浙江历年高考真题导数精选文档

浙江历年高考真题导数精选文档
浙江历年高考真题导数精选文档

浙江历年高考真题导数

精选文档

TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-

1. (07浙江高考)已知()221f x x x kx =-++.

(I)若k =2,求方程()0f x =的解;

(II)若关于x 的方程()0f x =在(0,2)上有两个解x 1,x 2,求k 的取值范围,并证明12

11

4x x +<

2. (08浙江高考)已知a 是实数,函数()2()f x x x a =-.

(Ⅰ)若f 1(1)=3,求a 的值及曲线)(x f y =在点))1(,1(f 处的切线

方程;

(Ⅱ)求)(x f 在区间[0,2]上的最大值。

3.(09浙江高考)已知函数32()(1)(2)f x x a x a a x b =+--++ (,)a b ∈R .

(I )若函数()f x 的图象过原点,且在原点处的切线斜率是3-,求,a b 的值;

(II )若函数()f x 在区间(1,1)-上不单调...,求a 的取值范围.

4.(10浙江高考)已知函数2()()f x x a =-(a-b )(,,a b R a ∈

(I )当a=1,b=2时,求曲线()y f x =在点(2,()f x )处的切线方程。

(II )设12,x x 是()f x 的两个极值点,3x 是()f x 的一个零点,且31x x ≠,32x x ≠

证明:存在实数4x ,使得1234,,,x x x x 按某种顺序排列后的等差数列,并求4x

5.(11浙江高考)设函数

22

()ln ,0f x a x x ax a =-+>

(I )求()f x 的单调区间

(II )求所有实数a ,使2

1()e f x e -≤≤对[]1,x e ∈恒成立。

注:e 为自然对数的底数。

6.(12浙江高考)已知,a R ∈函数2()42.f x x ax a =-+

⑴求()f x 的单调区间

⑵证明:当01x ≤≤时,()20.f x a +->||

7.(13浙江高考)知a ∈R ,函数f (x )=2x 3-3(a +1)x 2+6ax .

(1)若a =1,求曲线y =f (x )在点(2,f (2))处的切线方程;

(2)若|a |>1,求f (x )在闭区间[0,2|a |]上的最小值.

1. (Ⅰ)解:(1)当k =2时,()221f x x x kx =-++

① 当2

10x -≥时,即x ≥1或x ≤-1时,方程化为22210x x +-=

解得x =1012-+<<,故舍去,所以x =

②当210x -<时,-1<x <1时,方程化为210x +=,解得12

x =-

由①②得当k =2时,方程()0f x =的解所以12x -=或1

2

x =-.

(II)解:不妨设0<x 1<x 2<2,

因为()22 1 x 1

1 x 1

x kx f x kx ?+->?=?+≤??

所以()f x 在(0,1]是单调函数,故()0f x =在(0,1]上至多一个解,

若1<x 1<x 2<2,则x 1x 2=1

2

-<0,故不符题意,因此0<x 1≤1<x 2<2.

由()10f x =得1

1

k x =-,所以1k ≤-;

由()20f x =得2212k x x =-, 所以7

12

k -<<-;

故当7

12

k -<<-时,方程()0f x =在(0,2)上有两个解.

当0<x 1≤1<x 2<2时,1

1

k x =-,222210x kx +-=

消去k 得2121220x x x x --= 即212112x x x +=,因为x 2<2,所以12

11

4x x +<.

2. )解:2'()32f x x ax =-.

因为'(I)323f a =-=,

所以 0a =.

又当0a =时,(I)1,'(I)3f f ==,

所以曲线()(1,(I))y f x f =在处的切线方程为 3x y --2=0.

(II )解:令'()0f x =,解得1220,3

a x x ==. 当203

a

≤,即a ≤0时,()f x 在[0,2]上单调递增,从而

max (2)84f f a ==-.

当223

a

≥时,即a ≥3时,()f x 在[0,2]上单调递减,从而

max (0)0f f ==.

当2023a <

<,即03a <<,()f x 在20,3a ??????上单调递减,在2,23a ??

????

上单调递增,从而 max 84,0 2.

0,2 3.

a a f a -<≤??=?<

综上所述,max

84, 2.0, 2.

a a f a -≤??=?>??

3. 解析:(Ⅰ)由题意得)2()1(23)(2+--+='a a x a x x f

又???

-=+-='==3)2()0(0)0(a a f b f ,解得0=b ,3-=a 或1=a

(Ⅱ)函数)(x f 在区间)1,1(-不单调,等价于

导函数)(x f '在)1,1(-既能取到大于0的实数,又能取到小于0的实数

即函数)(x f '在)1,1(-上存在零点,根据零点存在定理,有

0)1()1(<'-'f f , 即:0)]2()1(23)][2()1(23[<+---+--+a a a a a a

整理得:0)1)(1)(5(2<-++a a a ,解得15-<<-a

4. Ⅰ)解:当a=1,b=2时,

因为f’(x)=(x -1)(3x-5)

故f’(2)=1 f(2)=0,

所以f(x)在点(2,0)处的切线方程为y=x-2

(Ⅱ)证明:因为f ′(x )=3(x -a )(x -23

a b

+), 由于a

故a <

23

a b

+. 所以f (x )的两个极值点为x =a ,x =

23

a b

+. 不妨设x 1=a ,x 2=

23

a b

+, 因为x 3≠x 1,x 3≠x 2,且x 3是f (x )的零点,

故x 3=b .

又因为

23a b +-a =2(b -23

a b

+),

x 4=

12(a +23a b +)=23

a b +, 所以a ,23a b +,23

a b

+,b 依次成等差数列,

所以存在实数x 4满足题意,且x 4=23

a b

+.

5. (Ⅰ)解:因为22()ln f x a x x ax =-+,其中0x ,

所以2()(2)

'()2a x a x a f x x a x x

-+=+=-。

由于0a ,所以()f x 的增区间为(0,a ),减区间为(a,+∞)

(Ⅱ)证明:由题意得, (1)11f a c =-≥-,即a c ≥

由(Ⅰ)知()f x 在[1,e]恒成立,

要使21()e f x e -≤≤对[1,]x e ∈恒成立,

只要222

(1)11

()f a e f e a e ae e =-≥-??=-+≤?

解得a e =。

6. (Ⅰ)由题意得2()122f x x a '=-

当0a ≤时,()0f x '≥恒成立,此时()f x 的单调递增区间为(,).-∞+∞

当0a >

时,()12(f x x x '=此时函数()f x 的

单调递增区间为(,-∞

和),+∞

单调递减区间为[

(Ⅱ)

由于01,x ≤≤故

当2a ≤时,33()|2|422442;f x a x ax x x +-=-+≥-+

当2a >时,

333()|2|42(1)244(1)244 2.f x a x a x x x x x +-=+--≥+--=-+

设32()221,01, ()626(

g x x x x g

x x x x '

=-+≤≤=-=-

则于是

所以,min ()10,g x g ==>所以当01x ≤≤时,32210.x x -+>

故 3()|2|4420.f x a x x +-≥-+>

7. 解:(1)当a =1时,f ′(x )=6x 2-12x +6,

所以f ′(2)=6.

又因为f (2)=4,所以切线方程为y =6x -8. (2)记g (a )为f (x )在闭区间[0,2|a |]上的最小值. f ′(x )=6x 2-6(a +1)x +6a =6(x -1)(x -a ). 令f ′(x )=0,得到x 1=1,x 2=a .

比较f (0)

=0和f (a )=a 2(3-a )的大小可得

g (a )=23, 3.a a a ??(-)>?

当得综上所述,f (x )在闭区间[0,2|a |]上的最小值为g (a )=231,1,0,13,3, 3.a a a a a a -<-??

<≤??(-)>?

导数练习题 含答案

导数练习题 班 级 姓名 一、选择题 1.当自变量从x 0变到x 1时函数值的增量与相应自变量的增量之比是函数( ) A .在区间[x 0,x 1]上的平均变化率 B .在x 0处的变化率 C .在x 1处的变化量 D .在区间[x 0,x 1]上的导数 2.已知函数y =f (x )=x 2 +1,则在x =2,Δx =0.1时,Δy 的值为( ) A .0.40 B .0.41 C .0.43 D .0.44 3.函数f (x )=2x 2-1在区间(1,1+Δx )上的平均变化率Δy Δx 等于( ) A .4 B .4+2Δx C .4+2(Δx )2 D .4x 4.如果质点M 按照规律s =3t 2 运动,则在t =3时的瞬时速度为( ) A . 6 B .18 C .54 D .81 5.已知f (x )=-x 2+10,则f (x )在x =32处的瞬时变化率是( ) A .3 B .-3 C . 2 D .-2 6.设f ′(x 0)=0,则曲线y =f (x )在点(x 0,f (x 0))处的切线( ) A .不存在 B .与x 轴平行或重合 C .与x 轴垂直 D .与x 轴相交但不垂直 7.曲线y =-1 x 在点(1,-1)处的切线方程 为( ) A .y =x -2 B .y =x C .y =x + 2 D .y =-x -2 8.已知曲线y =2x 2上一点A (2,8),则A 处的切线斜率为( ) A .4 B .16 C .8 D .2 9.下列点中,在曲线y =x 2上,且在该点 处的切线倾斜角为π 4的是( ) A .(0,0) B .(2,4) C .(14,1 16) D .(12,1 4) 10.若曲线y =x 2+ax +b 在点(0,b )处的切线方程是x -y +1=0,则( ) A .a =1,b = 1 B .a =-1,b =1 C .a =1,b =- 1 D .a =-1,b =-1 11.已知f (x )=x 2,则f ′(3)=( ) A .0 B .2x C . 6 D .9 12.已知函数f (x )=1 x ,则f ′(-3)=( ) A . 4 B.1 9 C .-14 D .-1 9 13.函数y =x 2 x +3 的导数是( )

(完整)高考文科数学导数专题复习

高考文科数学导数专题复习 第1讲 变化率与导数、导数的计算 知 识 梳 理 1.导数的概念 (1)函数y =f (x )在x =x 0处的导数f ′(x 0)或y ′|x =x 0,即f ′(x 0)=0 lim x ?→f (x 0+Δx )-f (x 0) Δx . (2)函数f (x )的导函数f ′(x )=0 lim x ?→f (x +Δx )-f (x ) Δx 为f (x )的导函数. 2.导数的几何意义函数y =f (x )在点x 0处的导数的几何意义,就是曲线y =f (x )在点P (x 0,f (x 0))处的切线的斜率,过点P 的切线方程为y -y 0=f ′(x 0)(x -x 0). 3.基本初等函数的导数公式 4.导数的运算法则若f ′(x ),g ′(x )存在,则有: 考点一 导数的计算 【例1】 求下列函数的导数: (1)y =e x ln x ;(2)y =x ? ?? ??x 2+1x +1x 3; 解 (1)y ′=(e x )′ln x +e x (ln x )′=e x ln x +e x 1x =? ?? ??ln x +1x e x .(2)因为y =x 3 +1+1x 2, 所以y ′=(x 3)′+(1)′+? ?? ??1x 2′=3x 2 -2x 3. 【训练1】 (1) 已知函数f (x )的导函数为f ′(x ),且满足f (x )=2x ·f ′(1)+ln x ,则f ′(1)等于( ) A.-e B.-1 C.1 D.e 解析 由f (x )=2xf ′(1)+ln x ,得f ′(x )=2f ′(1)+1 x ,∴f ′(1)=2f ′(1)+1,则f ′(1)=-1.答案 B (2)(2015·天津卷)已知函数f (x )=ax ln x ,x ∈(0,+∞),其中a 为实数,f ′(x )为f (x )的导函数.若f ′(1)=3,则a 的值为________. (2)f ′(x )=a ? ?? ??ln x +x ·1x =a (1+ln x ).由于f ′(1)=a (1+ln 1)=a ,又f ′(1)=3,所以a =3.答案 (2)3 考点二 导数的几何意义 命题角度一 求切线方程 【例2】 (2016·全国Ⅲ卷)已知f (x )为偶函数,当x ≤0时,f (x )=e -x -1 -x ,则曲线y =f (x )在点(1,2)处的 切线方程是________.解析 (1)设x >0,则-x <0,f (-x )=e x -1 +x .又f (x )为偶函数,f (x )=f (-x )=e x -1 +x , 所以当x >0时,f (x )=e x -1 +x .因此,当x >0时,f ′(x )=e x -1 +1,f ′(1)=e 0 +1=2.则曲线y =f (x )在点(1, 2)处的切线的斜率为f ′(1)=2,所以切线方程为y -2=2(x -1),即2x -y =0. 答案 2x -y =0 【训练2】(2017·威海质检)已知函数f (x )=x ln x ,若直线l 过点(0,-1),并且与曲线y =f (x )相切,则直线l 的方程为( )A.x +y -1=0 B.x -y -1=0 C.x +y +1=0 D.x -y +1=0

(完整版)高二数学导数大题练习详细答案

1.已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所 示. (I )求d c ,的值; (II )若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数)(x f 的解析式; (III )在(II )的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的图象有三个不同的交点,求m 的取值范围. 2.已知函数)(3ln )(R a ax x a x f ∈--=. (I )求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为 ,2 3 若函数]2 )('[31)(23m x f x x x g ++= 在区间(1,3)上不是单调函数,求m 的取值范围. 3.已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (II )若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (III )对于(II )中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I )写出)(x f 的单调递增区间,并证明a e a >; (II )讨论函数)(x g y =在区间),1(a e 上零点的个数.

5.已知函数()ln(1)(1)1f x x k x =---+. (I )当1k =时,求函数()f x 的最大值; (II )若函数()f x 没有零点,求实数k 的取值范围; 6.已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I )求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.已知函数)0,(,ln )2(4)(2≠∈-+-=a R a x a x x x f (I )当a=18时,求函数)(x f 的单调区间; (II )求函数)(x f 在区间],[2e e 上的最小值. 8.已知函数()(6)ln f x x x a x =-+在(2,)x ∈+∞上不具有...单调性. (I )求实数a 的取值范围; (II )若()f x '是()f x 的导函数,设2 2 ()()6g x f x x '=+- ,试证明:对任意两个不相 等正数12x x 、,不等式121238|()()|||27 g x g x x x ->-恒成立.

导数测试题(含答案)

导数单元测试题 班级姓名 一、选择题 1.已知函数y=f(x)=x2+1,则在x=2,Δx=0.1时,Δy的值为( ) A.0.40 B.0.41 C.0.43 D.0.44 2.函数f(x)=2x2-1在区间(1,1+Δx)上的平均变化率Δy Δx 等于( ) A.4 B.4+2Δx C.4+2(Δx)2 D.4x 3.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( ) A.不存在B.与x轴平行或重合 C.与x轴垂直D.与x轴相交但不垂直 4.曲线y=-1 x 在点(1,-1)处的切线方程为( ) A.y=x-2 B.y=x C.y=x+2 D.y=-x-2 5.下列点中,在曲线y=x2上,且在该点处的切线倾斜角为π 4 的是( ) A.(0,0) B.(2,4) C.(1 4 , 1 16 ) D.( 1 2 , 1 4 ) 6.已知函数f(x)=1 x ,则f′(-3)=( ) A.4 B.1 9 C.- 1 4 D.- 1 9 7.函数f(x)=(x-3)e x的单调递增区间是( ) A.(-∞,2) B.(0,3) C.(1,4) D.(2,+∞) 8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 9.函数f(x)的定义域为开区间(a,b),导函数f′(x)在(a,b)内的图象如图所示,则函数f(x)在开区间(a,b)内的极小值点有( ) A.1个B.2个 C.3个D.4个 10.函数f(x)=-x2+4x+7,在x∈[3,5]上的最大值和最小值分 别是( ) A.f(2),f(3) B.f(3),f(5) C.f(2),f(5) D.f(5),f(3) 11.函数f(x)=x3-3x2-9x+k在区间[-4,4]上的最大值为10,则其最小值为( ) A.-10 B.-71 C.-15 D.-22 12.一点沿直线运动,如果由始点起经过t秒运动的距离为s= 1 4 t4- 5 3 t3+2t2,那么速度为零的时刻是( ) A.1秒末 B.0秒 C.4秒末 D.0,1,4秒末 二、填空题 13.设函数y=f(x)=ax2+2x,若f′(1)=4,则a=________. 14.已知函数y=ax2+b在点(1,3)处的切线斜率为2,则 b a =________. 15.函数y=x e x的最小值为________. 16.有一长为16 m的篱笆,要围成一个矩形场地,则矩形场地的最大面积是________m2. 三、解答题 17.求下列函数的导数:(1)y=3x2+x cos x; (2)y= x 1+x ; (3)y=lg x-e x. 18.已知抛物线y=x2+4与直线y=x+10,求: (1)它们的交点; (2)抛物线在交点处的切线方程. 19.已知函数f(x)= 1 3 x3-4x+4.(1)求函数的极值; (2)求函数在区间[-3,4]上的最大值和最小值.

高考文科数学导数全国卷

导数高考题专练 1、(2012课标全国Ⅰ,文21)(本小题满分12分) 设函数f (x )= e x -ax -2 (Ⅰ)求f (x )的单调区间 (Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ′(x )+x +1>0,求k 的最大值 2、(2013课标全国Ⅰ,文20)(本小题满分12分) 已知函数f (x )=e x (ax +b )-x 2-4x ,曲线y =f (x )在点(0,f (0))处的切线方程为y =4x +4. (1)求a ,b 的值; (2)讨论f (x )的单调性,并求f (x )的极大值. 3、(2015课标全国Ⅰ,文21).(本小题满分12分) 设函数2()ln x f x e a x =-. (Ⅰ)讨论()f x 的导函数'()f x 零点的个数; (Ⅱ)证明:当0a >时,2 ()2ln f x a a a ≥+。 4、(2016课标全国Ⅰ,文21)(本小题满分12分) 已知函数.2)1(2)(-+-= x a e x x f x )( (I)讨论)(x f 的单调性; (II)若)(x f 有两个零点,求的取值范围. 5、((2016全国新课标二,20)(本小题满分12分) 已知函数()(1)ln (1)f x x x a x =+--. (I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程;

(II)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 6(2016山东文科。20)(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间; (Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 2017.(12分) 已知函数)f x =(a e 2x +(a ﹣2) e x ﹣x . (1)讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围. 2018全国卷)(12分) 已知函数()1 ln f x x a x x = -+. ⑴讨论()f x 的单调性; ⑵若()f x 存在两个极值点1x ,2x ,证明: ()()1212 2f x f x a x x -<--. 导数高考题专练(答案) 1 2解:(1)f ′(x )=e x (ax +a +b )-2x -4. 由已知得f (0)=4,f ′(0)=4. 故b =4,a +b =8. 从而a =4,b =4. (2)由(1)知,f (x )=4e x (x +1)-x 2-4x ,

浙江导数大题专练

导数大题专练 (2015年浙江省理15分)已知函数()2=++∈( ),f x x ax b a b R ,记M (a ,b )是|f (x )|在区间[-1,1]上的最大值. (1)证明:当|a |2时,M (a ,b )2; (2)当a ,b 满足M (a ,b )2,求|a |+|b |的最大值. ≥≥≤

(2015年浙江省文15分)设函数. (1)当时,求函数在上的最小值的表达式; (2)已知函数在上存在零点,,求b 的取值范围. 2 (),(,)f x x ax b a b R =++∈2 14 a b =+()f x [1,1]-()g a ()f x [1,1]-021b a ≤-≤

(2016理)已知,函数F(x)=min{2|x?1|,x2?2ax+4a?2},其中min{p,q}= (I)求使得等式F(x)=x2?2ax+4a?2成立的x的取值范围;(II)(i)求F(x)的最小值m(a); (ii)求F(x)在区间[0,6]上的最大值M(a).

(2016文)设函数=,.证明:(I); (II).

(2017真)已知函数f(x)=(x e x-( 1 2 x≥). (Ⅰ)求f(x)的导函数; (Ⅱ)求f(x)在区间 1 [+) 2 ∞ ,上的取值范围.

(2017押)已知函数()()||()f x x t x t R =-∈. (Ⅰ)求函数()y f x =的单调区间; (Ⅱ)当t>0时,若f(x))在区间1-1,2]上的最大值为M(t),最小值为m(t),求M(t)-m(t)的最小值.

导数练习题含答案

导数概念及其几何意义、导数的运算 一、选择题: 1 已知32 ()32f x ax x =++,若(1)4f '-=,则a 的值等于 A 193 B 103 C 16 3 D 133 2 已知直线1y kx =+与曲线3 y x ax b =++切于点(1,3),则b 的值为 A 3 B -3 C 5 D -5 3 函数2y x a a = +2 ()(x-)的导数为 A 222()x a - B 223()x a + C 223()x a - D 22 2()x a + 4 曲线313y x x =+在点4 (1,)3 处的切线与坐标轴围成的三角形的面积为 A 1 9 B 29 C 13 D 2 3 5 已知二次函数2 y ax bx c =++的导数为(),(0)0f x f ''>,对于任意实数x ,有()0f x ≥,则(1) (0) f f '的最小值为 A 3 B 52 C 2 D 32 6 已知函数()f x 在1x =处的导数为3,则()f x 的解析式可能为 A 2()(1)3(1)f x x x =-+- B ()2(1)f x x =- C 2()2(1)f x x =- D ()1f x x =- 7 下列求导数运算正确的是 A 211()1x x x '+=+ B 21 (log )ln 2 x x '= C 3(3)3log x x e '=? D 2 (cos )2sin x x x x '=- 8 曲线32 153 y x x =-+在1x =处的切线的倾斜角为 A 6 π B 34π C 4π D 3 π 9 曲线3 2 31y x x =-+在点(1,1)-处的切线方程为 A 34y x =- B 32y x =-+ C 43y x =-+ D 45y x =- 10 设函数sin cos y x x x =+的图像上的点(,)x y 处的切线斜率为k ,若()k g x =,则函数()k g x =的图像大致为

2019年高考文科数学导数及其应用分类汇编

导数及其应用 1.【2019年高考全国Ⅱ卷文数】曲线y =2sin x +cos x 在点(π,-1)处的切线方程为 A .10x y --π-= B .2210x y --π-= C .2210x y +-π+= D .10x y +-π+= 【答案】C 【解析】2cos sin ,y x x '=-π2cos πsin π2,x y =∴=-=-' 则2sin cos y x x =+在点(,1)π-处的切线方程为(1)2()y x --=--π,即2210x y +-π+=. 故选C . 2.【2019年高考全国Ⅲ卷文数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 3.【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b ,

导数大题练习题答案

导数练习题(B)答案 1.(本题满分12分) 已知函数d x b a c bx ax x f +--++=)23()(23的图象如图所示. (I )求d c ,的值; (II)若函数)(x f 在2=x 处的切线方程为0113=-+y x ,求函数 ) (x f 的解析式; (III )在(II)的条件下,函数)(x f y =与m x x f y ++'=5)(3 1的 图象有三 个不同的交点,求m 的取值范围. 2.(本小题满分12分) 已知函数)(3ln )(R a ax x a x f ∈--=. (I)求函数)(x f 的单调区间; (II )函数)(x f 的图象的在4=x 处切线的斜率为,2 3 若函数]2 )('[3 1)(23m x f x x x g ++=在区间 (1,3)上不是单调函数,求m 的取值范围. 3.(本小题满分14分) 已知函数c bx ax x x f +++=23)(的图象经过坐标原点,且在1=x 处取得极大值. (I )求实数a 的取值范围; (I I)若方程 9 )32()(2 +- =a x f 恰好有两个不同的根,求)(x f 的解析式; (I II)对于(I I)中的函数)(x f ,对任意R ∈βα、,求证:81|)sin 2()sin 2(|≤-βαf f . 4.(本小题满分12分) 已知常数0>a ,e 为自然对数的底数,函数x e x f x -=)(,x a x x g ln )(2-=. (I)写出)(x f 的单调递增区间,并证明a e a >; (II)讨论函数)(x g y =在区间),1(a e 上零点的个数. 5.(本小题满分14分) 已知函数()ln(1)(1)1f x x k x =---+. (I)当1k =时,求函数()f x 的最大值; (I I)若函数()f x 没有零点,求实数k 的取值范围; 6.(本小题满分12分) 已知2x =是函数2()(23)x f x x ax a e =+--的一个极值点(???=718.2e ). (I)求实数a 的值; (II )求函数()f x 在]3,2 3[∈x 的最大值和最小值. 7.(本小题满分14分)

高中数学导数的几何意义测试题含答案

高中数学导数的几何意义测试题(含答案) 选修2-21.1第3课时导数的几何意义 一、选择题 1.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+2y-3=0,那么() A.f(x0)>0 B.f(x0)<0 C.f(x0)=0 D.f(x0)不存在 [答案] B [解析] 切线x+2y-3=0的斜率k=-12,即f(x0)=-12<0.故应选B. 2.曲线y=12x2-2在点1,-32处切线的倾斜角为() A.1 B.4 C.54 D.-4 [答案] B [解析] ∵y=limx0[12(x+x)2-2]-(12x2-2)x =limx0(x+12x)=x 切线的斜率k=y|x=1=1. 切线的倾斜角为4,故应选B. 3.在曲线y=x2上切线的倾斜角为4的点是() A.(0,0) B.(2,4) C.14,116 D.12,14

[答案] D 页 1 第 [解析] 易求y=2x,设在点P(x0,x20)处切线的倾斜角为4,则2x0=1,x0=12,P12,14. 4.曲线y=x3-3x2+1在点(1,-1)处的切线方程为() A.y=3x-4 B.y=-3x+2 C.y=-4x+3 D.y=4x-5 [答案] B [解析] y=3x2-6x,y|x=1=-3. 由点斜式有y+1=-3(x-1).即y=-3x+2. 5.设f(x)为可导函数,且满足limx0f(1)-f(1-2x)2x=-1,则过曲线y=f(x)上点(1,f(1))处的切线斜率为() A.2 B.-1 C.1 D.-2 [答案] B [解析] limx0f(1)-f(1-2x)2x=limx0f(1-2x)-f(1)-2x =-1,即y|x=1=-1, 则y=f(x)在点(1,f(1))处的切线斜率为-1,故选B. 6.设f(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线() A.不存在 B.与x轴平行或重合

2019年高考数学理科数学 导数及其应用分类汇编

2019年高考数学理科数学 导数及其应用 1.【2019年高考全国Ⅲ卷理数】已知曲线e ln x y a x x =+在点(1,a e )处的切线方程为y =2x +b ,则 A .e 1a b ==-, B .a=e ,b =1 C .1e 1a b -==, D .1e a -=,1b =- 【答案】D 【解析】∵e ln 1,x y a x '=++ ∴切线的斜率1|e 12x k y a ='==+=,1e a -∴=, 将(1,1)代入2y x b =+,得21,1b b +==-. 故选D . 2.【2019年高考天津理数】已知a ∈R ,设函数222,1, ()ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()0 f x ≥在R 上恒成立,则a 的取值范围为 A .[] 0,1 B .[] 0,2 C .[]0,e D .[] 1,e 【答案】C 【解析】当1x =时,(1)12210f a a =-+=>恒成立; 当1x <时,2 2 ()22021 x f x x ax a a x =-+≥?≥-恒成立, 令2 ()1 x g x x =-, 则222(11)(1)2(1)1 ()111x x x x g x x x x -----+=-=-=- --- 11122(1)2011x x x x ???? =--+-≤--?= ? ? ?--???? , 当1 11x x -= -,即0x =时取等号, ∴max 2()0a g x ≥=,则0a >.

当1x >时,()ln 0f x x a x =-≥,即ln x a x ≤恒成立, 令()ln x h x x = ,则2ln 1()(ln )x h x x -'=, 当e x >时,()0h x '>,函数()h x 单调递增, 当0e x <<时,()0h x '<,函数()h x 单调递减, 则e x =时,()h x 取得最小值(e)e h =, ∴min ()e a h x ≤=, 综上可知,a 的取值范围是[0,e]. 故选C. 3.(2019浙江)已知,a b ∈R ,函数32 ,0 ()11(1),03 2x x f x x a x ax x 0 C .a >–1,b <0 D .a >–1,b >0 【答案】C 【解析】当x <0时,y =f (x )﹣ax ﹣b =x ﹣ax ﹣b =(1﹣a )x ﹣b =0,得x , 则y =f (x )﹣ax ﹣b 最多有一个零点; 当x ≥0时,y =f (x )﹣ax ﹣b x 3 (a +1)x 2+ax ﹣ax ﹣b x 3 (a +1)x 2﹣b , 2(1)y x a x =+-', 当a +1≤0,即a ≤﹣1时,y ′≥0,y =f (x )﹣ax ﹣b 在[0,+∞)上单调递增, 则y =f (x )﹣ax ﹣b 最多有一个零点,不合题意; 当a +1>0,即a >﹣1时,令y ′>0得x ∈(a +1,+∞),此时函数单调递增, 令y ′<0得x ∈[0,a +1),此时函数单调递减,则函数最多有2个零点. 根据题意,函数y =f (x )﹣ax ﹣b 恰有3个零点?函数y =f (x )﹣ax ﹣b 在(﹣∞,0)上有一个零点,在[0,+∞)上有2个零点, 如图:

导数大题经典练习及答案

导数大题专题训练 2g(x)-ax,=-x1.已知f(x)=xlnx的取值范围;,+∞),f(x)≥g(x)恒成立,求实数2,- a(Ⅰ)对一切x∈(0>1lnx+>0)上的最值;(Ⅲ)证明:对一切x∈(0,+∞),都有1时,求函数f(x)在[m,m+3](m=-(Ⅱ)当a成立. 的单调区垂直,求函数y=f (x)f (1))处的切线与直线y=x+2P.(Ⅰ)若曲线y=f (x)在点(1,2、已知函数a=1当R).g (x)=f (x)+x―b(b∈成立,试求间;(Ⅱ)若对于都有f (x)>2(a―1)a的取值范围;(Ⅲ)记1―.,e]上有两个零点,求实数b的取值范围在区间时,函数g (x)[e a=0,求函数f (x)[1,e](Ⅰ)若af (x)=lnx+(x3.设函数-a),∈R.在2上的最小值;在 上存在单调递增区间,试求实数(Ⅱ)若函数f (x)a的取值范围;(Ⅲ)求函数f (x)的极值点. 、已知函数.4设,若对任意,均存在,使得,求的)Ⅲ(求的单调区间;)Ⅱ(若曲线在和处的切线互相平行,求的值;)Ⅰ( 取值范围. 5、已知函数 (Ⅰ)若曲线y=f(x)在点P(1,f(1))处的切线与直线y=x+2垂直,求函数y=f(x)的单调区间;(Ⅱ)若对于任意成立,试求a的取值范围; (Ⅲ)记g(x)=f(x)+x-b(b∈R).当a=1时,函数g(x)在区间上有两个零点,求实数b的取值范围.

6、已知函数. (1)若函数在区间(其中)上存在极值,求实数a的取值范围; (2)如果当时,不等式恒成立,求实数k的取值范围. 1.解:(Ⅰ)对一切恒成立,即恒成立.也就是在恒成立;令,则, 在上,在上,因此,在处取极小值,也是最小值, 即,所以. (Ⅱ)当,,由得. ①当时,在上,在上 因此,在处取得极小值,也是最小值. . 由于因此, ②当,,因此上单调递增,所以, ……9分 (Ⅲ)证明:问题等价于证明 由(Ⅱ)知时,的最小值是,当且仅当时取得, 设,则,易知,当且仅当时取到, 但从而可知对一切,都有成立. 2、解:(Ⅰ)直线y=x+2的斜率为1.函数f (x)的定义域为(0,+∞),因为,所以,所以a=1.所以. .由解得x>0;由解得0<x<2. 所以f (x)的单调增区间是(2,+∞),单调减区间是(0,2) (Ⅱ),由解得;由解得.所以f (x)在区间上单调递增,在区间上单调递减.所以当时,函数f (x)取得最小值,. 因为对于都有成立, 所以即可. 则.由解得.所以a的取值范围是. (Ⅲ)依题得,则.由解得x>1;由解得0<x<1.所以函数在区间(0,1)为减函数,在区间(1,+∞)为增函-1.所以b的取值范围是[e,e]上有两个零点,所以.解得.数.又因为函数在区间,e]上是增函数,∞). 因为,所以f (x)在[103.解:(Ⅰ)f (x)的定义域为(,+ e]上的最小值为1.所以f (x)在[1,f (x)当x=1时,取得最小值f (1)=1.2注意到抛. ,依题意,在区间上存在子区间使得不等式g (x)>0成立2ax+1(Ⅱ)解法一:设g (x)=2x―2物线g (x)=2x―2ax+1开口向上,所以只要g (2)>0,或即可由g (2)>0,即8―4a+1>0,得,由,即,得,所以, 所以实数a的取值范围是. 所以.又因为x>0,依题意得,在区间上存在子区间使不等式2x―2ax+1>0成立.解法二: . 2,

(完整版)导数的计算练习题及答案

【巩固练习】 一、选择题 1.设函数310()(12)f x x =-,则'(1)f =( ) A .0 B .―1 C .―60 D .60 2.(2014 江西校级一模)若2()2ln f x x x =-,则'()0f x >的解集为( ) A.(0,1) B.()(),10,1-∞-U C. ()()1,01,-+∞U D.()1,+∞ 3.(2014春 永寿县校级期中)下列式子不正确的是( ) A.()'23cos 6sin x x x x +=- B. ()'1ln 2 2ln 2x x x x -=- C. ()' 2sin 22cos 2x x = D.'2sin cos sin x x x x x x -??= ??? 4.函数4538 y x x =+-的导数是( ) A .3543 x + B .0 C .3425(43)(38)x x x ++- D .3425(43)(38)x x x +-+- 5.(2015 安徽四模)已知函数()f x 的导函数为' ()f x ,且满足关系式2'()3(2)ln f x x xf x =++,则'(2)f 的值等于( ) A. 2 B.-2 C. 94 D.94- 6.设曲线1(1)1 x y x x +=≠-在点(3,2)处的切线与直线ax+y+1=0垂直,则a=( ) A .2 B .12 C .―12 D .―2 7.23log cos (cos 0)y x x =≠的导数是( ) A .32log tan e x -? B .32log cot e x ? C .32log cos e x -? D . 22log cos e x 二、填空题 8.曲线y=sin x 在点,12π?? ??? 处的切线方程为________。 9.设y=(2x+a)2,且2'|20x y ==,则a=________。 10.31sin x x '??-= ??? ____________,()2sin 25x x '+=????____________。 11.在平面直角坐标系xOy 中,点P 在曲线C :y=x 3―10x+3上,且在第二象限内,已知曲

高考文科数学专题复习导数训练题文

欢迎下载学习好资料 高考文科数学专题复习导数训练题(文)一、考点回顾导数的概念及其运算是导数应用的基础,是高考重点考查的内容。考查方式以客观题为主,主1. 要考查导数的基本公式和运算法则,以及导数的几何意义。导数的应用是高中数学中的重点内容,导数已由解决问题的工具上升到解决问题必不可少的工2.具,特别是利用导数来解决函数的单调性与最值问题是高考热点问题。选择填空题侧重于利用导不等式、解答题侧重于导数的综合应用,即与函数、数确定函数的单调性、单调区间和最值问题,数列的综合应用。3.应用导数解决实际问题,关键是建立恰当的数学模型(函数关系),如果函数在给定区间内只有一个极值点,此时函数在这点有极大(小)值,而此时不用和端点值进行比较,也可以得知这就是最大(小)值。 二、经典例题剖析 考点一:求导公式。 13f(x)?x?2x?1??ff(?1)(x)3的值是的导函数,则。例1. 是 ????2?1?2?1?f'32x??xf'解析:,所以 答案:3 点评:本题考查多项式的求导法则。 考点二:导数的几何意义。 1x?y?2(1?(1))f(x)My,f2,点则图数2. 例已知函的象程的处切线方在是 ??(1)(f1?)f。 115???fk?'1M(1,f(1))222,所的纵坐标为,所以,由切线过点,可得点M 解析:因为5???f1?????3'f1?f12以,所以3 答案: 学习好资料欢迎下载 32?3)(1,2??4x?yx?2x例3. 。在点曲线处的切线方程是 2?3)(1,4??4xy'?3x5?k?3?4?4??解析:,所以设切线方程,处切线的斜率为点?3)(1, ?3)y??5x?b(1,2b?,将点处的切线为带入切线方程可得,所以,过曲线上点5x?y?2?0方程为:5x?y?2?0答案:点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 ??23x?,y0x l:y?kx x?3x?2y?xl与曲线C且直线相切于点,,例,4.已知曲线C:直线000l的方程及切点坐标。求直线y??00k??x??0x y,x?0在曲析解:线直线过原点,C则。由点上, ??00232x?2x?3xy?x yx,y'?3x?6x?2??0在,处,。又 则00y20?x?3x?2 000000??222x?3x?2?3x?6x?22x?'6x??3xk?f?,整曲线C,的切线斜率为 0000000331y???k??x03x??2x x?00082400。所以,(舍),此时,,解得:理得:,或033??1,???y??x82l??4的方程为,切点坐标是直线。 33??1,???y??x82l??4的方程为,切点坐标是答案:直线点评:本小题考查导数

2020版高考数学一轮复习专题3导数及其应用第23练高考大题突破练—导数与不等式练习

[基础保分练] 1.(2019·绍兴检测)已知函数f (x )=ax e 2- x -2(x -1)2,a ∈R . (1)当a =-4时,讨论函数f (x )的单调性; (2)当02. 2.(2019·诸暨模拟)已知函数f (x )=ln x 2-x +1x . (1)试讨论函数f (x )的单调性; (2)设实数k 使得(x 2-1)(e x -x 21e x +1)≥(x +1)·(k +ln(2x ))对任意x ∈(0,+∞)恒成立,求实数k 的最大值.

3.(2019·宁波模拟)已知函数f (x )=a (x -1),g (x )=(ax -1)e x ,其中a ∈R . (1)证明:存在唯一的实数a 使得直线y =f (x )与曲线y =g (x )相切; (2)若不等式f (x )>g (x )有且只有两个整数解,求实数a 的取值范围. [能力提升练] 4.已知函数f (x )=1-x ax +ln x . (1)若f (x )≥0对任意x >0恒成立,求a 的值; (2)求证:ln(n +1)>122+232+…+n -1n 2(n ∈N *). 答案精析 基础保分练 1.(1)解 当a =-4时,f (x )=-4x e 2- x -2(x -1)2, 得f ′(x )=4(x -1)(e 2- x -1), 令f ′(x )=0,得x =1或x =2. 当x <1时,x -1<0,e 2- x -1>0, 所以f ′(x )<0,故f (x )在(-∞,1)上单调递减; 当10,e 2- x -1>0, 所以f ′(x )>0,故f (x )在(1,2)上单调递增; 当x >2时,x -1>0,e 2- x -1<0, 所以f ′(x )<0,故f (x )在(2,+∞)上单调递减. 所以f (x )在(-∞,1),(2,+∞)上单调递减,在(1,2)上单调递增. (2)证明 由题意得f ′(x )=(1-x )(a e 2- x +4),其中0

导数大题练习带答案汇编

1.已知f (x )=x ln x -ax ,g (x )=-x 2-2, (Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围;(Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 2 1- 成立. 2、已知函数2 ()ln 2(0)f x a x a x = +->.(Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ?∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区 间[e ― 1,e]上有两个零点,求实数b 的取值范围. 3. 设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值; (Ⅱ)若函数f (x )在1 [,2]2 上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点. 4、已知函数2 1()(21)2ln ()2 f x ax a x x a = -++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值;(Ⅱ)求()f x 的单调区间;(Ⅲ)设2 ()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得 12()()f x g x <,求a 的取值范围. 5、已知函数())0(2ln 2 >-+= a x a x x f (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单 调区间; (Ⅱ)若对于任意()())1(2,0->+∞∈a x f x 都有成立,试求a 的取值范围; (Ⅲ)记g (x )=f (x )+x -b (b ∈R ).当a =1时,函数g (x )在区间[ ] e ,e 1 -上有两个零点, 求实数b 的取值范围. 6、已知函数1ln ()x f x x += . (1)若函数在区间1 (,)2 a a + (其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1 k f x x ≥+恒成立,求实数k 的取值范围.

导数单元测试题(含答案)

导数单元测试题(实验班用) 一、选择题 1.曲线3 2 3y x x =-+在点(1,2)处的切线方程为( ) A .31y x =- B .35y x =-+ C .35y x =+ D .2y x = 2.函数21()e x f x x +=?,[]1,2-∈x 的最大值为( ). A .14e - B . 0 C .2e D . 23e 3.若函数3()3f x x x a =-+有3个不同的零点,则实数a 的取值范围是( ) A.(2,2)- B.[]2,2- C.(,1)-? D.(1,)+? 4.若函数3()63f x x bx b =-+在(0,1)内有极小值,则实数b 的取值范围是( ) A.1 (0,)2 B. (,1)-? C. (0,)+? D. (0,1) 5.若2a >,则函数3 21()13 f x x ax =-+在区间(0,2)上恰好有( ) A .0个零点 B .3个零点 C .2个零点 D .1个零点 6.曲线x y e =在点2 (2)e ,处的切线与坐标轴所围三角形的面积为( ) A.2 94 e B.2 2e C.2 e D.2 2 e 7.函数()f x 的图象如图所示,下列数值排序正确的是( ). A .(3)(2) 0(2)(3) 32 f f f f -''<<< - B .(3)(2) 0(3)(2)32 f f f f -''<<<- C . (3)(2) 0(3)(2)32 f f f f -''<<<- D .(3)(2) 0(2)(3)32 f f f f -''<<<- 8设(),()f x g x 分别是R 上的奇函数和偶函数, 当0x <时,' ' ()()()()0f x g x f x g x +>,

浙江历年高考录取分数线

浙江历年高考录取分数线 武汉民政职业学院以强势的教改专业赢得了2014年高考生关注度,该校广告设计与制作专业(影视广告设计,游戏设计与制作,移动终端应用开发)由于其 密切与职业教育思想配合,不仅能够让学生在大学校园感受文化熏陶,另一方面 也会加强动手能力,注重技能培养,毕业后还可享受推荐就业服务,推翻了传统 的学生自主外出寻求实习的模式,真正意义上缓解了大学生就业难的局面,让大 学生资源更大程度的投入到社会中,让大学生顺利走进企业。以下就是武汉民政 职业学院的老师为大家整理的一些信息,希望对2015级的考生有帮助。 2014年2013年2012年2011年2010年2009年2008年2007年2006年 一本文621理 597 文619理 617 文606理 593 文571理 550 文590理 551 文606理 605 文550理 550 文553理 568 文583理 570 二本文485理 420 文468理 438 文452理 433 文431理 382 文459理 402 文478理 429 文516理 504 文523理 523 文550理 527 三本文292理 288 -- -- ——-- —— 文468理 442 文480理 465 文501理 466 专科-- 文271理 279 文249理 294 文275理 271 文283理 283 文364理 311 文370理 319 文385理 347 文491理 448 如何理解专业录取原则?如果有两位考生的成绩相同,报考的院校、专业和 志愿等级也相同,高校该如何录取呢? 高校招生章程很重要,而当中的录取原则是重中之重,通常高校会写明本校 录取原则。拿新疆大学招生章程来说,其中就写明报考英语、俄语等外语类专业 时,高考外语单科成绩需达到相关要求、报考少数民族理科实验班(科技班)时, 高考数学单科成绩需达到相关要求;播音与主持艺术专业及高水平运动员需参加 我校加试,且加试合格方可报考等等。 如果有两位考生的成绩、报考的院校、专业和志愿等级相同,也就是我们通 常所说的考生志愿级差等效成绩相同,那么根据各个高校的招生简章,在录取原 则这一块都会有明确说明。 新疆大学的录取方法是通常学校按照汉语言、民考汉考生依次按原始总分、 英语和数学单科成绩以及偏远贫困地区考生优先的原则录取;民语言考生依次按 照原始总分、数学单科成绩以及偏远贫困地区考生优先的原则录取;双语班考生 依次按照原始总分、数学和英语单科成绩以及偏远贫困地区考生优先的原则录 取。

相关文档
最新文档