , :) = [ 0 0 0 1 ] ; end end %%%%随机抽取1500个样本作为训练样本,500个样本作为预测样本 input_train = input ( n( 1:1500 , : ) )’ ; output_train = output ( n( 1:1500 , : ) )’ ; input_test = input ( n( 1501:2000 , : ) )’ ;

几种神经网络模型及其应用

几种神经网络模型及其应用 摘要:本文介绍了径向基网络,支撑矢量机,小波神经网络,反馈神经网络这几种神经网络结构的基本概念与特点,并对它们在科研方面的具体应用做了一些介绍。 关键词:神经网络径向基网络支撑矢量机小波神经网络反馈神经网络Several neural network models and their application Abstract: This paper introduced the RBF networks, support vector machines, wavelet neural networks, feedback neural networks with their concepts and features, as well as their applications in scientific research field. Key words: neural networks RBF networks support vector machines wavelet neural networks feedback neural networks 2 引言 随着对神经网络理论的不断深入研究,其应用目前已经渗透到各个领域。并在智能控制,模式识别,计算机视觉,自适应滤波和信号处理,非线性优化,语音识别,传感技术与机器人,生物医学工程等方面取得了令人吃惊的成绩。本文介绍几种典型的神经网络,径向基神经网络,支撑矢量机,小波神经网络和反馈神经网络的概念及它们在科研中的一些具体应用。 1. 径向基网络 1.1 径向基网络的概念 径向基的理论最早由Hardy,Harder和Desmarais 等人提出。径向基函数(Radial Basis Function,RBF)神经网络,它的输出与连接权之间呈线性关系,因此可采用保证全局收敛的线性优化算法。径向基神经网络(RBFNN)是 3 层单元的神经网络,它是一种静态的神经网络,与函数逼近理论相吻合并且具有唯一的最佳逼近点。由于其结构简单且神经元的敏感区较小,因此可以广泛地应用于非线性函数的局部逼近中。主要影响其网络性能的参数有3 个:输出层权值向量,隐层神经元的中心以及隐层神经元的宽度(方差)。一般径向基网络的学习总是从网络的权值入手,然后逐步调整网络的其它参数,由于权值与神经元中心及宽度有着直接关系,一旦权值确定,其它两个参数的调整就相对困难。 其一般结构如下: 如图 1 所示,该网络由三层构成,各层含义如下: 第一层:输入层:输入层神经元只起连接作用。 第二层:隐含层:隐含层神经元的变换函数为高斯核. 第三层:输出层:它对输入模式的作用做出响应. 图 1. 径向基神经网络拓扑结构 其数学模型通常如下: 设网络的输入为x = ( x1 , x2 , ?, xH ) T,输入层神经元至隐含层第j 个神经元的中心矢 为vj = ( v1 j , v2 j , ?, vIj ) T (1 ≤j ≤H),隐含层第j 个神经元对应输入x的状态为:zj = φ= ‖x - vj ‖= exp Σx1 - vij ) 2 / (2σ2j ) ,其中σ(1≤j ≤H)为隐含层第j个神

神经网络在数据挖掘中的应用

神经网络在数据挖掘中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

神经网络在数据挖掘中的应用 摘要:给出了数据挖掘方法的研究现状,通过分析当前一些数据挖掘方法的局限性,介绍一种基于关系数据库的数据挖掘方法——神经网络方法,目前,在数据挖掘中最常用的神经网络是BP网络。在本文最后,也提出了神经网络方法在数据挖掘中存在的一些问题. 关键词:BP算法;神经网络;数据挖掘 1.引言 在“数据爆炸但知识贫乏”的网络时代,人们希望能够对其进行更高层次的分析,以便更好地利用这些数据。数据挖掘技术应运而生。并显示出强大的生命力。和传统的数据分析不同的是数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所得到的信息具有先未知,有效性和实用性三个特征。它是从大量数据中寻找其规律的技术,主要有数据准备、规律寻找和规律表示三个步骤。数据准备是从各种数据源中选取和集成用于数据挖掘的数据;规律寻找是用某种方法将数据中的规律找出来;规律表示是用尽可能符合用户习惯的方式(如可视化)将找出的规律表示出来。数据挖掘在自身发展的过程中,吸收了数理统计、数据库和人工智能中的大量技术。作为近年来来一门处理数据的新兴技术,数据挖掘的目标主要是为了帮助决策者寻找数据间潜在的关联(Relation),特征(Pattern)、趋势(Trend)等,发现被忽略的要素,对预测未来和决策行为十分有用。 数据挖掘技术在商业方面应用较早,目前已经成为电子商务中的关键技术。并且由于数据挖掘在开发信息资源方面的优越性,已逐步推广到保险、医疗、制造业和电信等各个行业的应用。 数据挖掘(Data Mining)是数据库中知识发现的核心,形成了一种全新的应用领域。数据挖掘是从大量的、有噪声的、随机的数据中,识别有效的、新颖的、有潜在应用价值及完全可理解模式的非凡过程。从而对科学研究、商业决策和企业管理提供帮助。 数据挖掘是一个高级的处理过程,它从数据集中识别出以模式来表示的知识。它的核心技术是人工智能、机器学习、统计等,但一个DM系统不是多项技术的简单组合,而是一个完整的整体,它还需要其它辅助技术的支持,才能完成数据采集、预处理、数据分析、结果表述这一系列的高级处理过程。所谓高级处理过程是指一个多步骤的处理过程,多步骤之间相互影响、反复调整,形成一种螺旋式上升过程。最后将分析结果呈现在用户面前。根据功能,整个DM系统可以大致分为三级结构。 神经网络具有自适应和学习功能,网络不断检验预测结果与实际情况是否相符。把与实际情况不符合的输入输出数据对作为新的样本,神经网络对新样本进行动态学习并动态改变网络结构和参数,这样使网络适应环境或预测对象本身结构和参数的变化,从而使预测网络模型有更强的适应性,从而得到更符合实际情况的知识和规则,辅助决策者进行更好地决策。而在ANN的

神经网络在遥感图像分类中的应用

神经网络在遥感图像分类中的应用 祁增营,王京 辽宁工程技术大学测绘与地理科学学院,辽宁阜新(123000) E-mail: qizengying@https://www.360docs.net/doc/c1912341.html, 摘要:结合人工神经网络的特性,介绍神经网络在遥感图像处理领域中的应用现状,重点分析了遥感图像分类模型、并对模型进行了对比分析,利用EARDAS软件进行遥感图 像分类,通过实验分析神经网络在遥感图像分类的优势。初步提出结合遗传算法和模 糊理论的神经网络模型,对神经网络在遥感图像分类领域的发展趋势进行了探讨。 关键词:人工神经网络,遥感影像分类,分类模型 1. 引言 神经是大脑的细胞,其主要功能是收集,处理和分发电信号。人类大脑采用连通的神经元来处理接收到的信号,神经网络模拟了这一过程。它不是通过分步算法或复杂的逻辑程序来求解的,而是通过调整网络中连接神经元的权重,采用非算法,非结构的形式来实现的。神经网络已用于对各种遥感数据进行分类,而且其分类结果优于传统的统计方法。这些成功可以归因于神经网络的两大有点:1)不要求数据正态分布;2)自适应模拟具有特定拓扑结构的复杂非现性模式的功能。人工神经网络[1] (ANN,简称神经网络)作为一种由大量简单神经元广泛相互联接而成的非线性映射或自适应动力系统,恰好能有效解决遥感图像处理中常见的困难,因此它很快在遥感图像分类领域得到了广泛地应用。 2. 神经网络的组成结构和特点 2.1 神经网络的组织结构 典型后向传播神经网络的拓扑结构见图。人工神经网络在3中类型的层中包含有神经元: 图1 神经网络组织结构 该网络包括输入层,隐含层和输出层。输入层可以包含单个训练像元的信息[2],其中包括不同波段的百分比光谱反射率和一些辅助信息,如高程,坡度等。每层由互相连接的接点所组成。这种可连续性使得网络在训练时,信息可以流向多个方向(即,可以发生向后传播)。这种结点的力(或权重)最终为神经网络所学习并保存。这些权重用于检验(分类)。训练

BP神经网络的数据分类-语音特征信号分类

clear %% 训练数据预测数据提取及归一化 %下载四类语音信号 load data1 c1 load data2 c2 load data3 c3 load data4 c4 %四个特征信号矩阵合成一个矩阵 data(1:500,:)=c1(1:500,:); data(501:1000,:)=c2(1:500,:); data(1001:1500,:)=c3(1:500,:); data(1501:2000,:)=c4(1:500,:); %从1到2000间随机排序 k=rand(1,2000); [m,n]=sort(k); %输入输出数据 input=data(:,2:25); output1 =data(:,1); %把输出从1维变成4维 for i=1:2000 switch output1(i) case 1 output(i,:)=[1 0 0 0]; case 2 output(i,:)=[0 1 0 0]; case 3 output(i,:)=[0 0 1 0]; case 4 output(i,:)=[0 0 0 1]; end end %随机提取1500个样本为训练样本,500个样本为预测样本input_train=input(n(1:1500),:)'; output_train=output(n(1:1500),:)'; input_test=input(n(1501:2000),:)'; output_test=output(n(1501:2000),:)'; %输入数据归一化 [inputn,inputps]=mapminmax(input_train); %% 网络结构初始化 innum=24; midnum=25; outnum=4;

matlab30个案例分析案例12-SVM神经网络的数据分类预测

%% SVM神经网络的数据分类预测----意大利葡萄酒种类识别 %% 清空环境变量 close all; clear; clc; format compact; %% 数据提取 % 载入测试数据wine,其中包含的数据为classnumber = 3,wine:178*13的矩阵,wine_labes:178*1的列向量 load chapter12_wine.mat; % 画出测试数据的box可视化图 figure; boxplot(wine,'orientation','horizontal','labels',categories); title('wine数据的box可视化图','FontSize',12); xlabel('属性值','FontSize',12); grid on; % 画出测试数据的分维可视化图 figure subplot(3,5,1); hold on for run = 1:178 plot(run,wine_labels(run),'*'); end xlabel('样本','FontSize',10); ylabel('类别标签','FontSize',10); title('class','FontSize',10); for run = 2:14 subplot(3,5,run); hold on; str = ['attrib ',num2str(run-1)]; for i = 1:178 plot(i,wine(i,run-1),'*'); end xlabel('样本','FontSize',10); ylabel('属性值','FontSize',10); title(str,'FontSize',10); end % 选定训练集和测试集 % 将第一类的1-30,第二类的60-95,第三类的131-153做为训练集

人工神经网络的发展和分类

人工神经网络的发展和分类 人工神经网络是一种应用类似于大脑神经突触联接的结构进行信息处理的数学模型。在工程与学术界也常直接简称为神经网络或类神经网络。神经网络是一种运算模型,由大量的节点(或称神经元)和之间相互联接构成。每个节点代表一种特定的输出函数,称为激励函数(activation function)。每两个节点间的连接都代表一个对于通过该连接信号的加权值,称之为权重,这相当于人工神经网络的记忆。网络的输出则依网络的连接方式,权重值和激励函数的不同而不同。而网络自身通常都是对自然界某种算法或者函数的逼近,也可能是对一种逻辑策略的表达。 它的构筑理念是受到生物(人或其他动物)神经网络功能的运作启发而产生的。人工神经网络通常是通过一个基于数学统计学类型的学习方法(Learning Method)得以优化,所以人工神经网络也是数学统计学方法的一种实际应用,通过统计学的标准数学方法我们能够得到大量的可以用函数来表达的局部结构空间,另一方面在人工智能学的人工感知领域,我们通过数学统计学的应用可以来做人工感知方面的决定问题(也就是说通过统计学的方法,人工神经网络能够类似人一样具有简单的决定能力和简单的判断能力),这种方法比起正式的逻辑学推理演算更具有优势。 1943年,心理学家W.S.McCulloch和数理逻辑学家W.Pitts建立了神经网络和数学模型,称为MP模型。他们通过MP模型提出了神经元的形式化数学描述和网络结构方法,证明了单个神经元能执行逻辑功能,从而开创了人工神经网络研究的时代。 1949年,心理学家提出了突触联系强度可变的设想。60年代,人工神经网络的到了进一步发展,更完善的神经网络模型被提出。其中包括感知器和自适应线性元件等。M.Minsky等仔细分析了以感知器为代表的神经网络系统的功能及局限后,于1969年出版了《Perceptron》一书,指出感知器不能解决高阶谓词问题。他们的论点极大地影响了神经网络的研究。加之当时串行计算机和人工智能所取得的成就,掩盖了发展新型计算机和人工智能新途径的必要性和迫切性,使人工神经网络的研究处于低潮。 在此期间,一些人工神经网络的研究者仍然致力于这一研究,提出了适应谐ART,同时进行了神经网络数学理论的研究。以上研究为神经网络的研究和发展奠定了基础。1982年,美国加州工学院物理学家J.J.Hopfield提出了Hopfield神经网格模型,引入了“计算能量”概念,给出了网络稳定性判断。 1984Hopfield神经网络模型,为神经计算机的研究做了开拓性的工作,开创了神经网络用于联想记忆和优化计算的新途径,有力地推动了神经网络的研究。1985年,又有学者提出了波耳兹曼模型,在学习中采用统计热力学模拟退火技术,保证整个系统趋于全局稳定点。 1986年进行认知微观结构地研究,提出了并行分布处理的理论。人工神经网络的研究受到了各个发达国家的重视。美国国会通过决议将1990年1月5日开始的十年定为“脑的十年”,国际研究组织号召它的成员国将“脑的十年”变 RWC项目中,人工智能的研究成了一个重要的组成部分。 人工神经网络的模型很多,可以按照不同的方法进行分类。其中,常见的两

神经网络的类型

概述 本文主要介绍了当前常用的神经网络,这些神经网络主要有哪些用途,以及各种神经网络的优点和局限性。 1 BP神经网络 BP (Back Propagation)神经网络是一种神经网络学习算法。其由输入层、中间层、输出层组成的阶层型神经网络,中间层可扩展为多层。相邻层之间各神经元进行全连接,而每层各神经元之间无连接,网络按有教师示教的方式进行学习,当一对学习模式提供给网络后,各神经元获得网络的输入响应产生连接权值(Weight)。然后按减小希望输出与实际输出误差的方向,从输出层经各中间层逐层修正各连接权,回到输入层。此过程反复交替进行,直至网络的全局误差趋向给定的极小值,即完成学习的过程。 初始权值阈值的确定:所以权值及阈值的初始值应选为均匀分布的小数经验 值,约为(-2.4/F~2.4/F)之间,其中F 为所连单元的输入层节点数 1.1 主要功能 (1)函数逼近:用输入向量和相应的输出向量训练一个网络以逼近一个函数。 (2)模式识别:用一个待定的输出向量将它与输入向量联系起来。 (3)分类:把输入向量所定义的合适方式进行分类。 (4)数据压缩:减少输出向量维数以便传输或存储。 1.2 优点及其局限性 BP神经网络最主要的优点是具有极强的非线性映射能力。理论上,对于一个三层和三层以上的BP网络,只要隐层神经元数目足够多,该网络就能以任意精度逼近一个非线性函数。其次,BP神经网络具有对外界刺激和输入信息进行联想记忆的能力。这是因为它采用了分布并行的信息处理方式,对信息的提取必须采用联想的方式,才能将相关神经元全部调动起来。BP 神经网络通过预先存储信息和学习机制进行自适应训练,可以从不完整的信息和噪声干扰中恢复原始的完整信息。这种能力使其在图像复原、语言处理、模式识别等方面具有重要应用。再次,BP 神经网络对外界输入样本有很强的识别与分类能力。由于它具有强大的非线性处理能力,因此可以较好地进行非线性分类, 解决了神经网络发展史上的非线性分类难题。另外,BP 神经网络具有优化计算能力。BP神经网络本质上是一个非线性优化问题, 它可以在已知的约束条件下,寻找一组参数组合,使该组合确定的目标函数达到最小。不过,其优化计算存在局部极小问题,必须通过改进完善。 由于BP网络训练中稳定性要求学习效率很小,所以梯度下降法使得训练很慢。动量法因为学习率的提高通常比单纯的梯度下降法要快一些,但在实际应用中还是速度不够,这两种方法通常只应用于递增训练。 多层神经网络可以应用于线性系统和非线性系统中,对于任意函数模拟逼近。当然,感知器和线性神经网络能够解决这类网络问题。但是,虽然理论上是可行的,但实际上BP网络并

BP神经网络用于分类

clear,clc % 关闭图形窗口 close all %% 读入数据 % 打开文件 fid = fopen('german.data', 'r'); % 按格式读取每一行 % 每行包括21项,包括字符串和数字 C = textscan(fid, '%s %d %s %s %d %s %s %d %s %s %d %s %d %s %s %d %s %d %s %s %d\n'); % 关闭文件 fclose(fid); % 将字符串转换为整数 N = 20; % 存放整数编码后的数值矩阵 C1=zeros(N+1,1000); for i=1:N+1 % 类别属性 if iscell(C{i}) for j=1:1000 % eg: 'A12' -> 2 if i<10

d = textscan(C{i}{j}, '%c%c%d'); % eg: 'A103' -> 3 else d = textscan(C{i}{j}, '%c%c%c%d'); end C1(i,j) = d{end}; end % 数值属性 else C1(i,:) = C{i}; end end %% 划分训练样本与测试样本 % 输入向量 x = C1(1:N, :); % 目标输出 y = C1(N+1, :); % 正例 posx = x(:,y==1); % 负例 negx = x(:,y==2); % 训练样本

trainx = [ posx(:,1:350), negx(:,1:150)]; trainy = [ones(1,350), ones(1,150)*2]; % 测试样本 testx = [ posx(:,351:700), negx(:,151:300)]; testy = trainy; %% 样本归一化 % 训练样本归一化 [trainx, s1] = mapminmax(trainx); % 测试样本归一化 testx = mapminmax('apply', testx, s1); %% 创建网络,训练 % 创建BP网络 net = newff(trainx, trainy); % 设置最大训练次数 net.trainParam.epochs = 1500; % 目标误差 net.trainParam.goal = 1e-13; % 显示级别 net.trainParam.show = 1; % 训练 net = train(net,trainx, trainy); %% 测试

BP神经网络数据分类matlab程序代码

BP神经网络数据分类matlab程序代码BP神经网络数据分类 %把输出从1维变成4维 ——语音信号特征分类 for i=1:2000 switch output1(i) MatLab程序代码 case 1 output(i,:)=[1 0 0 0]; %% 清空环境变量 case 2 clc output(i,:)=[0 1 0 0]; clear case 3 output(i,:)=[0 0 1 0]; %% 训练数据预测数据提取及归一化 case 4 output(i,:)=[0 0 0 1]; %下载四类语音信号 end load data1 c1 end load data2 c2 load data3 c3 %随机提取1500个样本为训练样本,load data4 c4 500个样本为预测样本 input_train=input(n(1:1500),:)'; %四个特征信号矩阵合成一个矩阵 output_train=output(n(1:1500),:)'; data(1:500,:)=c1(1:500,:); input_test=input(n(1501:2000),:)'; data(501:1000,:)=c2(1:500,:); output_test=output(n(1501:2000),:)'; data(1001:1500,:)=c3(1:500,:); data(1501:2000,:)=c4(1:500,:); %输入数据归一化

[inputn,inputps]=mapminmax(input_trai%从1到2000间随机排序 n); k=rand(1,2000); [m,n]=sort(k); %% 网络结构初始化 innum=24; %输入输出数据 midnum=25; input=data(:,2:25); outnum=4; output1 =data(:,1); %权值初始化 %计算误差 w1=rands(midnum,innum); e=output_train(:,i)-yn; b1=rands(midnum,1); E(ii)=E(ii)+sum(abs(e)); w2=rands(midnum,outnum); b2=rands(outnum,1); %计算权值变化率 dw2=e*Iout; w2_1=w2;w2_2=w2_1; db2=e'; w1_1=w1;w1_2=w1_1; b1_1=b1;b1_2=b1_1; for j=1:1:midnum b2_1=b2;b2_2=b2_1; S=1/(1+exp(- I(j))); FI(j)=S*(1-S); %学习率 end xite=0.1 for k=1:1:innum alfa=0.01; for j=1:1:midnum dw1(k,j)=FI(j)*x(k)*(e(1)*w2(j,1)+e(2)%% 网络训练 *w2(j,2)+e(3)*w2(j,3)+e(4)*w2(j,4)); for ii=1:10 E(ii)=0; db1(j)=FI(j)*(e(1)*w2(j,1)+e(2)*w2(j,2) for i=1:1:1500 +e(3)*w2(j,3)+e(4)*w2(j,4)); %% 网络预测输出 end x=inputn(:,i); end % 隐含层输出

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一

种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过硬件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

读书笔记-神经网络分类器的应用

神经网络分类器的应用 ——关于感知器的认识 人工神经网络既是一种基本的人工智能研究途径,也是一种非常重要的机器学习方法。人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。人脑是在人工神经网络的原型,人工神经网络是对人脑神经系统的模拟。 人工神经网络是借鉴于生物神经网络而发展起来的新型智能信息处理系统,由于其结构上“仿造”了人脑的生物神经系统,因而其功能上也具有了某种智能特点。由于神经网络具有分布储存信息和并行计算的性能,因此它具有对外界刺激信息和输入模式进行联想记忆的能力。这种能力是通过神经元之间的协同结构以及信息处理的集体行为而实现的。设计合理的神经网络通过对系统输入输出样本对进行自动学习,能够以任意精度逼近任意复杂的非线性映射,可以作为多维非线性函数的通用数学模型。神经网络对外界输入样本具有很强的识别和分类能力,可以很好的解决对非线性曲面的逼近,因此比传统的分类器具有更好的分类与识别能力。 生物神经系统是一个有高度组织和相互作用的数量巨大的细胞组织群体。据估计,人脑神经系统的神经细胞约为1011-1013个。它们按不同的结合方式构成了复杂的神经网络。通过神经元及其联接的可塑性,使得大脑具有学习、记忆和认知等各种智能。神经细胞是构成神经系统的基本单元,称之为生物神经元,或者简称为神经元。神经元主要由三个部分组成:细胞体、轴突、树突(如下图所示)。 感知器模型由美国学者罗森布莱特(F.Rosenblatt )于1957年提出,是一种早期的神经网络模型,也是最简单的一种神经网络模型。感知器模型中第一次引入了学习的概念。 感知器模型可以分为简单感知器和多层感知器两种。 简单感知器模型实际上仍然是MP 模型的结构。但是,它是通过采用监督学习来逐步增强模式划分的能力,达到所谓学习的目的。感知器处理单元对n 个输入进行加权和操作以后,通过非线性函数输出,即: 其中,w i 为第i 个输入到处理单元的连接权值,θ为阈值, f 取阶跃函数。 感知器在形式上与MP 模型差不多,它们之间的区别在于神经元间连接权的变化。感知器的连接权定义为可变的,这样感知器就被赋予了学习的特性。利用简单感知器可以实现逻辑代数中的一些运算。 1() n i i i i y f w x θ==-∑

神经网络分类

实验一 利用神经网络进行分类 (转载于陕西理工学院数学系中心实验室周涛副教授的工作,在此表示感谢) 一个经过训练的2输入神经元对5个输入向量进行分类(2类)。结合一个例子给出步骤。 实验内容(说明:这里的许多参数都可以更改,希望大家能对这个程序的参数进行修改;同时也欢迎大家提问) 步骤一: 两个长度为5的向量构成输入样本矩阵P,行向量T为指导向量。利用PLOTPV画出这个向量的图像。例如: P = [-0.5 -0.5 +0.3 -0.1 -4; -0.5 +0.5 -0.5 +1.0 5]; T = [1 1 0 0 1]; plotpv(P,T);//plotpv函数利用感知器的输入向量和监督向量来画输入向量的图像注意:在上面的式子中,4输入向量比5输入向量有更小的数量级,这个感知器必须把P中的5个输入向量分成两类(依赖于T)。 步骤二建立神经网络 MATLAB提供函数newp来创建一个指定的感知器。第一个参数指定了期望的两个输入向量的取值范围,第二个参数指定了只有一个神经元。 net = newp([-40 1;-1 50],1); 注意:这个神经元的激励函数是hardlim函数,也就是阶越函数。取0,1两个值。Hardlim三函数,也就是阶越函数。取-1,1两个值。 步骤三添加神经元的初始化值到分类图 初始化的权值被设为0,因此任何输入都会给出同样的输出,并且分类线不会出现在这个图中,不用害怕,我们会继续训练这个神经网。 hold on linehandle = plotpc(net.IW{1},net.b{1});//plotpc函数用来画神经网络的分类线 步骤四训练感知器 Matlab提供了adapt函数来训练感知器,adapt函数返回一个新的能更好的执行分类、网络的输出、和误差的神经网络,这个划线函数允许网络从3个角度去调整,画分类线一直到误差为0为止。 E = 1;//E为误差 net.adaptParam.passes = 3; while (sse(E))//sse函数是用来判定误差E的函数 [net,Y,E] = adapt(net,P,T);//利用输入样本调节神经网net linehandle = plotpc(net.IW{1},net.b{1},linehandle);//画出调整以后的分类线

神经网络算法

神经网络算法 分类及概念: 生物神经网络 生物体的每个神经元有数以千计的通道同其它神经元广泛相互连接,形成复杂的生物神经网络。 人工神经网络 以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,就称为人工神经网络(Artificial Neural Network,缩写ANN)。·神经网络是由多个非常简单的处理单元彼此按某种方式相互连接而形成的计算系统,该系统是靠其状态对外部输入信息的动态响应来处理信息的。 ·人工神经网络是一个由许多简单的并行工作的处理单元组成的系统,其功能取决于网络的结构、连接强度以及各单元的处理方式 ·人工神经网络是一种旨在模仿人脑结构及其功能的信息处理系统。 BP神经网络

一种按误差逆传播算法训练的多层前馈网络。BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。 神经网络的基本特征: 神经网络的基本功能: 输入的样本经过自动提取,经过非线性映射规则处理输出需要的样本。 分类与识别功能:

优化计算功能: 神经网络的应用领域:医学领域 1.检测数据分析 2.生物活性研究 3.医学专家系统 神经网络建模: 思考方法:用生物神经网络类比人工神经网络

生物神经元在结构上由四部分组成 1.胞体 2.树突 3.轴突 4.突触 神经元的状态分为:静息兴奋抑制 信息的传递过程: 电信号沿着轴突到突触前膜,期间,突触小泡释放神经递质(兴奋性或抑制性)到突触间隙,作用于突触后膜的受体,使下一个神经元兴奋或抑制。从而完成此次信号的传递。 PS:可能有多个神经元同时作用于一个神经元。 生物神经元的信息整合度: 同一时刻多个神经元所产生的刺激所引起的膜电位变化,大致等于个单独刺激引起膜电位点位的代数和。 各次的兴奋传递到突触后膜的时间不同,总的动作电位为该段时间的总和。神经元之间突触的连接方式和连接强度不尽相同。

人工神经网络概述及其在分类中的应用举例

人工神经网络概述及其在分类中的应用举例 秦兴德(周末班)学号:08200203 人工神经网络(ARTIFICIAL NEURAL NETWORK,简称ANN)是目前国际上一门发展迅速的前沿交叉学科。为了模拟大脑的基本特性,在现代神经科学研究的基础上,人们提出来人工神经网络的模型。人工神经网络是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。 神经网络在2个方面与人脑相似: (1) 人工神经网络获取的知识是从外界环境中学习得来的。 (2) 互连神经元的连接强度,即突触权值,用于存储获取的信息。他既是高度非线性动力学系统,又是自适应组织系统,可用来描述认知、决策及控制的智能行为。神经网络理论是巨量信息并行处理和大规模并行计算的基础。 一人工神经网络的基本特征 1、并行分布处理:人工神经网络具有高度的并行结构和并行处理能力。这特别适于实时控制和动态控制。各组成部分同时参与运算,单个神经元的运算速度不高,但总体的处理速度极快。 2、非线性映射:人工神经网络具有固有的非线性特性,这源于其近似任意非线性映射(变换)能力。只有当神经元对所有输入信号的综合处理结果超过某一门限值后才输出一个信号。因此人工神经网络是一种具有高度非线性的超大规模连续时间动力学系统。 3、信息处理和信息存储合的集成:在神经网络中,知识与信息都等势分布贮存于网络内的各神经元,他分散地表示和存储于整个网络内的各神经元及其连线上,表现为神经元之间分布式的物理联系。作为神经元间连接键的突触,既是信号转换站,又是信息存储器。每个神经元及其连线只表示一部分信息,而不是一个完整具体概念。信息处理的结果反映在突触连接强度的变化上,神经网络只要求部分条件,甚至有节点断裂也不影响信息的完整性,具有鲁棒性和容错性。 4、具有联想存储功能:人的大脑是具有联想功能的。比如有人和你提起内蒙古,你就会联想起蓝天、白云和大草原。用人工神经网络的反馈网络就可以实现这种联想。神经网络能接受和处理模拟的、混沌的、模糊的和随机的信息。在处理自然语言理解、图像模式识别、景物理解、不完整信息的处理、智能机器人控制等方面具有优势。 5、具有自组织自学习能力:人工神经网络可以根据外界环境输入信息,改变突触连接强度,重新安排神经元的相互关系,从而达到自适应于环境变化的目的。 6、软件硬件的实现:人工神经网络不仅能够通过软件而且可借助软件实现并行处理。近年来,一些超大规模集成电路的硬件实现已经问世,而且可从市场上购到,这使得神经网络具有快速和大规模处理能力的实现网络。许多软件都有提供了人工神经网络的工具箱(或软件包)如Matlab、Scilab、R、SAS等。 二人工神经网络的基本数学模型

人工神经网络分类器

通信工程学院题目人工神经网络分类器 专业:自动化 学号:52110608 学生姓名:张继伟 指导教师姓名:刘富

日期:年月日 人工神经网络分类 摘要:80 年代重新兴起的人工神经网络已成为世界人工智能研究的热门课题之一。本文介绍了人工神经网络的一般结构及其算法, 介绍人工神经网络在模式识别方面的作用及用作模式识别的人工神经网络分类器。 人工神经网络简介: 人们对人工神经网络( A rt ifi ci al N e ur al N et 简作人N N , 也称神经网络) 的研究可追溯到40 年前。初期人们致力于建立较为详细的、仿生的( 模仿人的神经元) 神经网络的数学模型。50 年代至60 年代有人便试图建立结构上类于人脑的计算机。但由于当时集成电路、计算机及人工智能等方面技术的限制使得这种尝试未获成功, ’而且使这方面的工作几乎停顿了近20 年. 直到80 年代, 超大规格集成电路、人工智能、计算机技术及拓扑学算法的发展使得人工神经网络重新兴起并很快地蓬勃发展成了当今世界的一大热门课题. 尤其是人们希望人工神经网络能在语音和图象识别(s , ” c h a n d im a se eR co gn it on ) 方面达到完成人类的功能。使得人工神经网络在这方面有了不少应用成果。 1 98 7 年6 月在美国圣地亚哥召开的第一届国际神经网络年会( I c N N , nI entr iat o o al oC n fe r en ce on Ne ur ia N et w or k ) 重新揭开了人类向神经网络大规模进军的战幕, 据有关人士预料, 今后新一代计算机将是以神经网络为基础的, 具有高度并行处理能力, 具有自适应能力的新一代的计算机。从当前研究的热点看主要有下列几个方面: 一是各种神经网络模型的研究, 包括生物物理模型, 数学模型等。二是在数字机上进行模拟以探讨各类模型的特点、性能等。三是各种训练、学习规则的研究。四是神经网络在工作中的自适应能力的研究。五是硬件实现。国际上在这几方面的研究都尚属初级阶段, 尚有一些硬件实现和初步的应用成果。国内的研究则刚起步不久。本文介绍人工神经网络模型的一般结构及算法, 同时在和传统分类器( o as if er ) 比较的基础上介绍用于模式识别的人工神经网络分类器的结构和工作过程[1]。

相关文档
最新文档