一线三角模型及例题说课讲解

一线三角模型及例题说课讲解
一线三角模型及例题说课讲解

一线三角模型及例题

相似三角形判定的复习:

1.相似三角形的预备定理:

平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。

2.相似三角形的判定定理:

(1)两角对应相等两三角形相似。 (2)两边对应成比例且夹角相等,两个三角形相似。

(3)三边对应成比例,两个三角形相似。

3.直角三角形相似的判定定理:

(1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。

(2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。

相似三角形的性质:

要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例

要点2:相似三角形的性质定理:

相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比

相似三角形的性质定理2:相似三角形的周长的比等于相似比

相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方

要点3:知识架构图

1、如图,锐角?ABC 的高CD 和BE 相交于点O ,图中相似三角形有多少对?请分别写出.

2、如图,在锐角?ABC 中,∠ADE=∠ACB ,图中相似三角形有多少对?请分别写出.

3、如图已知∠BAC=∠BDC=90°,8,16==??ADE EBC S S . 问:∠BEC 的大小确定吗?若确定,求期度数;若不确定,请说明理由.

4、如图,在ABC △中,90BAC ∠=o ,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F G ,.求证:

(1)EG CG AD CD

=; (2)FD ⊥DG .

A

B C D

E

G

F

E D C B A

5、如图,四边形ABCD 中,AC 与BD 交于点E ,AC ⊥AB ,BD ⊥CD. S ?EBC =16,S ?AED =8.

(1)求AD BC

的值; (2)问:∠BEC 是不是定角?如果是,把它求出来;如果不是,请说明理由.

5、如图,在△ABC 中,角ACB 为直角,CD⊥AB 于点D ,又△ACE 与△BCF 都是等边三角形,连结DE 、DF ;

求证:DE⊥DF

E

A D C F

B

中考热点:一线三等角型的相似三角形

一、问题引入

如图,ABC ?中,90B ∠=?,CD AC ⊥,过D 作DE AB ⊥交BC 延长线与E 。

求证:ABC CED ??:

E

A

D

C

三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

其他常见的一线三等角图形

(等腰三角形中底边上一线三等角)(等腰梯形中底边上一线三等角)

A B D C

F

(直角坐标系中一线三等角)(矩形中一线三等角)等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。(1)等腰三角形中一线三等角

例1、如图,已知在△ABC中, AB=AC=6,BC=5,D是AB上一点,BD=2,E是BC上一动点,联结DE,并作DEF B

∠=∠,射线EF交线段AC于F.

(1)求证:△DBE∽△ECF;(2)当F是线段AC中点时,求线段BE的长;

(3)联结DF,如果△DEF与△DBE相似,求FC的长.

讲解:1、本题中,第一问的结论是这类题共同的特性,只要等腰三角形底边上有三等角,必有三角形相似;

2、第二问中根据相似求线段的长,也很常见;有时候会反过来问,线段的长是多少是,三角线相似。变式练习1就是这类题型;

3、第三问中间的三角形与左右两个形似时有两种情况,一种是DF与底边平行,一种是E为中点;

4、在等腰三角形,将腰延长会交于一点,也构成等腰三角形,故而以上三点,在等腰梯形中也适用。

变式练习1 (浦东新区22题)

BD ,E为AC中

如图,已知等边△ABC的边长为8,点D、F、E分别在边AB、BC、AC上,3

点,当△BPD与△PCE相似时,求BP的值.

变式练习2(宝山22题)

如图6,已知ΔABC中,AB AC

=,点E、F在边BC上,满足∠EAF =∠C.求证:

2

BF CE AB

?=;

F

E C

B

A

变式练习3

如图,在三角形ABC中,AB=4,AC=2,∠A=900,点D为腰AC中点,点E在底边BC上,且DE⊥BD,求△CED的面积。

变式练习4

已知∠ABC=90°,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足

PQ AD

PC AB

=,当AD AB

p,且点Q在线段AB的延长线上时,求QPC

∠的大小.

(2)等腰梯形中一线三等角

例1、(长宁区18题)如图,等腰梯形ABCD中,AD∥BC,2

AD=42

BC= 45

B=?,直角三角板含45度角的顶点E在边BC上移动,一直角边始终经过点A,斜边与CD交于点F.若△ABE为等腰三角形,则CF的长等于 .

第18题

F

D

A

例2、如图,梯形ABCD中,AB∥DC,∠B=90°,E为BC上一点,且△ABE∽△ECD。

(1)若BC=8,AB=3,DC=4

,求BE的长(2)若BC= 43,AB=3,DC=4,求BE的长. (3)若BC=6,AB=3,DC=4,求BE的长.

例3、如图,梯形ABCD中,AB∥CD,∠ABC=900,AB=8,CD=6,在AB上取动点P,连结DP,作PQ⊥DP,使得PQ交射线BC与点E,设AP=x,

BE=y。

(1)当BC=4时,试求y关于x的函数关系式;

(2)当BC在什么范围时,存在点P,使得PQ经过点C(直接写出结果)。

例4、(徐汇区25).如图,在梯形ABCD中,AD∥BC,6

AB CD BC

===,3

AD=.点M

为边BC的中点,以M为顶点作EMF B

∠=∠,射线ME交腰AB于点E,射线MF交腰CD于点F,联结EF.

(1)求证:△MEF∽△BEM;(2)若△BEM是以BM为腰的等腰三角形,求EF的长;(3)若EF CD

⊥,求BE的长.

例4、(杨浦区基础考)四边形ABCD 中,AD ∥BC ,()090ABC αα∠=<

(1)当点P 在线段BC 上时,写出并证明1∠与2∠的数量关系;

(2)随着点P 的运动,(1)中得到的关于1∠与2∠的数量关系,是否改变?若认为不改变,请证明;若认为会改变,请求出不同于(1)的数量关系,并指出相应的x 的取值范围;

(3)若cos α=13

,试用x 的代数式表示y .

(3)坐标系中一线三等角

例1、(金山区24)如图,住平面直角系中,直线AB :()440y x a a

=+≠分别交x 轴、y 轴于B 、A 两点,直线AE 分别交x 轴、y 轴于E 、A 两点,D 是x 轴上的一点,OA OD =,过D 作CD ⊥x 轴交AE 于C ,连接B C ,当动点B 在线段OD 上运动(不与点O 点D 重合)且AB BC ⊥时

(1)求证:ABO ?∽BCD ?;(2)求线段CD 的长(用a 的代数式表示);

(3)若直线AE 的方程是1316

y x b =-+,求tan BAC ∠的值.

例2、如图,在直角坐标系中,直线122y x =

+与x轴,y轴分别交于A,B两点,以AB为边在第二象限内作矩形ABCD,使5AD =,求点D的坐标.

变式练习1

在平面直角坐标系XOY 中,AOB ?的位置如图所示,已知0060,90=∠=∠A AOB ,点A 的坐标为()

1,3- (1) 求点B 的坐标;

(2) 若抛物线c bx ax y ++=2

经过A 、O 、B 三点,求函数解析式。

变式练习2

如图所示:RT △AOB 中∠AO B =90°,OA=4,OB=2,点B 在反比例函数2y x

=

图像上,求过点A 的双曲线解析式。

变式练习3

如图,在平面直角坐标系中,OB ⊥OA ,且OB =2OA ,点A 的坐标是(-1,2).求过点A 、O 、B 的抛物线的表达式;

相似三角形经典大题(含答案)

相似三角形经典大题解析 1.如图,已知一个三角形纸片ABC ,B C 边的长为8,B C 边上的高为6,B ∠和C ∠都为锐角,M 为A B 一动点(点M 与点A B 、不重合),过点M 作M N B C ∥,交A C 于点N ,在A M N △中,设M N 的长为x ,M N 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿M N 折叠,使A M N △落在四边形B C N M 所在平面,设点A 落在平面的点为1A ,1A M N △与四边形B C N M 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1)M N B C ∥ A M N A B C ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AM N A M N △≌△ 1A M N ∴△的边M N 上的高为h , ①当点1A 落在四边形B C N M 内或B C 边上时, 1A M N y S =△= 2 11332 2 4 8 M N h x x x = = ·· (04x <≤) ②当1A 落在四边形B C N M 外时,如下图(48)x <<, 设1A EF △的边E F 上的高为1h , 则132662h h x =-= - 11EF M N A EF A M N ∴ ∥△∽△ 11A M N ABC A EF ABC ∴ △∽△△∽△

12 16A EF S h S ??= ??? △△ABC 168242 A B C S = ??= △ 2 2 3632241224 62EF x S x x ?? - ?∴==?=-+ ? ??? 1△A 112 223 3912241224828A M N A EF y S S x x x x x ??=-= --+=-+- ??? △△ 所以 2 91224 (48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取163 x = ,8y =最大 86> ∴当163 x = 时,y 最大,8y =最大 M N C B E F A A 1

相似三角形中学考试题(题型类)

相似三角形 1.如图,已知AB CD EF ∥∥,那么下列结论正确的是( ) A . AD BC DF CE = B . BC DF CE AD = C . CD BC EF BE = D . CD AD EF AF = 2.如图所示,给出下列条件: ①B ACD ∠=∠; ②ADC ACB ∠=∠; ③AC AB CD BC =; ④2AC AD AB = 其中单独能够判定ABC ACD △∽△的个数为( ) A .1 B .2 C .3 D .4 3.已知△ABC ∽△DEF ,且AB :DE=1:2,则△ABC 的面积与△DEF 的面积之比为( ) A .1:2 B .1:4 C .2:1 D .4:1 4.如图,已知等边三角形ABC 的边长为2,D E 是它的中位线,则下面四个结论: (1)DE=1,(2)△CDE ∽△CAB ,(3)△CDE 的面积与△CAB 的面积之比为1:4. 其中正确的有:( ) A .0个 B .1个 C .2个 D .3个 A B D C E F 1题 A C D B (第2题图)

【参考答案】 1. A 2. C 3. B 4. D ◆考点聚焦 1.了解线段的比、成比例线段、黄金分割、相似图形有关概念及性质. 2.探索并掌握三角形相似的性质及条件,?并能利用相似三角形的性质解决简单的实际问题. 3.掌握图形位似的概念,能用位似的性质将一个图形放大或缩小. 4.掌握用坐标表示图形的位置与变换,在给定的坐标系中,?会根据坐标描出点的位置或由点的位置写出它的坐标,灵活运用不同方式确定物体的位置. ◆备考兵法 1.证明三角形相似的方法常用的有三个,到底用哪个要根据具体情况而定,要注意基本图形的应用,如“A 型”“X 型”“母子型”等. 2.用相似三角形的知识解决现实生活中实际问题,关键是要先把实际问题转化为数学问题,识别或作出相似三角形,再利用相似三角形的性质求解,并回答实际问题,注意题目的解一定要符合题意. 3.用直角坐标系中的点描述物体的位置,用坐标的方法来研究图形的运动变换,是较为常见的考法,要注意训练. ◆考点链接 一、相似三角形的定义 三边对应成_________,三个角对应________的两个三角形叫做相似三角形. 二、相似三角形的判定方法 1. 若DE ∥BC (A 型和X 型)则______________. 2. 射影定理:若CD 为Rt △ABC 斜边上的高(双直角图形) 则Rt △ABC ∽Rt △ACD ∽Rt △CBD 且AC 2 =________,CD 2 =_______,BC 2 =__ ____. E A D C B E A D C B A D C B 3. 两个角对应相等的两个三角形__________. 4. 两边对应成_________且夹角相等的两个三角形相似.

相似三角形基本模型及证明

相似三角形基本模型与证明一、基本图形回顾 经典模型

构造相似辅助线——双垂直模型 1.在平面直角坐标系xOy中,点A的坐标为(2,1),正比例函数y=kx的图象与线段OA的夹角是45°,求这个正比例函数的表达式. 2.在△ABC中,AB=,AC=4,BC=2,以AB为边在C点的异侧作△ABD,使△ABD为等腰直角三角形,求线段CD的长. 3.在△ABC中,AC=BC,∠ACB=90°,点M是AC上的一点,点N是BC上的一点,沿着直线MN折叠,使得点C恰好落在边AB上的P点.求证:MC:NC=AP:PB. 4.如图,在直角坐标系中,矩形ABCO的边OA在x轴上,边OC在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折B点落在D点的位置,且AD交y轴于点E.那么D点的坐标为 () A. B. C. D.

5.已知,如图,直线y=﹣2x+2与坐标轴交于A、B两点.以AB为短边在第一 象限做一个矩形ABCD,使得矩形的两边之比为1﹕2。 求C、D两点的坐标。 构造相似辅助线——A、X字型 6.如图:△ABC中,D是AB上一点,AD=AC,BC边上的中线AE交CD于F。 求证: 7.四边形ABCD中,AC为AB、AD的比例中项,且AC平分∠DAB。 求证: 8.已知:如图,在△ABC中,M是AC的中点,E、F是BC上的两点,且BE=EF=FC。求BN:NQ:QM.

9.(1)如图1,点在平行四边形ABCD的对角线BD上,一直线过点P分别交BA,BC的延长线于点Q,S,交于点.求证: (2)如图2,图3,当点在平行四边形ABCD的对角线或的延长线上时,是否仍然成立?若成立,试给出证明;若不成立,试说明理由(要求仅以图2为例进行证明或说明);

相似三角形压轴经典大题(含答案)

相似三角形压轴经典大题解析 1.如图,已知一个三角形纸片ABC ,BC 边的长为8,BC 边上的高为6,B ∠和C ∠都为锐角,M 为AB 一动点(点M 与点A B 、不重合),过点M 作MN BC ∥,交AC 于点N ,在AMN △中,设MN 的长为x ,MN 上的高为h . (1)请你用含x 的代数式表示h . (2)将AMN △沿MN 折叠,使AMN △落在四边形BCNM 所在平面,设点A 落在平面的点为1A , 1A MN △与四边形BCNM 重叠部分的面积为y ,当x 为何值时,y 最大,最大值为多少? 【答案】解:(1) MN BC ∥ AMN ABC ∴△∽△ 68 h x ∴= 34 x h ∴= (2)1AMN A MN △≌△ 1A MN ∴△的边MN 上的高为h , ①当点1A 落在四边形BCNM 内或BC 边上时, 1A MN y S =△=211332248MN h x x x ==··(04x <≤) ②当1A 落在四边形BCNM 外时,如下图(48)x <<, 设1A EF △的边EF 上的高为1h , 则13 2662 h h x =-= - 11EF MN A EF A MN ∴∥△∽△ 11A MN ABC A EF ABC ∴△∽△△∽△

12 16A EF S h S ??= ??? △△ABC 1 68242 ABC S =??=△ 2 2 363224122 462EF x S x x ??- ?∴==?=-+ ? ? ?? 1△A 1122233912241224828A MN A EF y S S x x x x x ?? =-= --+=-+- ??? △△ 所以 2 91224(48)8 y x x x =- +-<< 综上所述:当04x <≤时,2 38 y x =,取4x =,6y =最大 当48x <<时,2 912248 y x x =-+-, 取16 3x = ,8y =最大 86> ∴当16 3 x =时,y 最大,8y =最大 2.如图,抛物线经过(40)(10)(02)A B C -,,,,,三点. (1)求出抛物线的解析式; (2)P 是抛物线上一动点,过P 作PM x ⊥轴,垂足为M ,是否存在P 点,使得以A ,P ,M 为顶点的三角形与OAC △相似?若存在,请求出符合条件的点P 的坐标;若不存在,请说明理由; M N C B E F A A 1

第十一讲 一线三角模型

相似三角形的基本模型 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) (平行) (不平行) (二)8字型、反8字型 B C B C (蝴蝶型) (平行)(不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景(五)一线三直角型:

一线三等角的变形: 一线三直角的变形: (六)双垂型: 二、相似三角形判定的变化模型 旋转型:由A 字型旋转得到 8字型拓展 专题练习: 1.(2011)如图,等边三角形ABC 的边长为3,点P 为BC 边上一点,且BP =1,点D 为AC 边上一点,若∠APD =60°,则CD 的长为 .

2.(2011)如图,四边形ABCD ,M 为BC 边的中点.若∠B =∠AMD = ∠C =45°,AB =8,CD =9,则AD 的长为( ) A .3 B .4 C .5 D .6 3.(2011荆州)如图,P 为线段AB 上一点,AD 与BC 交干E ,∠CPD =∠A =∠B ,BC 交PD 于F ,AD 交PC 于G ,则图中相似三角形有( ) A .1对 B .2对 C .3对 D .4对 4. 在△ABC 中,AC =BC ,∠ACB=90°,点M 是AC 上的一点,点N 是BC 上的一点,沿着直线MN 折叠,使得点C 恰好落在边AB 上的P 点, 求证:MC :NC =AP :PB . 5.如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 .

(完整版)相似三角形知识点与经典题型

相似三角形知识点与经典题型 知识点1 有关相似形的概念 (1)形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形. (2)如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多 边形.相似多边形对应边长度的比叫做相似比(相似系数). 知识点2 比例线段的相关概念 (1)如果选用同一单位量得两条线段b a ,的长度分别为n m ,,那么就说这两条线段的比是 n m b a =,或写成n m b a ::=.注:在求线段比时,线段单位要统一。 (2)在四条线段d c b a ,,,中,如果b a 和的比等于d c 和的比,那么这四条线段d c b a ,,,叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说a 是d c b ,,的第四比例项,那么应得比例式为:a d c b = .②()a c a b c d b d ==在比例式::中, a 、d 叫比例外项, b 、 c 叫比例内项, a 、c 叫比例前项,b 、 d 叫比例后项,d 叫第四比例项,如果b=c ,即 a b b d =::那么b 叫做a 、d 的比例中项, 此时有2 b ad =。 (3)黄金分割:把线段AB 分成两条线段)(,BC AC BC AC >,且使AC 是BC AB 和的比例中项,即 2AC AB BC =?,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AB AC 2 1 5-= ≈0.618AB .即 AC BC AB AC == 简记为:1 2 长短==全长 注:黄金三角形:顶角是360 的等腰三角形。黄金矩形:宽与长的比等于黄金数的矩形 知识点3 比例的性质(注意性质立的条件:分母不能为0) (1) 基本性质: ①bc ad d c b a =?=::;②2 ::a b b c b a c =?=?. 注:由一个比例式只可化成一个等积式,而一个等积式共可化成八个比例式,如bc ad =,除 了可化为d c b a ::=,还可化为d b c a ::=,b a d c ::=,c a d b ::=,c d a b ::=,b d a c ::=,a b c d ::=,a c b d ::=. (2) 更比性质(交换比例的内项或外项): ()() ()a b c d a c d c b d b a d b c a ?=?? ?=?=?? ?=??, 交换内项,交换外项. 同时交换内外项 (3)反比性质(把比的前项、后项交换): a c b d b d a c =?=. (4)合、分比性质: a c a b c d b d b d ±±=?=. 注:实际上,比例的合比性质可扩展为:比例式中等号左右两个比的前项,后项之间

相似三角形常用模型及应用

相似三角形模型及应用 相似证明中的基本模型 A 字形 图①A 字型,结论: AD AE DE AB AC BC ==,图②反A 字型,结论:AE AD DE AC AB BC == 图③双A 字型,结论: DF BG EF GC =,图④内含正方形A 字形,结论AH a a AH BC -=(a 为正方形边长) I H G F E D C B A G F E D C B A E D C B A E D C B A 图① 图② 图③ 图④ 8字型 图①8字型,结论: AO BO AB OD CO CD ==,图②反8字型,结论:AO BO AB CO DO CD ==、四点共圆 图③双8字型,结论:AE DF BE CF =,图④A 8字型,结论:111 AB CD EF += 图⑤,结论:EF EG =、AED BEC ABE CDE S S S S ?=?△△△△ E F D C B A F E D C B A O D C B A O D C B A G F E D C B A 图① 图② 图③ 图④ 图⑤ 一线三等角型 结论:出现两个相似三角形

H E D C B A E D C B A E D C B A C 60°F E D C B A F E D C B A 图① 图② 图③ 图④ 角分线定理与射影定理 图①内角分线型,结论: AB BD AC DC =,图②外角分线型,结论:AB BD AC CD = 图③斜射影定理型,结论:2AB BD BC =?, 图④射影定理型,结论:1、2AC AD AB =?,2、2CD AD BD =?,3、2BC BD BA =? D C B D B A C A E D C B A D C B A 梅涅劳斯型常用辅助线 G F E D C B A G F E D C B A G F E D C B A D E F C B A 考点一 相似三角形 【例1】 如图,D 、E 是ABC ?的边AC 、AB 上的点,且AD AC ?=AE AB ?,求证:ADE B ∠=∠. E D C B A 中考满分必做题

相似三角形典型模型及例题

1:相似三角形模型 一:相似三角形判定的基本模型 (一)A 字型、反A 字型(斜A 字型) A B C D E C B A D E (平行) (不平行) (二)8字型、反8字型 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (三)母子型 A B C D C A D (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:

(五)一线三直角型: 三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下: 当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。 (六)双垂型: C A D 二:相似三角形判定的变化模型 旋转型:由A字型旋转得到8字型拓展 C B E D A 共享性 一线三等角的变形 G A B C E F

一线三直角的变形 2:相似三角形典型例题 (1)母子型相似三角形 例1:如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E . 求证:OE OA OC ?=2 . 例2:已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠. 例3:已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于E 、F . 求证:EG EF BE ?=2 . 1、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 2、已知:AD 是Rt △ABC 中∠A 的平分线,∠C=90°,EF 是AD 的垂直平分线交AD 于M ,EF 、BC 的延 A C D E B

一线三角模型及例题

相似三角形判定的复习: 1.相似三角形的预备定理: 平行于三角形一边的直线和其他两边(或两边的延长线)相交,所截成的三角形与原三角形相似。 2.相似三角形的判定定理: (1)两角对应相等两三角形相似。 (2)两边对应成比例且夹角相等,两个三角形相似。 (3)三边对应成比例,两个三角形相似。 3.直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。 (2)一直角三角形的斜边和一条直角边与另一直角三角形的斜边和一条直角边对应成比例,那么这两三角形相似。 相似三角形的性质: 要点1:相似三角形的性质:相似三角形的对应角相等,对应边成比例 要点2:相似三角形的性质定理: 相似三角形的性质定理1:相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比 相似三角形的性质定理2:相似三角形的周长的比等于相似比 相似三角形的性质定理3:相似三角形的面积的比等于相似比的平方 要点3:知识架构图 1、如图,锐角?ABC的高CD和BE相交于点O,图中相似三角形有多少对?请分别写出. 2、如图,在锐角?ABC中,∠ADE=∠ACB,图中相似三角形有多少对?请分别写出.

3、如图已知∠BAC=∠BDC=90°,8,16==??ADE EBC S S . 问:∠BEC 的大小确定吗?若确定,求期度数;若不确定,请说明理由. 4、如图,在ABC △中,90BAC ∠=o ,AD 是BC 边上的高,点E 在线段DC 上,EF AB ⊥,EG AC ⊥,垂足分别为F G ,.求证: (1) EG CG AD CD = ; (2)FD ⊥DG . G F E D C B A 5、如图,四边形ABCD 中,AC 与BD 交于点E ,AC ⊥AB ,BD ⊥CD. S ?EBC =16,S ?AED =8. (1)求 AD BC 的值; (2)问:∠BEC 是不是定角?如果是,把它求出来;如果不是,请说明理由. 5、如图,在△ABC 中,角ACB 为直角,CD⊥AB 于点D ,又△ACE 与△BCF 都是等边三角形,连结DE 、DF ; 求证:DE⊥DF E A D C F B A B C D E

初三数学相似三角形典型例题(含问题详解)

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式 ::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2 =AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质: a b c d ad bc =?= ②合比性质: ±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0 3. 平行线分线段成比例定理: ①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。 则 ,,,…AB BC DE EF AB AC DE DF BC AC EF DF ===

初三数学的相似三角形的常见模型

相似三角形常见模型一【知识清单】 【典例剖析】 知识点一:A字型的相似三角形 A字型、反A字型(斜A字型) B(平行) B (不平行)

(1)如图,若BC DE ∥,则ABC ADE ∽△△ (2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则 ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连接DE ,可得?=∠+∠180C BDE ,线段BC DE 21=,AE AD 3 2=, 求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, F E D C B A B M 1F 1E 1M E F A B C M N A B C D E F

::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD ∥BC ,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 知识点二:8字型相似三角形 J O A D B C A B C D (蝴蝶型) (平行) (不平行) (1)如图,若CD AB ∥,则DOC AOB ∽△△ (2)如图,若C A ∠=∠,则CDJ ABJ ∽△△ 1、已知,P 为平行四边形ABCD 对角线,AC 上一点,过点 P 的直线与AD ,BC ,CD 的延长线,AB 的延长线分别相 交于点E ,F ,G ,H 求证:PE PH PF PG = P H G F E D C B A

一线三等角典型例题

“  一线三等角”模型在初中数学中的应用 一、“一线三等角”模型的提炼 例1、(2015 年山东·德州卷) (1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP. (2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由. (3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点 A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值. 变式1 ( 2012 年烟台) ( 1) 问题探究 如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1 和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK = ∠ACD1.作 D1M ⊥KH,D2N ⊥KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明. ( 2) 拓展延伸 1如图7,若将“问题探究”中的正方形改为正三角形,过点 C 作直线K1H1 ,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1 = ∠BH2K2 = ∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由. 2如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)

相似三角形题型讲解

实用文档相似三角形题型讲解 相似三角形是初中几何的重要内容,包括相似三角形的性质、判定定理及其应用,是中考必考内容,以相似三角形为背景的综合题是常见的热点题型,所以掌握好相似三角形的基础知识至关重要,本讲就如何判定三角形相似,以及应用相似三角形的判定、性质来解决与比例线段有关的计算和证明的问题进行探索。一、如何证明三角形相似。则△AGD∽∽FDC的延长线上,AG交BC、BD于点E、,如图:例1、点G在平行四边形ABCD的边 ,除已知条件中已明确给出的以外,还应结合具体的图分析:关键在找“角相等”AD24F由,外形,利用公共角、对顶角及由平行线产生的一系列相等的角。本例除公共角∠ G3CB14=AB∥DG可得∠∠∠BC∥AD可得∠1=2,所以△AGD∽△EGC。再∠1=2(对顶角),由EG。∠G,所以△EGC∽△EAB)找到两个三角形中有两对角2)证明三角形相似的首选方法是“两个角对应相等的两个三角形相似”1。(评注:(对应相等,便可按对应顶点的顺序准确地把这一对相似三角形记下来。A是角平分线,A=36°,BD、已知△ABC中,AB=AC,∠例2BCD ∽△求证:△ABC D是公共角,而另一组相等的角则可以C 分析:证明相似三角形应先找相等的角,显然∠通过计算来求得。借助于计算也是一种常用的方法。CB ABC=∠C=72°A=36证明:∵∠°,△ABC是等腰三角形,∴∠,则∠DBC=36°又BD平分∠ABC °A=中,∠C为公共角,∠∠DBC=36BCD在△ABC和△ BCD∴△ABC∽△BAD BCE=∠,∠∠外作∠为边在△,以、内一点连结为△:已知,如图,例3DABCEDADBCABCCBE=ABDABC 求证:△DBE∽△ 实用文档 ,有一对角相等,要证两个三ABCDBE和△DBE=DBC公用。所以∠∠ABC,要证的△分析:由已知条件∠ABD=∠CBE,∠,这ABDCBE∽△角形相似,或者再找一对角相等,或者找夹这个角的两边对应成比例。从已知条件中可看到△样既有相等的角,又有成比例的线段,问题就可以得到解决。 ABD中,在△证明:CBE和△BAD BCE=∠CBE=∠ABD, ∠∠ABD CBE∽△∴△BEBC∴=BDAB ABBC即: =BDBE ABC中在△DBE 和△公用∠DBC∠∠CBE=ABD, DBC ∠DBC=∠ABD+∠∴∠CBE+ABC ∠∴∠DBE= 实用文档ABBC且=BDBE ABC

相似三角形模型分析大全

. 第一部分相似三角形模型分析大全 一、相似三角形判定的基本模型认识 (一)A字型、反A字型(斜A字型) B (平行) B (不平行) (二)8字型、反8字型 B C B C (蝴蝶型)(平行) (不平行) (三)母子型 B (四)一线三等角型: 三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景

. (五)一线三直角型: (六)双垂型: 二、相似三角形判定的变化模型

旋转型:由A 字型旋转得到。 8字 型 拓展 C B E D A 共享性 G A B C E F 一线三等角的变形 一线三直角的变形 第二部分 相似三角形典型例题讲解 母子型相似三角形 例1、已知:如图,△ABC 中,点E 在中线AD 上, ABC DEB ∠=∠. 求证:(1)DA DE DB ?=2 ; (2)DAC DCE ∠=∠.

例2、已知:如图,等腰△ABC 中,AB =AC ,AD ⊥BC 于D ,CG ∥AB ,BG 分别交AD 、AC 于 E 、 F . 求证:EG EF BE ?=2 . 点评:本题考查了等腰三角形的性质、等腰三角形三线合一定理、平行线的性质、相似三角形的判定和性质.关键是能根据所证连接CE 相关练习: 1、如图,梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点O ,BE ∥CD 交CA 延长线于E .

求证:OE OA OC ?=2 . 2、如图,已知AD 为△ABC 的角平分线,EF 为AD 的垂直平分线.求证:FC FB FD ?=2 . 3、已知:如图,在Rt △ABC 中,∠C =90°,BC =2,AC =4,P 是斜边AB 上的一个动点,PD ⊥AB ,交边AC 于点D (点D 与点A 、C 都不重合),E 是射线DC 上一点,且∠EPD =∠A .设A 、P 两点的距离为x ,△BEP 的面积为y . (1)求证:AE =2PE ; (2)求y 关于x 的函数解析式,并写出它的定义域; (3)当△BEP 与△ABC 相似时,求△BEP 的面积.

相似三角形动点问题题型归纳

相似中动点问题 题型一位似图形 例1如图,已知O是坐标原点,B、C两点的坐标分别为(3,-1)、(2,1). (1)以0点为位似中心在y轴的左侧将△OBC放大到两倍(即新图与原图的相似比为2), 画出图形; (2)分别写出B、C两点的对应点B′、C′的坐标; (3)如果△OBC内部一点M的坐标为(x,y),写出M的对应点M′的坐标. 例2如图,图中的小方格都是边长为1的正方形,△ABC与△A′ B′ C′是关于点0为位似中 心的位似图形,它们的顶点都在小正方形的顶点上. (1)画出位似中心点0; (2)求出△ABC与△A′B′C′的位似比; (3)以点0为位似中心,再画一个△A1B1C1,使它与△ABC的位似比等于1.5. 题型二动点存在问题 1如图,在△ABC中,AB=8,BC=7,AC=6,有一动点P从A沿AB移动到B,移动速度 为2单位/秒,有一动点Q从C沿CA移动到A,移动速度为1单位/秒,问两动点同时移动 多少时间时,△PQA与△BCA相似。 2、如图,在平面直角坐标系内,已知点A(0,6)、点B(8,0), 动点P从点A开始在线段AO上以每秒1个单位长度的速度向点O 移动,同时动点Q从点B开始在线段BA上以每秒2个单位长度的 速度向点A移动,设点P、Q移动的时间为t秒.(1) 求直线AB的 解析式;(2) 当t为何值时,△APQ与△AOB相似? (3) 当t为 何值时,△APQ的面积为 5 24 个平方单位? 3、如图所示,在矩形ABCD中, AB=12cm,BC=6cm,点P沿AB 边从点A开始向点B以2厘米/ 秒的速度移动;点Q沿DA边从 点D开始向点A以1厘米/秒的 速度移动。如果P、Q同时出发, 用t(秒)表示移动时间(0≤t ≤6),那么: ⑴当t为何值时,⊿QAP为等腰直角三角形? A B C D Q P y x O P Q A B

相似三角形基本模型——A字型、旋转型相似

课题:相似三角形基本模型——A字型、旋转型相似 教学目标: 1、通过习题引入,了解“A字型、旋转型”的特征与其中两个三角形相似的条件,并掌握其中两个相似三角形的性质; 2、利用“A字型、旋转型”中两个三角的相似性解决一些计算、证明等简单问题; 3、在“A字型、旋转型”变化的过程中经历图形动态思考,积累做“A字型、旋转型”相似解题的特点与经验。 教学重点难点: 1、在已知图形中观察关键特征——“A字型、旋转型”; 2、在“A字型、旋转型”图的两个三角形中,探索其相似条件。 教学过程: 一、复习与回顾: 相似三角形的性质和判定定理; 二、引入 相似三角形是初中数学中重要的内容,应用广泛,可以证明线段的比例式;也可证明线段相等、平行、垂直等;还可计算线段的长、比值,图形面积及比值。而识别(或构造)A字型、8字型、母子相似型、旋转型等基本图形是解证题的关键。 三、新课讲解: (一)、模型分析有一个公共角(图①、图②)或角有公共部分(图③,∠BAC与∠DAE有公共部分∠DAF),此时需要找另一对角相等,另外若题中未明确相似三角形对应顶点,则需要分类讨论,如图③中可找条件∠D=∠C或∠D=∠B. (二)、基础巩固 1、若△ABC∽△ADE,你可以得出什么结论(图1) 2、D、E分别是△ABC边AB、AC上的点,请你添加一个条件,使△ADE与△ABC相似。(图2) (三)、例题探究:

(四)课堂练习: 三、课堂小结: 我们今天这堂课收获了什么呢 (1)学习了A型相似; (2)学会从复杂图形中分解出基本图形。 (3)数学思想:方程思想,转化思想,分类讨论思想四、作业布置: 中考新航线251页

初三数学相似三角形典型例题(含标准答案)

初三数学相似三角形典型例题(含答案)

————————————————————————————————作者:————————————————————————————————日期:

初三数学相似三角形 (一)相似三角形是初中几何的一个重点,同时也是一个难点,本节复习的目标是: 1. 理解线段的比、成比例线段的概念,会根据比例线段的有关概念和性质求线段的长或两线段的比,了解黄金分割。 2. 会用平行线分线段成比例定理进行有关的计算、证明,会分线段成已知比。 3. 能熟练应用相似三角形的判定和性质解答有关的计算与证明题。 4. 能熟练运用相似三角形的有关概念解决实际问题 本节的重点内容是相似三角形的判定定理和性质定理以及平行线分线段成比例定理。 本节的难点内容是利用判定定理证明两个三角形相似以及相似三角形性质的应用。 相似三角形是平面几何的主要内容之一,在中考试题中时常与四边形、圆的知识相结合构成高分值的综合题,题型常以填空、选择、简答或综合出现,分值一般在10%左右,有时也单独成题,形成创新与探索型试题;有利于培养学生的综合素质。 (二)重要知识点介绍: 1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b c d a b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。 把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。 2. 比例性质: ①基本性质:a b c d ad bc =?= ②合比性质:±±a b c d a b b c d d =?= ③等比性质: ……≠……a b c d m n b d n a c m b d n a b ===+++?++++++=()0

九年级相似三角形知识点总结及例题讲解

相似三角形基本知识 知识点一:放缩与相似 1.图形的放大或缩小,称为图形的放缩运动。 2.把形状相同的两个图形说成是相似的图形,或者就说是相似性。 注意:⑴相似图形强调图形形状相同,与它们的位置、颜色、大小无关。 ⑵相似图形不仅仅指平面图形,也包括立体图形相似的情况。 ⑶我们可以这样理解相似形:两个图形相似,其中一个图形可以看作是由另一个图形放大或缩小得到的. ⑷若两个图形形状与大小都相同,这时是相似图形的一种特例——全等形. 3.相似多边形的性质:如果两个多边形是相似形,那么这两个多边形的对应角相等,对应边的长度成比例。 注意:当两个相似的多边形是全等形时,他们的对应边的长度的比值是1. 知识点二:比例线段有关概念及性质 (1)有关概念 1、比:选用同一长度单位量得两条线段。a 、b 的长度分别是m 、n ,那么就说这两条线段的比是a :b =m : n (或n m b a = ) 2、比的前项,比的后项:两条线段的比a :b 中。a 叫做比的前项,b 叫做比的后项。 说明:求两条线段的比时,对这两条线段要用同一单位长度。 3、比例:两个比相等的式子叫做比例,如d c b a = 4、比例外项:在比例d c b a = (或a :b =c :d )中a 、d 叫做比例外项。 5、比例内项:在比例 d c b a =(或a :b =c :d )中b 、c 叫做比例内项。 6、第四比例项:在比例 d c b a =(或a :b = c : d )中,d 叫a 、b 、c 的第四比例项。 7、比例中项:如果比例中两个比例内项相等,即比例为a b b a = (或 a:b =b:c 时,我们把b 叫做a 和d 的比 例中项。 8.比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的长度的比与另两条线段的长度的比相等,即 d c b a =(或a :b= c : d ) ,那么,这四条线段叫做成比例线段,简称比例线段。(注意:在求线段比时,线段单位要统一,单位不统一应先化成同一单位)

初三数学:相似三角形常见模型

相似三角形常见模型一 【知识清单】 【典例剖析】 知识点一:A 字型的相似三角形 A 字型、反A 字型(斜A 字型) B (平行) B (不平行) (1)如图,若BC DE ∥,则ABC ADE ∽△△

(2)如图,如果B AED ∠=∠,或C ADE ∠=∠,则ACB ADE ∽△△ 1、如图,已知////AB EF CD ,若AB a =,CD b =,EF c =,求证: 111c a b =+. 2、已知在ABC △中,D 是AB 上的点,E 是AC 上的点,连 接 DE ,可得?=∠+∠180C BDE ,线段BC DE 21= ,AE AD 3 2 =,求AC AB 的值。 变式练习: 1、如图,111EE FF MM ∥∥,若AE EF FM MB ===,则 111111:::_________AEE EE F F FF M M MM CB S S S S ?=四边形四边形四边形 2、如图,AD EF MN BC ∥∥∥,若9AD =,18BC =, ::2:3:4AE EM MB =,则_____EF =,_____MN = 3、(2014?乌鲁木齐)如图,AD∥BC,∠D=90°,AD=2,BC=5,DC=8.若在边DC 上有点P ,使△PAD 与△PBC 相似,则这样的点P 有( ) A 、1个 B 、2个 C 、3个 D 、4个 F E D C B A C B D E M 1F 1E 1M E F A B C M N A B C D E F

知识点二:8字型相似三角形 B C C (蝴蝶型) (平行)(不平行) (1)如图,若CD AB∥,则DOC AOB∽△ △ (2)如图,若C A∠ = ∠,则CDJ ABJ∽△ △ 1、已知,P为平行四边形ABCD对角线,AC上一点,过点P的直线与AD,BC,CD的延长线,AB的延长线分别相交于点E,F,G,H 求证: PE PH PF PG = 2、如图,设 AB BC CA AD DE EA ==,求证:12 ∠=∠ 变式练习: 1、(2010?威海)如图①,将一张矩形纸片对折,然后沿虚线剪切,得到两个(不等边)三角形纸片△ABC,△A1B1C1. P H G F E D C B A E

相似三角形典型例题精选

相似三角形的判定与性质综合运用经典题型 考点一:相似三角形的判定与性质: 例1、如图,△PCD是等边三角形,A、C、D、B在同一直线上,且∠APB=120°. 求证:⑴△PAC∽△BPD;⑵ CD2 =AC·BD. 例2、如图,在等腰△ABC中, ∠BAC=90°,AB=AC=1,点D是BC边上的一个动点(不与B、C 重合),在AC上取一点E,使∠ADE=45° (1)求证:△ ABD∽△DCE; (2)设BD=x,AE=y,求y关于x函数关系式及自变量x值范围,并求出当x为何值时AE 取得最小值? (3)在AC上是否存在点E,使得△ADE为等腰三角形若存在,求AE的长;若不存在,请说明理由 例3、如图所示,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B: 1)求证:△ADF∽△DEC; 2)若AB=4,3 3 AD,AE=3,求AF的长。 A B C D F

考点二:射影定理: 例4、如图,在RtΔABC中,∠ACB=90°,CD⊥AB于D,CD=4cm,AD=8cm,求AC、BC及BD的长。 例5、如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,且AF= 1 4 AD,EG⊥CF于点G, (1)求证:△AEF∽△BCE;(2)试说明:EG2=CG·FG. 例6、已知:如图所示的一张矩形纸片ABCD(AD>AB),将纸片折叠一次,使点A与点C重合,再展开,折痕EF交AD边于E,交BC边于F,分别连结AF和CE. (1)求证:四边形AFCE是菱形; (2)若AE=10cm,△ABF的面积为24cm2,求△ABF的周长; (3)在线段AC上是否存在一点P,使得2AE2=AC·AP若存在,请说明点P的位置,并予以证明;若不存在,请说明理由. A B C D E F G

相似三角形题型归纳总结非常全面

相似三角形题型归纳 一、比例的性质: 二、成比例线段的概念: 1.比例的项: 在比例式::a b c d =(即a c b d =)中,a ,d 称为比例外项,b , c 称为比例内项.特别地,在比例式::a b b c =(即a b b c =)中,b 称为a ,c 的比例中项,满足b ac 2=. 2.成比例线段: 四条线段a ,b ,c ,d 中,如果a 和b 的比等于c 和d 的比,即a c b d =,那么这四条线段a ,b ,c ,d 叫做成比例线段,简称比例线段. 3.黄金分割: 如图,若线段AB 上一点C ,把线段AB 分成两条线段AC 和BC (AC BC >),且使AC 是AB 和BC 的比例中项(即AC AB BC 2=?),则称线段AB 被点C 黄金分割,点C 叫线段AB 的黄金分割点,其中.AC AB AB ≈0618,BC AB =.AB ≈0382,AC 与AB 的比叫做黄金比.(注意:对于线段AB 而言,黄金分割点有两个.) 三、平行线分线段成比例定理 1.平行线分线段成比例定理 A

两条直线被三条平行线所截,所得的对应线段成比例,简称为平行线分线段成比例定理.如图:如果123////l l l ,则 AB DE BC EF =,AB DE AC DF =,BC EF AC DF = . A D B E C F 1 l 2 l 3 l A D B E C F 1 l 2l 3 l 【小结】若将所截出的小线段位置靠上的(如AB )称为上,位置靠下的称为下,两条线段合成的线段称为全,则可以形象的表示为 =上上下下,=上上全全,=下下 全全 . 2.平行线分线段成比例定理的推论 平行于三角形一边的直线,截其它两边(或两边的延长线),所得的对应线段成比例.如图:如果EF//BC ,则 AE AF EB FC =,AE AF AB AC =,BE CF AB AC = . A B C E F F E C B A 平行线分线段成比例定理的推论的逆定理 若 AE AF EB FC =或AE AF AB AC =或BE CF AB AC = ,则有EF//BC . 【注意】对于一般形式的平行线分线段成比例的逆定理不成立,反例:任意四边形中一对对边的中点的连线与剩下两条边,这三条直线满足分线段成比例,但是它们并不平行. 【小结】推论也简称“A ”和“8”,逆定理的证明可以通过同一法,做'//EF BC 交AC 于'F 点,再证明'F 与F 重合即可. 四、相似三角形的定义、性质和判定 1.相似图形 ①定义:对应角相等,对应边成比例的图形叫做相似图形.对应边的比例叫做相似比.相似图形是形状相同,大小不一定相同.相似图形间的互相变换称为相似变换. ②性质:两个相似图形的对应角相等,对应边成比例. 2.相似三角形的定义

相关文档
最新文档