电镀废水 破氰工艺

电镀废水 破氰工艺
电镀废水 破氰工艺

破氰工艺--氯氧化法

利用氯的强氧化性氧化氰化物,使其分解成低毒物或无毒物的方法叫做氯氧化法。在反应过程中,为防止氯化氰和氯逸入空气中,反应常在碱性条件下进行,故常常称做碱性氯化法。氯氧化法于1942年开始应用于工业生产,至今已有六十多年了,因此,该方法比较成熟。

1 氯氧化法的特点

1.1 氯氧化法的优点

1)氯氧化法是一种成熟的方法,在工艺设备等方面都积累了丰富的经验。

2)不少氰化厂用氯氧化法处理含氰废水能获得较满意的效果,氰化物可降低到0.5mg/L甚至更低。

3)氰酸盐能进一步水解,生成无毒物。

4)硫氰酸盐被氧化破坏,废水毒性大为降低。

5)有毒的重金属生成难溶沉淀物,排水含重金属浓度达符合国家规定的排放标准。

6)如果废水中含砷,氯把三价砷氧化为五价砷,进而形成更难溶的砷酸钙而除去。砷可达标。

7)氯的品种可选择,其运输、使用比较为人们所熟悉。

8)既可用于处理澄清水也可用于处理矿浆。

9)既可间歇处理,也可连续处理。

10)工艺、设备简单,易操作。

11)投资少。

1.2氯氧化法的缺点

1)处理废水过程中如果设备密闭不好,CNCl逸入空气中,污染操作环境。

2)不能破坏亚铁氰络物和铁氰络物中的氰化物,也不能使其形成沉淀物而去除,故总氰有时较高,尤其是处理金精矿氰化厂贫液时,由于贫液含铁高,可释放氰化物很难降低到0.5mg/L以下。总氰化物含量更高。

3)当用漂白粉或漂粉精处理高浓度含氰废水时,由于用量大,废水中氯离子浓度高,与铜形成络合物,使铜超标。

4)排水氯离子浓度高,使地表水和土壤盐化、水利设施腐蚀。

5)氯离子浓度高时使钙、镁大量溶解,废水从尾矿库渗漏出来后,污染地下水,使地下水中钙、镁、氯浓度大为增高,严重地影响水的功能,严重时不能饮用、不能灌溉农田。

6)处理尾矿浆时,如尾矿含硫较高,可能造成氯耗大为增加。

7)氯系氧化剂尤其是液氯的运输和使用有一定的危险性,因氯泄漏造成的人畜中毒、农田及鱼塘受危害的事故在其它行业时有发生。

8)属于破坏氰化物的处理方法,不能回收废水中任何有用物质。

9)近年来氯产品价格上涨,处理成本高。

正因为这些原因,一些发达国家在利用二氧化硫─空气法等其它方法取代氯氧化法。

2氯氧化法反应机理

由于氯氧化法的反应条件不同,废水组成不同,发生的化学反应也不尽相同。研究氯氧化法的反应机理对于降低氯耗、提高处理效果、防止二次污染、降低处理成本有重要意义。

2.1氯与氰化物的反应

氯与氰化物的化学反应视氯加入量不同有两种结果,当控制反应条件尤其是加氯量一定时,氰化物仅被氧化成氰酸盐,称氰化物的局部氰化或不完全氧化:

CN-+ClO-+H2O=CNCl+2OH-

生成的CNCl在碱性条件下水解:

CNCl+2OH-=CNO-+Cl-+H2O

反应速度可按下式计算:

d[CNCl]

- ────────=k[CNCl][OH-]

dt

k为反应速度常数,可从图4-1中查到。在pH10~11,10~15分钟CNCl即可水解完毕。pH11时,只需1分钟。温度对CNCl水解的影响见图4-1,pH值与CNCl水解速度关系见图4-2,温度对水解的影响见图4-3。

当加氯量增加时,氰化物首先被氧化为氰酸盐:

CN-+ClO-=CNO-+Cl-

或CN-+Cl2+2OH-=CNO-+2Cl-+H2O

生成的氰酸盐又被氧化为无毒的氮气和碳酸盐,称为氰化物的完全氧化,该反应是在局部氧化的基础上完成的: 2CNO-+3ClO-+H2O=2HCO3-+N2+3Cl-

(pH<1时10~30分钟)

生成的碳酸盐随反应pH值不同存在形式也不同,当pH值低时,以CO2形式逸入空气中,当pH值高时,生成CaCO3沉淀。

综上所述,氯氧化法可把氰化物氧化成两种产物,氧化成氰酸盐时称氰化物的局部氧化,氰酸盐在pH6~8时水解生成氨和碳酸盐;(该反应需1小时左右的时间,一般在尾矿库内完成)。总反应式如下:

CN-+ClO-+2H2O=NH3+ HCO3-+Cl-

或CN-+Cl2+2OH-+H2O=NH3+HCO3-+2Cl-

该反应理论加氯比Cl2/CN-=2.73(重量比,以下同)。

氯把氰化物氧化成氮气和碳酸盐的反应称为氰化物的完全氧化反应,其总反应式如下:

2CN-+5ClO-+H2O=2HCO3-+N2↑+5Cl-

或2CN-+5Cl2+10OH-=2HCO3-+N2↑+10Cl-+4H2O

该反应理论加氯比Cl2/CN-=6.83,处理1kg氰化物比不完全氧化反应多消耗氯4.1kg/kgCN-。

氰化物的不完全氧化和完全氧化之界限并不十分明显,当加氯比刚好满足氰化物不完全氧化需要时,残氰往往不能降低到0.5mg/L,因此必须加入过量的氯,此时,氰化物虽降低到0.5mg/L,但氰酸盐也被氰化一部分,反应进入了完全氧化阶段。氯浓度与氰化物的氧化程度之关系见图4-4。

为了节约氯,人们进行了多种偿试,试图仅靠不完全氧化反应使氰化物达标,但目前尚无结果。实验表明当调节反应pH值在6~8.5范围内,实际加氯量比较低,可比完全氧化时节氯30%,而且氰达标。但必须解决CNCl逸出问题,加氯量不变时,反应pH值与残氯含量的关系见图4-5。

2.2氯与硫氰化物的反应

黄金氰化厂废水往往含硫氰化物,有时甚至很高,硫氰化物、氰化物、氰酸盐的还原顺序如下:

SCN-

利用氯氧化法处理废水时,硫氰化物必然先于氰化物被氧化。在碱性条件下,硫氰化物的氧化分解与氰化物类似,也分为两个阶段,即不完全氧化阶段和完全氰化阶段。不完全氧化阶段的产物是硫酸盐和氰酸盐:

SCN-+4ClO-=CNCl+ SO42-+3Cl-

CNCl+2OH-=CNO-+Cl-+H2O

CNO-+2H2O=HCO3-+NH3

总反应式:

SCN-+4Cl2+10OH-=HCO3-+NH3+8Cl-+3H2O+SO42-

或SCN-+4ClO-+2OH-+H2O=HCO3-+NH3+4Cl-+SO42-

加氯比Cl2/SCN-=4.9,可见硫氰化物不完全氧化耗氯比氰化物不完全氧化时多。

硫氰酸盐完全氰化生成物硫酸盐,碳酸盐和氮。也是在不完全氧化的基础上进行的,总反应式:

2SCN-+11ClO-+4OH-=2HCO3-+N2↑+2SO42-+11Cl-+H2O

或2SCN-+11Cl2+26OH-=2HCO3-+N2+2SO42-+22Cl-+12H2O

理论加氯比Cl2/SCN-=6.73。与氰化物完全氰化时十分接近。

处理含硫氰化物和氰化物的废水时,如果控制氰化物处于不完全氧化阶段,硫氰化物也处于不完全氧化阶段。如果控制氰化物完全氧化,硫氰化物亦然。这是因为两者的不完全氧化产物均是氰酸盐。硫氰化物的氧化使总氯耗有很大的增加,为此,人们探索减少硫氰化物消耗氯的途径,认为,在酸性反应条件下,将发生如下反应:SCN-+2Cl2=S+CNCl+3Cl-

反应完成后,调节pH值6~8,CNCl水解,总反应如下:

SCN-+2Cl2+2OH-=S+CNO-+4Cl-+ H2O

这个反应的加氯比Cl2/SCN-=2.45,与碱性条件下不完全氧化时加氯比Cl2/SCN-=4.9相比,减少一半。而且产物中硫磺在氯浓度不太高时并不再发生氧化反应,故硫氰化物的完全氧化反应加氯比也明显降低。

2SCN-+7Cl2+10OH-=2S+2HCO3-+N2↑+14Cl-+4H2O

理论加氯比Cl2/SCN-=4.28,节氯效果十分明显。近年来国内有人研究出酸性氯化法,其节氯原理大致如此。

2.3氯与废水中其它还原性物质的反应

除硫氰化物外,氰化厂废水中还有硫代硫酸盐,亚硫酸盐、硫化物、亚铜(以Cu(CN)2-、Cu(CN)32-形式存在)、亚铁(以Fe(CN)64-形式存在)等,其中,前三种化合物的含量均折算成硫代硫酸盐S2032-含量,这是分析方法所决定的。这些物质也能与氯发生反应,其方程式如下:

S2032-+4ClO-+2OH-=2SO42-+4Cl-+ H2O

2Cu++ClO-+2OH-+H2O=2Cu(OH)2↓+Cl-

2Fe(CN)64-+ClO-+2H+=2Fe(CN)63-+Cl-+H2O

理论加氯比分别为:Cl2/S2032-=2.54,Cl2/Cu+=0.56,Cl2/Fe2+=0.64,但Fe(CN)64-一般不会氧化成Fe(CN)63-。另外,如果废水砷浓度较高,砷氧化成高价砷也会消耗氯:

As033-+ClO-=As043-+Cl-

加氯比Cl2/As=0.95。

计算氯氧化法的药耗,也应该把这些物质的氧化考虑进去。

2.4废水中各种还原性物质的氧化顺序

无论是化学反应还是相变化,都需要从两个基本方面来研究,既要研究反应的可能性,又要研究反应的速度即实现这一可能性所需的时间。关于反应的方向限度或平衡问题,是反应的可能性问题,这是化工热力学数据,另外,电离常数、络合物稳定常数、难溶物的浓度积都是热力学常数。根据这些数据,我们能够了解反应或变化是否向某个方向进行,但是,仅了解反应是否可能是不够的,还必须知道反应的速度,例如,从电极电位看,H2和O2很容易反应生成水,但常温常压下,如果不引燃,其反应速度是极慢的。因此,要全面了解某个化学反应是否可用于工业,必须在研究化学热力学的基础上研究反应的速度—化学动力学。如果化学热力学研究证明,反应可以进行,但实际上速度很慢,还要研究动力学,以找到提高反应速度的途径,如提高反应温度,增加压力,改变反应物浓度,调节pH值、加催化剂。

含氰废水中的还原性物质的氧化还原电极电位均小于氯的氧化还原电极电位,因此,从热力学角度讲,是有可能被氯氧化的。那么反应速度如何呢?实践证明,S2032-、S032-、As032-、SCN-和CN-均能在短时间内(30分钟)完成与氯的反应,废水中有少量活性氯存在(Cl2≥5mg/L),反应就能进行,然而废水中的氰化物不仅以游离氰化物(CN-和HCN)形式存在,还以Pb(CN)42-、Zn(CN)42-、Cu(CN)2-、Cu(CN)32-、Fe(CN)64-、Ag(CN)2-、Au(CN)2-等络离子形式存在,络合氰化物一般不象游离氰化物那么容易被氯氧化,其难易程度一方面取决于络氰离子的稳定常数,另一方面取决于中心离子是否能被氧化(变价金属),而且氧化后是否仍与氰形成稳定的络合物。以Cu(CN)32-为例,由于铜易从+1价被氧化为+2价,尽管Cu(CN)32-的络离子稳定常数较大,但二价铜不能与氰离子形成稳定的络合物,所以Cu(CN)32-还是很容易被氧化,结果+1价铜变为+2价铜,氰化物被氧化。Fe(CN)64-则不然,由于其稳定常数比较大,一般有效氯浓度低或反应温度低时不易被氧化,当强化反应条件使+2价铁被氧化为+3价时,由于Fe(CN)63-仍十分稳定,所以氰离子并不解离,也不氧化。各种物质被氧化分解的顺序大致如下:

S2032->S032->SCN->CN->Pb(CN)42->Zn(CN)42->Cu(CN)32->Ag(CN)2->Fe(CN)64->Au(CN)2-

其中Fe(CN)64-的氧化是指它氧化为Fe(CN)63-,并不是其配位离子CN-的氧化。Cu(CN)32-的氧化指铜和氰离子均被氧化。

在含氰废水中,加入足够的氯而且pH值适当时,上述反应的速度很快,加入氯后,几乎立刻出现Cu(OH)2兰色,这说明,排在Cu(CN)32-之前的络合物已被分解。Fe(CN)64-的氧化较慢,在化工生产中,常采用提高反应温度的办法加快其反应速度。从我们的处理目的出发,该反应最好不发生,因此反应速度慢也是好事。

了解了含氰废水中各种物质的反应顺序的问题。我们就不难解释当废水中加入氯气时发生颜色变化的原因,以反应pH值从7降低到5时的加氯过程为例,反应开始时溶液呈灰白色,这是Pb、Zn的氰络物离解出Pb2+、Zn2+与Fe(CN)64-生成沉淀物所致,稍过几分钟,溶液变棕红色,这是由于Cu(CN)32-解离出Cu+与Fe(CN)64-生成棕色沉淀所致。再过数分钟,溶液变为黄绿色,这是亚铁氰化物氰化为铁氰化物进而与Cu2+生成Cu3[Fe(CN)6]2沉淀所致。余氯低时,Fe(CN)64-不氧化,溶液不会出现黄绿色。如果反应pH值高于10,由始至终,我们仅能观察到Cu(OH)2的蓝色。

2.5废水中重金属的去除机理

废水中重金属铜、铅、锌、汞及贵金属金、银等均以氰络合物形式存在,在氯氧化法处理过程中,除亚铁、铁的氰化物、金的氰络物未被破坏,其它重金属及其均被解离出来,并在适当的pH值条件下,通过下列反应以沉淀物形式从废水中分离出来,在通常状况下,经过自然沉降的废水中,各种重金属含量均能达到国家规定的工业废水排放标准。

一.重金属与Fe(CN)64-生成沉淀物

2Pb2++Fe(CN)64-→Pb2Fe(CN)6↓(白色或灰色)

2Zn2++Fe(CN)64-→Zn2Fe(CN)6↓(白色)

2Cu++Fe(CN)64-→Cu2Fe(CN)6↓(棕色)

4Ag++Fe(CN)64-→Ag4Fe(CN)6↓(白色胶状)

2Hg2++Fe(CN)64-→Hg2Fe(CN)6↓

Cd2++Fe(CN)64-→Cd2Fe(CN)6↓(白色胶状物)

2Ni2++Fe(CN)64-→Ni2Fe(CN)6↓

二.重金属与Fe(CN)63-形成沉淀物

3Cu2++2Fe(CN)63-→Cu3[Fe(CN)6]2↓(绿色)

3Ag++Fe(CN)63-→Ag3[Fe(CN)6]2↓(橙色)

三.重金属与砷酸盐生成沉淀物

3Ag++AsO43-→Ag3AsO4↓(黑褐色)

四.重金属与碳酸盐形成沉淀物

2Ag++CO32-→AgCO3↓ Ksp=8.1×10-12

Cd2++CO32-→CdCO3↓ Ksp=5.2×10-12

Cu2++CO32-→CuCO3↓ Ksp=1.4×10-10

2Hg2++CO32-→HgCO3↓ Ksp=8.9×10-17

Ni2++CO32-→NiCO3↓ Ksp=6.6×10-9

Pb2++CO32-→PbCO3↓ Ksp=7.4×10-14

Zn2++CO32-→ZnCO3↓ Ksp=1.4×10-11

五.重金属与氢氧化物形成沉淀物

Cd2++2OH-→Cd(OH)2↓ Ksp=2.5×10-14

Cu2++2OH-→Cu(OH)2↓ Ksp=2.2×10-20

Ni2++2OH-→Ni(OH)2↓ Ksp=2.0×10-15

Ni2++2OH-→Ni(OH)2↓ Ksp=1.2×10-17

在理论上,沉淀形成所需的pH值可由溶度积求出,但由于盐化效应,估差甚大。由于废水组成不同,能与重金属阳离子生成沉淀物的各种阴离子也不同,具体生成什么沉淀物,要由废水阴离子和重金属阳离子含量和所生成各种沉淀物溶度积大小决定。

氰酸盐的水解产物氨大部分逸入空气中,少量存在于废水中可能会和能形成氨络物的重、贵金属离子进行下述反应:

Cu2++4NH3=Cu(NH3)42+

除铜外,Ag+、Ni2+也会发生类似反应,但废水在尾矿停留时间较长,氨会被去除,这种现象并不严重,在排水中重金属不会超标。

2.6氯氧化法药剂消耗量估算

氯氧化法需要氯和石灰两种药剂,氯的消耗可以根据氰化物和硫氰化物完全氧化反应以及其它物质的氧化进行理论估算,其公式如下:

完全氧化理论氯耗:Wt=6.83C1+6.73C2+2.54C3+0.95C4+C5

部分氧化理论氯耗:Wp=2.73C1+4.9C2+0.56C3+0.95C4+C5

式中Ci浓度为g/L或kg/m3。某组分浓度低时,可忽略。

C1:氰化物浓度

C2:硫氰化物浓度

C3:铜浓度

C4硫代硫酸盐浓度(包括亚硫酸盐浓度)

C5反应后余氯浓度。一般可按0.1~0.3kg/m3计算。

处理全泥氰化炭浆厂废水(浆)时,C2、C3、C4均可忽略。总氯耗仅用CN-浓度决定。C4对大部分氧化厂来说可忽略。氰化厂的实际氯耗W在控制好崐反应条件时可降低到理论估算值Wt的70%~85%,但均大于Wp。不同的废水组成尤其是SCN-浓度对节氯效果影响很大。

Wp∠W∠Wt

石灰耗量不太容易估算,它与废水的组成及氯的种类有关,废水中重金属需石灰提供OH-形成沉淀,反应的产物为酸性物质,需石灰中和,反应的类型也影响石灰耗量。因此,难以用一个准确的公式估算出石灰的耗量。

当使用漂白粉、漂粉精时,不需要石灰,仅使用氯气时需石灰,其耗量根据工业实践约为氯耗量的2~2.5倍。 W caO=(2~2.5)W(kg/m3)

2.6氯氧化法的二次污染

氯氧化法处理含氰废水过程中,由于操作控制和设备问题,产生剧毒的氯化氰气体;为了使氰化物降低到0.5mg/L,必须加入过量的氯,致使处理后废水中存在余氯,由于加氯尤其是加入漂白粉、漂粉精或次氯酸钠这些含有效氯低但氯离子浓度高的药剂,使外排水中氯离子浓度达0.5~15kg/m3;由于氰酸盐水解生成氨,排水中含有一定数量的氨。这就是氯氧化法产生二次污染的四大因素。如何避免或尽可能减少二次污染,是该处理方法深入研究的方向。

3氯化氰

在用氯氧化氰化物和硫氰化物的过程中,氯化氰是反应的中间产物,这种物质沸点仅13.6℃,在水中溶解度又低,如果反应的pH值低于8.5,氯化氰的分解速度降低,那么在敞口反应器中,氯化氰就会释放出来。污染操作场所。解决办法有两种,一是提高反应pH值,一般pH值大于9.8即可。二是采用封闭反应器,

使CNCl慢慢水解,或被碱液吸收水解。氯化氰水解速度与温度pH值前面已讲过,不再赘述。

3.1余氯

为了降低出水氰含量,必须使废水残余的氯保持一定浓度,称为余氯。根据实践经验,当CN-≤0.5mg/L时,余氯至少50mg/L。参见图4-6。如果废水中含亚铁氰化物,余氰必须更高才能使氰化物达标。因此,有的废水要求余氯在50mg/L以上,含铁更高的废水不适用氯氧化法,否则,即使再我加氯氰化物也不会达标。余氯高时,废水即使在尾矿库自净一段时间,余氯也不会全部消失。美国的一项研究指出,氯同水中的泥炭等有机物起反应生成氯仿(三氯甲烷),氯仿的含量同膀胱癌、结肠癌和直肠癌有很大关系。如果含余氯的废水进入水体,就会造成水污染,消除余氯的方法有三种,其一是向废水中加入亚硫酸盐,使余氯还原成氯离子。其二是进入尾矿库的其它废水由于含还原性物质,与余氯反应使之还原,这种方法使用较多;尽管常常不是从消除余氯的目的出发。第三种方法是尾矿库自然净化,此时余氯主要是在紫外线作用下生成氯气和氯离子。也有少量逸入大气。去除效果受气候影响大,不易反应完全。在处理废水过程中,一定要把余氯控制在最低限度,以防止污染,减少氯耗。

3.2氯离子

?? 氯离子是难与其它常见物质形成难溶沉淀物(银除外)的阴离子,故废水中的氯离子难以通过经济、有效的方法去除,在处理含氰废水过程中,必须加入数倍于氰化物的氯,其产物绝大部分是氯离子,以处理含氰化物100mg/L的废水为例,排水氯离子浓度根据所使用的是液氯、漂白粉、漂粉精和次氯酸盐(电解食盐崐水产生)分别为0.5~1.0、

0.6~1.5、0.3~0.85、5~10kg/m3。当废水氰化物浓度增加时,废水中氯离子浓度成正比增加,尤其是使用含盐电解产生次氯酸钠工艺时,废水中氯离子浓度极高。漂白粉因活性氯降低引起加量增加,使废水中氯离子浓度增加。废水中氯离子对水利设施有较大腐蚀性,而且不能灌溉农田。氯离子渗入地下水中,使水质恶化,Mg2+、Ca2+、Cl-含量增加,不能饮用。

氯离子进入水体是氯氧化法的致命缺点。

3.3氨

氰酸盐水解生成氨(NH3、NH4+)和碳酸盐。氨在水中产生下边电离平衡:

NH4+→NH3+H+

K=5.8×10-10(25℃)

K=1.14×10-10(5℃)

水中氨浓度与pH、温度关系见图4-7。由图可知,pH值、温度越高,水中的氨以NH3形式存在的比例越多,毒性也就越大,尤其废水中存在氰化物时,其协同作用使毒性又有所增加。当NH3和CN-分别为0.7和0.1mg/L时,在156分钟内可导致鱼类死亡。而废水中仅含0.1mg/L的CN-或0.7mg/L的NH3时不会使鱼致死。氨对一些鱼类24~96小时的半致死浓度LC50在0.32~2.92mg/L。氨对鱼类的96小时致毒浓度为0.3mg/L。

氰化厂废水处理过程产生的氨数量有限,考虑到逸入大气一部分以及在水中的硝化作用,排水氨浓度不会太高(<25mg/L),至今尚未见氨污染的报导。

3.4碱性氯化法工艺

氯氧化法处理含氰废水按反应的pH值不同分为两类,即碱性氯化法和酸性氯化法。前者可使用各种含氯药剂,在pH10以上进行除氰反应,已有五十余年的应用历史了。近年来,我国黄金行业又研究出具有节氯特点的酸性氯化法,把氰化物的部分(局部)氧化反应控制在pH值小于3的条件下。目前我国至少有两个氰化厂使用酸性氯化法,从经济和技术角度考虑,酸性氯化法使用液氯为佳。本节介绍广泛使用的碱性氯化法。

碱性氯化法工艺也分两种,一种是控制反应pH值在9~11,使废水中氰化物降低到0.5mg/L,而不考虑氰化物的氧化产物是什么,或者说,把反应控制在氰化物不完全氧化(局部氧化)阶段,(在尾矿库内,氰酸盐因废水pH下降而水解)。一些行业称之为碱性氯化法一级处理工艺,我国黄金行业几乎全部采用这种工艺,另一种是在不同的pH

值条件下,第一步使氰化物在碱性条件下氧化为氰酸盐,第二步使氰酸盐氧化为氮气和碳酸盐,彻底消除氰化物的毒性。我国引进的炭浆厂原设计就是这种工艺,前一种工艺简单、氯耗小,后一种工艺较复杂,氯耗大。

3.4.2 碱性氯化法设备

碱性氯化法工艺装备主要由反应槽、pH值调节设备、加氯设备和检测仪表构成。

一.反应槽

为了使反应物混合均匀,尤其是处理矿浆时,防止矿浆沉淀,反应器均为搅拌槽。当向反应槽加入氯水、漂白粉、漂粉精、次氯酸钠时,反应槽为敞开式即可。一般不采取特殊的防腐措施。氯水一般加入反应槽中心桶内以利迅速与废水泥和,故中心桶和搅拌器轴应采用防腐措施。反应槽搅拌速度只要满足固体不沉积即可,转速低有利于节电。

当氯以气体形式加入反应槽时,应采用全封闭式反应槽,反应废气经排气管导入吸收装置,吸收CNCl、Cl2、HCN 后排放。吸收液注入反应槽即可。这种反应槽及配套的废水处理设施要求防腐。

从反应动力学角度研究,我们在碱性氯化法工艺中采用的是全返混式反应器,为了使氰化物降低到0.5mg/L以下,在总反应时间或反应槽有效容积一定的条件下,采用我个小体积反应槽串联要比采用一个大容积的反应槽要好得多。一般矿山采用二台反应槽串联。由于氯氧化氰化物的反应速度较快,反应器数量超过3台没有多大意义。多年实践证明,有的废水(浆)无论增加反应时间还是氯加量也不能使氰化物降低到0.5mg/L,这是由于废水中Fe(CN)63-、Fe(CN)64-存在所产生的影响。并非反应器有效容积不够。?但如果废水含锌、铝足够使Fe(CN)64-沉淀时,氰化物可降低到0.5mg/L,当然,这种作用不一定发生在反应槽内,很可能是在尾矿库内完成的,在尾矿库内废水pH值降低,有利用这种反应进行。尾矿库也是反应器,只不过容积很大。反应产生的氰酸盐的一部分也是在尾矿库内水解的。因此,尾矿库的几何形状、结构对废水处理也起很大作用,江水面积大的尾矿库较理想。

二.pH值调节设备

pH值调节设备有给料机、制乳槽、搅拌槽(中和槽)、流量计、调节仪表、一套碱性氯化法装置可能只用上述设备的几种。在我国,目前还没有成功地使用pH值调节仪表的先例。

当然可直接用石灰乳调节反应pH值,此时只用给料机即可,设备很简单,优点是操作方便,劳动强度低,节约水,不必处理石灰渣,缺点是将石灰直接混入废水,石灰不会迅速水解形成Ca(OH)2,影响pH值的调节效果,增大石灰加量,出水pH值易超高,因此直接加石灰时,应设混合槽,使石灰在废水中乳化。然后再进入反应槽。直接加灰的另一缺点是在空气潮湿地区,石灰粉可能结块,给料机产生堵塞。

使用石灰制乳的氰化厂较多。制乳工艺有两种,一种是连续加水,间歇加灰(每小时1~2次)。其缺点是石灰乳浓度波动大。另一种是采用两台制乳槽轮换作业,交替使用,虽然石灰乳浓度稳定,但操作不方便,而且这两种制乳工艺均要处理积累于制乳槽底部的灰渣,较为麻烦,也有采用球磨机与螺旋分级机联合制石灰乳的,虽效果好,但投资大,占地面积大,成本高。无论采用哪种制乳方法,加石灰乳的管线都容易产生堵塞,为此,有采用泵循环石灰乳进行加石灰乳作业的,虽解决了堵塞问题,但成本增加,投资增加。比较简单的办法是利用较高的流速(石崐灰乳管径小、管线短、弯头少且光滑),并用球阀调节流量,也可在石灰乳管线易堵处(阀门处等)加定时疏通装置,其介质可以是压力水也可是压缩空气,这种办法效果好,投资小。

采用石灰乳调节pH值时,不必设中和槽石灰乳与废水的混合位置可以设在废崐水进入反应槽前的管道中或反应槽内。石灰乳浓度一般为10%~20%。

我国黄金氰化厂废水处理设施尚未采用pH值检测、调节仪表,一般靠pH试纸检查反应pH值。由于石灰乳在废水中并非全部溶解,一部分还以CaO、Ca(OH)2固体存在,当试纸与废水接触时,纸条往往分两种颜色段,不易确定哪段为正确的pH值。影响pH值的调整。由于检测频率低,常常逸出CNCl污染操作环境。

三.加氯设备及操作

采用漂白粉或漂粉精时,无论加入固体干粉还是乳液,其设备都与加灰设备相似。当使用次氯酸钠时,可使用流量计计量;使用液氯时,有三种加氯方式,一种是把氯气直接加入反应槽,其设备有气化装置(蛇管加热器)、计量装置、氯化装置可采用电或水做热源;最好采用石灰乳吸收氯气,再把次氯酸钙注入到反应槽的工艺,其优点是反应过程中不易逸出CNCl,而且石灰消耗小,节省水,易于控制。常用的一种加氯方式是加氯水于反应槽中,首先,液氯被气化,然后经计量被吸入水中,形成氯水,再加入废水中。普遍采用的制备氯水的设备是自来水厂使用的加氯机。为达到一定的氯浓度,加氯机给水加入和水量必须合适。加氯机给水可以是贫液也可以是新鲜水。采用敞开式反应槽时,用贫液制氯水时会增加CNCl逸出的可能性。因此大部分氰化厂用新鲜水加氯,加氯机给水压力不应小于0.2MPa,水量一般为氯气重量的50倍。水量过大一方面浪费新鲜水,另一方面减少了反应槽的处理能力。

直接加入氯气于反应槽内,需要气体处理设备,以免反应废气(CNCl、HCN、Cl2)污染环境。在加氯过程中,氯瓶应放在磅称上,由磅称测出的重量变化推断加氯量并估计瓶内剩余的氯量。当瓶内气压降低到0.5MPa时,停业加氯,以防加氯机水倒灌到氯瓶内引起氯瓶腐蚀。冬季应对氯瓶喷淋温水,以提高供氯蒸发所需热量。

氯气管道必须经常检查,发现操作场所有氯气味时,应检查管道、阀门等是事漏气,使用氨水涂抹管道的方法检查漏气处比较实用,因为氯气与氨生成白雾,易于发现。对漏点应谨慎处理。以防漏加重,必要时,应停止加氯,进行彻底地修复。

为了使氯连续、平稳地加入反应器,应同时使用几台加氯机并连加氯或同时使用几只氯瓶加氯,当更换某只氯瓶时,由于其它氯瓶仍然工作,保证了加氯量的稳定。

加氯间应设低位排风机,定时排风,并配备防毒面具,更换氯瓶时或发生泄漏氯事故时,应带防毒面具进入污染区进行工作,而且必须有人监护。

四.检测仪器

可通过几种途径了解反应进行的程度,加氯量是否足够、残氰是否达到要求,第一种是测定反应后废水中余氯含量,根据经验,余氯在10~50mg/L残氰即可达标。测余氰的方法有很多,其中取样手工化学分析—滴定法和比色法均不够快速。国外用比色法在线分析仪连续测定余氯,很理想。国内个别单位用氧化还原电位法间接测量余氯浓度,比较方便,使用甘汞参比电极和铂电极配合,当电位达+300mV时,说明余氯在10~50mg/L。由于废水组成不同,使氰化物达标的余氯含量也不同,上述两种检测方法必须经过实践以确定使氰达标的检测值。河套、搬其它氰化厂的经验。第二种是测定氰化物含量,其优点是直接、准确、但测定时间长,做为控制系统的信号尚不能满足时间要求,国外有利用比色原理和离子选择电极原理而开发出的在线测氰仪,据秒效果尚好,能满足工业生产要求。

测定反应pH值的在线仪表和调节仪表在我国氰化厂有所应用,所存在的电极结垢和石灰乳流量调节阀易堵塞的问题均妥善解决,故氧化法装置可使用pH自控设备、pH值测定仪表。

3.4.4 碱性氯化法一级处理工艺

碱性氯化法一级处理工艺之目的是把氰化物浓度降低到0.5mg/L以下,而不管生成物如何,其特点是在整个反应过程中,反应pH值不小于9。我国黄金行业几乎全部采用这种工艺。其反应pH值一般控制在10以上。反应条件如下:1)反应pH值控制范围 9~11

2)反应时间 0.5~1.5小时

3)反应槽搅拌速度 400~700RPM

4)反应温度常温

加石灰粉调pH值时,一般设pH值调节槽,废水在槽中停留5~10分钟,然后进入反应槽,反应过程中不再加石灰随着加氯及反应的进行,pH值逐渐降低到9~11。其工艺特点是容易控制,设备简单,操作平稳。如果加石灰乳调节反应pH,石灰乳可直接加入反应槽,不必设专门的pH调节槽,可在第一槽加入全部石灰乳,也可以分别加在各槽中,前者容易控制,应用较多。

仅在使用液氯时才需调节反应pH值,使用漂白粉、漂粉精和次氯酸钠时由于本身是碱性,不需要加石灰调节pH值。漂白粉和漂粉精可加干粉也可先制乳然后再加入反应槽,其设备与加石灰、石灰乳设备相同。次氯酸钠经计量后即可加入反应槽。

如果直接向反应槽加氯气,必需设废气处理设施。各反应槽排出的含HCN、CNCl、Cl2的气体必须经碱液吸收才能排放。吸收液注入反应槽即可。

碱性氯化法一级处理装置一般设2~3台反应槽,最后1~2个反应槽往往不加氯和石灰。以便使反应进行完全。

如果废水处理车间距尾矿库较远,反应可在尾矿输送管道内进行,不必设反应槽,也有的氰化厂加氯过程在管道内完成,而后在反应槽中继续进行反应。这些做法避免了CNCl气体的逸出,减少了动力和投资,因此,处理成本降低。

3.4.5 碱性氯化法二级处理工艺简介

二级处理不但要求废水中氰化物降低到0.5mg/L以下,而且要求处理后废水中的氰酸盐全部分解,生成无毒物。?

二级处理在国外应用较多,处理效果优于一级处理,排水毒性低,第二级处理实际上是氰化物的完全氧化反应,氰酸盐氧化分解反应的关键是控制反应pH值。pH≥8时,反应速度很慢,pH8.5~9时,需要30分钟,pH>12时,则反应终止,pH值高时反应速度降低的原因大致如下:

一.次氯酸的氧化能力大于次氯酸根离子,在pH值低时次氯酸的比例增大,氧化能力增加。

二.酸性条件下利于产生的碳酸盐以CO2气体逸出,促进反应向右进行。

但是,pH值过低时,不仅CNO-水解生产生氨,会造成氨污染,而且氨与次氯酸也有生成氯胺的可能性。氯胺的毒性比氨大,反应pH值越低,生成的氨越多,所以生成氯胺的可能性越大,耗氯越多。

pH>7.5:HClO+NH3=NH2Cl+H2O

pH=5~6.5:2HClO+NH3=NHCl2+H2O

Ph=4.4:3HClO+NH3=NCl3+3H2O

为了节氯,应控制第二级处理的反应pH值在6~6.5之间,第一级处理按Cl2/CN-为2.73加氯、两级处理总加氯量稍大于(Cl2/CN-)6.83。处理后的废水由于pH值低,重金属含量高,必须再提高pH值以沉淀重金属。

经过上述二级处理后,废水氰化物含量低于0.5mg/L,氰酸盐浓度小于5mg/L,余氯不高于10mg/L。

二级处理工艺比较复杂、控制程度大,药耗也高于一级处理,而且我们也应看到,当经过一级处理后的废水进入尾矿库后,由于pH值不断降低,CNO-也会不断地水解,所生成的氨会硝解和逸入空气中,因而不会造成氨污染,这也是二级处理工艺在我国尚未推广的一个重要原因。

为了提高处理后排水水质,在国外还有采用比二级处理更复杂的处理工艺的,如在二级处理的基础上,再用亚硫酸盐还原余氯,以免产生氯代烃致癌物,并把Fe(CN)63-、Fe(CN)64-,以便以沉淀物形式沉淀下来。为了除去废水中的汞、金、钡等金属,再进行活性炭吸附和离子交换树脂吸附。

电镀废水处理方法

电镀废水处理方法 一电镀废水的来源 电镀废水主要包括电镀漂洗废水、钝化废水、镀件酸洗废水、刷洗地坪和极板的废水应急由于操作或管理不善引起的“跑、冒、滴、漏”产生的废水,另外还有废水处理过程中自用水以及化验室的排水等。 二电镀废水的性质和分类 1 电镀废水的性质 电镀废水中主要的污染物为各种金属离子,常见的有铬、铜、镍、铅、铝、金、银、镉、铁等;其次是酸类和碱类物质,如硫酸、盐酸、硝酸和氢氧化钠、碳酸钠等;有些镀液还是用了催化剂、添加剂和颜料等其他物质,这些物质大部分是有机物。另外在镀件基材的预处理过程中漂洗下来的油脂、油污。氧化皮、尘土等杂质也都被带入了电镀废水中,是电镀废水的成分复杂。其所造成的污染大致为:化学毒物的污染,有机需氧物质的污染,无机固体悬浮物的污染以及酸、碱、热等的污染和有色、泡沫、油类等污染。但只要的污染时重金属离子、酸、碱和部分有机物的污染。 2 电镀废水的分类 电镀废水一般按废水所含的主要污染物分类。如含氰废水,含铬废水,含镍、铜、锌、铬废水,含酸废水等。 当废水中含有一种以上的主要污染物时(如氰化镀镉,既有氰化物又有镉),一般仍按其中一种污染物分类;当同一镀种有几种工艺方法时,也有按不同镀种工艺再分成小类,如把含铜废水再分成焦磷酸镀铜废水,硫酸铜镀铜废水等。当几种不同镀种废水都含铜一种主要污染物时,如镀铬、钝化废水混合在一起时就统称为含铬废水。若分质监理系统时,则分别为镀铬废水、钝化废水,一般将不同镀种和不同主要污染物的废水混合在一起时的废水统称为电镀混合废水。 三电镀废水单元处理方法 1 化学沉淀法 向废水中投加某种化学物质,使之与废水中欲厂区的污染物发生直接的化学反应,生成难溶的固体物二分离除去的方法,称为化学沉淀法。它适用于处理含金属离子的电镀废水。 用于电镀废水处理的沉淀法主要由氢氧化物沉淀法、钡盐法、碳酸盐法、硫化物沉淀法、置换沉淀法及铁氧体沉淀法。 1)氢氧化物沉淀法:电镀废水中的许多中金属离子可以删除氢氧化物沉淀二得以去除。 2)钡盐沉淀法:主要用于处理含六价铬的废水,采用的沉淀剂有碳酸钡、硫化钡、硝酸钡、氢氧化钡等。 3)硫化物沉淀法:许多重金属能形成硫化物沉淀。大多数金属硫化物的溶解度比其氢氧化物的溶解度要小很多,因此采用硫化物可使中金属得到等完全地去除。 2 混凝沉淀法 混凝法即向废水中投加某种混凝剂,使水中难以沉淀的胶体悬浮颗粒或乳状污染物失去稳定后,在一定的水力反应条件下,好像碰撞凝聚,形成较大的颗粒或絮状物而沉淀分离。 3 化学氧化还原法 在化学法处理电镀废水中,广泛利用氧化还原把废水中某些有毒的污染物变成无毒害物,从而达到净化处理的目的,这种方法称为氧化还原法,这是一种最终处理有毒废水的主

电镀废水处理的基本工艺流程

电镀废水处理的基本工艺流程 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。 电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。电镀废水水质较复杂,电镀废水中含有铬、锌、铜、镍、镉等重金属离子以及酸、碱、氰化物等具有很大毒性的杂物。电镀废水成分复杂,污染物可分为无机污染物和有机污染物两大类,水质变化幅度大,各股生产废水污染物种类多样,CODcr变化系数大;且电镀废水毒性大,含有大量的重金属离子,若不经处理直接排放会对周边水体造成极大的污染。 一、针对我国家目前电镀行业废水的处理现状进行统计和调查,广泛采用的电镀废水处理方法主要有七类: 1、化学沉淀法,又分为中和沉淀法和硫化物沉淀法。 2、氧化还原处理,分为化学还原法、铁氧体法和电解法。 3、溶剂萃取分离法。 4、吸附法。 5、膜分离技术。 6、离子交换法。 7、生物处理技术,包括生物絮凝法、生物吸附法、生物化学法、植物修复法。 二、电镀重金属废水治理技术的现状

离子交换法处理镍废水

离子交换法处理镍废水

————————————————————————————————作者:————————————————————————————————日期: ?

三废治理技术课程 离子交换法处理含镍废水工艺方案

离子交换法处理含镍废水工艺方案 一、概述 镀镍作为一种常用的表面处理技术,被广泛的应用于电子、汽车、机械等多种行业。含Ni2+的废水对人体健康和生态环境有着严重危害。含镍废水的常见处理方法有化学沉淀法、真空蒸发回收、电渗析、反渗透及离子交换树脂吸附等。化学沉淀法成本低,但产生的固废需要二次处理;真空蒸发法能耗大;电渗析、反渗透法需要较大的设备投资和能耗,而且存在膜易受污染的问题[1]。 离子交换技术因出水水质好,可回收有用物质,适用于处理浓度低而废水量大的镀镍废水等优点,曾得到广泛的应用。离子交换法应用于镀镍废水处理的主要功能有:(1)去除重金属镍离子,以应对日趋严格的排放标准;(2)回收废水中有价值的金属镍;(3)提高水的循环利用率,节约日益匮乏的水资源;(4)减少环境污染。 随着人们对镀镍废水资源化的兴趣越来越浓厚,离子交换技术作为电镀废水深度处理的有效方法再度引起重视。 二、原理 离子交换树脂是具有三维空间结构的不溶性高分子化合物,其功能基可与水中的离子起交换反应。镀镍废水中的Ni2+离子采用阳离子交换树脂吸附。所用树脂可以是强酸性阳树脂也可以是弱酸性阳树脂,本文以弱酸性阳树脂为例。采用弱酸性阳树脂交换时,通常将树脂转为Na型,因为H型交换速率极慢。含Ni2+ 废水流经Na型弱酸性阳树脂层时,发生如下交换反应: 2R-COONa+Ni2+→(R-COO) 2 Ni+2Na+ 水中的Ni2+被吸附在树脂上,而树脂上的Na+便进入水中。 当全部树脂层与Ni2+交换达到平衡时,用一定浓度的HCl或H 2SO 4 再生。 (R-COO)2Ni+H 2SO 4 →2R-COOH+NiSO 4 此时树脂为H型,需用NaOH转为Na型。

电镀废水一体化处理工艺

电镀废水一体化处理工艺 电镀废水一体化处理工艺 随着科技的进步和环保技术的快速发展,许多新技术开始应用于环保行业了,其中以铁/炭内电解反应器为核心的技术在环保工程中应用越来越广泛。这种一体化处理技术以其独特的优势在电镀废水处理工程中具有广泛的应用前景。 1、一体化技术处理混合电镀废水工艺机理 破CN-、氧化还原Cr6+为Cr3+等预处理措施是传统电镀废水处理工艺中必须的,因其投资大、技术参数控制程度高、操作复杂等弊端,在工程设计与应用中具有一定的局限性。相比起来,以为主体技术的工艺则避免了污水的分类收集、预处理等前期工序,废

水可直接混合并进入独立设置的调节池内,进行水量水质调节,然后通过水力提升至铸铁/焦炭内电解反应器内,在一定条件下反应后进入下步工序。由于此类技术不需要对污水进行分类预处理,而是直接混合处理,因此亦名一体化处理技术”,其典型的反应机理可表示如下:

阳极铸铁: Fe-2e f Ve2E°(Fe2+/Fe)=-0.44V (1) Cu2++Fe f F F+C U (2) 阴极焦炭: 2H++2e 2[H] fH f E o(H +/H 2)=0?00V ( 3) O2+2H2O+4e f 2OH-E0Q2/OH -)=0.41V ⑷ O2+4H ++4e f 2H2O E o(O2/H2O)=1.22V 不断生成的Fe2+在强氧化剂Cr6+作用下,生成具有良 好絮凝作用的Fe3+,同时将Cr6+转化

Cr3+,其反应为: 6Fe2++Cr 2O2-7+14H +—2C产+6Fe3++7H 2O (6) 同时,如果污水中还含有氰化物,则可发生: CN-+ 02—CNO 〔—N 2〕(7) 通过以上一系列无数的内电解反应,污水中的 重污染物物质得到了转化,继而在后续处理单元中得 到更进一步去除。 2、工艺流程及主要设施说明 2.1、工艺流程 采用此技术的工程工艺流程如图1所示。 图1工艺流程图 混合废水经厂区收集管道流至调节池,由耐腐蚀性一级污水泵提升至铸铁/焦炭反应器中,

硫酸亚铁法处理电镀含氰废水的试验研究及特点

硫酸亚铁法处理电镀含氰废水的试验研究及特点 用硫酸亚铁法处理电镀含氰废水,氰化物的去除率可达97%左右,而且处理费用低,操作简便,具有广泛的应用前景。 电镀工业是氰化物的主要来源之一。电镀操作使用高浓度氰化物电镀液以使镉、铜和锌溶解在溶液中,含有氰离子以及金属氰化物络合离子的电镀液随镀件带出时会污染漂洗水而形成电镀废水。 氰化物是极毒物质,特别是当处于酸性pH 范围内时,它变成剧毒的氢氰酸。含氰废水必需先经处理,才可排入下水道或溪河中。目前含氰废水通常的处理方法是将氰化物部分氧化成毒性较低的氰酸盐,或完全氧化成二氧化碳和氮,从处理效果和费用方面考虑,对中小型电镀制品企业还是难以接受,因此,开发研究适合我国国情的简易、高效、低耗的污水处理技术是当务之急。用硫酸亚铁法处理电镀含氰废水,探讨其对氰化物及悬浮物的处理效果,以达到简化工艺,降低能耗及基建费用的目的,并为电镀含氰废水处理工程设计及实践的应用提供依据。 硫酸亚铁法处理电镀含氰废水的试验研究除氰机理 硫酸亚铁是一种来源广泛,价格便宜,使用方便的水处理药剂,在碱性条件下,它可与水中的CN络合成不溶性的亚铁氰化物,然后在微碱性条件下进一步转化成为较稳定的普鲁士兰型不溶性化合物而除去。含氰废水主要来源镀锌、镀铜、镀镉、镀金、镀银、镀合金等氰化镀槽,废水中主要含氰的络合金属离子、游离氰、氢氧化钠、碳酸钠等盐类,以及部分添加剂、光亮剂等;一般废水中氰浓度在30~50mg,I左右,pH值为8~l1。其反应过程如下: FeSO4+2OH一Fe(OH)2+So 4 z1HCN+OH。—+CN。+H20Fe(OH)2+6CN。[Fe(CN)6] +2OH。[Fe(CN)6] +2FeSO4 Fe 2 [Fe(CN)6] +2SO 46Fe 2[Fe(CN)6]+3o2+6H20 2Fle 4[Fe(CN)6]3 +4Fe(OH)3 l 废水中的其它部分重金属离子也可在碱性条件下形成不溶的氢氧化物,再通过混凝剂的

国内电镀废水处理现状

国内电镀废水处理现状 国内电镀行业屑于劳动密集型的“三来一补”企业,耗能高、排污量大、产品附加值相对较低,对环境的污染危害性较大,属重污染行业,已不符合现今发展循环经济的理念,因此,政府对这类工艺落后、污染严重的企业态度明确,以政策法规和技术支撑为保障,实施生态化改造,强化管理、逐步淘汰,对超标排放而又治理无望的企业,注册期到,一律终止,工商部门不再续期办理营业执照。执行“严格管理、提高效益、保护环境、实现资源有效利用”的策略。 珠三角电镀品种有印制电路板、电子元器件、电脑配件、汽车部件、眼镜、卫生洁具、摩托车配件、家电、灯具、门锁、五金件、首饰、钟表等。电镀工艺有普通电镀、化学镀、复合电镀、脉冲电镀、电铸、机械镀、真空蒸镀、离子镀。单一金属有锌、铜、镍、铬、锡、金、银、铀、铑、钯、铟等。二元合金有铜基的铜镍、铜锌、铜锡;锌基的锌铜、锌镍、锌铁、锌钴;镍基的镍磷、镍钴;锡基的锡锌、锡镍、锡钴。三元合金有铜镍铬、锡钴锌。在色彩方面有黑镍、沙丁镍、黑铬、沙丁铬、枪色、古铜、光亮铜、光亮镍、彩色钝化膜、蓝白色。基体材料有金属、铝、工程塑料等。 (一)管理现状 随着经济的发展,环境保护的工作越来越得到重视,国家成立了环境保护部,2009年,各省相继成立环境保护厅,从组织上给予开展该项工作的保证。政府对电镀企业进行强制管理是从2002年正式开始,从这时起,电镀废水的处理有了较快的发展,人们由不认识到较熟练地掌握废水处理技术,设备由简单的几个池子,发展到今天的半自动控制的连续处理,技术、设备、管理上都取得了很大的成绩,一些难处理、多年难以解决的技术问题都已克服,政府倡导的环保意识已普及,企业界接受了“严格管理、提高效益、保护环境、实现资源有效利用”这个理念,并逐渐自觉接受强制管理。 1.政策管理 (1)国家出台了《中华人民共和国固体废物污染环境防治法》,各省市也出台了相应的文件,对产生工业固体废物(电镀废水厂产生大量污泥)的单位强行建立、健全污染环境治理赍任制度:①电镀企业成立时要经过严格审批,要备齐一系列资料,如环保审批批文,污染防治设施的评估报告书和验收资料,生产工艺流程图,投资生产规模,产品种类和数量、原辅材料种类及数量、产生的工业固体废物特别是危险废物种类数量及其收集、忙存、转移、处理情况等;②执法人员采取现场监测、采集样品、拍摄现场等措施进行监管;③重视电镀企业布局,在深圳等经济发达地区已不允许再新建电镀厂,已有的集中到工业园区,按环保局的标准进行整改,达不到要求的强制关闭。 (2)国家实行工业固体废物申报登记制度,要求有关单位如实向环保主管部门申报工业固体废物的种类、产生量、把存、流向、处置等有关资料,如有重大改变,应当及时办理变更申报登记,产生危险废物的单位必须按照国家有关规定制定危险废物管理计划、意外事故的防范措施和应急预案,并向环保主管部门备案。

含镍废水处理工艺

含镍废水处理工艺 This manuscript was revised by JIEK MA on December 15th, 2012.

含镍废水处理工艺 镍系废水进入镍系调匀池;用泵提升至PH:11~13,用自动仪表控制加药(NaOH);使镍离子(Ni+2)与氢氧根(OH-)形成Ni(OH)2,出水导入斜管沉淀池进行固液分离;上层液排入综合系合并处理,污泥则排入镍系污泥池;再以板框压滤机对污泥进行脱水,所得干泥饼再外卖。单独的镍废水处理所产生的泥渣,具有很高的价值,即使外卖给专门的污泥处理企业,价值也比混合废水的泥渣外卖的价值高数十倍。 因为镍系废水处理的污泥具有很高的回收价值。建议企业对镍系废水单独处理,污泥单独收集。因为企业场地限制,一般在废水站建设上很难以做到每一系列的废水彻底分开,这里还是建议电镀企业至少镍系、铜系废水合并处理,这样收集和分类处理,比较容易将电镀废水中的重金属处理彻底,含镍废水处理工艺流程图见下表。 这里需要重点指出的是,如果这系列的废水中含有Zn、Pb、Sn、Al等离子,在处理时需要严格控制PH值,因为,这些金属属于两性金属,他的氢氧化合物可以是酸式也可以是碱式。锌开始沉淀的PH是,完全沉淀的PH值8,沉淀开始溶解的PH值;实际处理的最佳值是~。因此,如果该处理系列废水含锌,则处理时需要严格控制PH在9左右,必要时可以将含锌金属系列废水单独收集、单独处理、单独分离。 目前已经有很多企业对于含镍废水单独收集,在线使用镍回收系统,通过RO膜系统,将清洗水中的镍浓缩,回用于电镀线,清水继续使用在电镀线作为清洗水,这样的方式非常好,对节约用水和减少污染物排放都有非常明显的效果,非常值得采用和排广。 金属镍回收装置 我公司是专业从事废水回用处理的高科技公司,公司在电镀废水处理及回用技术方面做了大量的研究及试验工作,取得了多项研究成果,其中有7项获得专利。工程应用数十个,金属回收装置安装几百多套,设备处理效果良好,运行稳定,获得客户的好评。 适应范围 ◇电镀镍漂洗水回收; ◇电镀铜漂洗水回收; ◇其他性质相类似废水的回收; ◇制造纯水; 产品特点 ◇采用两级预处理措施,有效预防堵塞,系统运行更加稳定; ◇反渗透工艺采用大流量设计,减少膜清洗次数,有效延长膜的使用寿命; ◇反渗透工艺采用独特的循环管路设计,更加节能; ◇使用两段两级式反渗透分离,回收率更高,回收镍离子的浓度可达20g/L以上,纯水水质更好; ◇采用自动控制,减少操作强度。 含镍废水预处理单元 含镍废水处理控制系统 含镍废水处理设备处理能力:~5 m3/h (可根据客户要求定制) 含镍废水处理设备相关型号表:

电镀工业废水处理

电镀工业废水处理 电镀污水的成分非常复杂,除含氰(CN-)污水和酸碱污水外,重金属污水是电镀业潜在危害性极大的污水类别。根据重金属污水中所含重金属元素进行分类,一般可以分为含铬(Cr)污水、含镍(Ni)污水、含镉(Cd)污水、含铜(Cu)污水、含锌(Zn)污水、含金(Au)污水、含银(Ag)污水等。电镀污水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀污水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。 一、电镀污水的特点 电镀行业污水水质较复杂,污水中含有铬、锌、铜、镍、镉等重金属离子以及酸、碱、氰化物等具有很大毒性的杂物。污水具有以下特点: (1)成分复杂,污染物可分为无机污染物和有机污染物两大类。 (2)水质变化幅度大,各股生产污水污染物种类多样,CODcr变化系数大。 (3)污水毒性大,含有大量的重金属离子,若不经处理直接排放会对周边水体造成极大的污染。 各电镀厂点的污水量及成分差异很大,因此,必须结合实际情况,先抓好主要矛盾(选用好的工艺、流程和清洗方式),然后采用效果好、经济实用的处理方法。只有这样才能做到治本与治标相结合,使运转费用压到最低限度,处理方法也能经得起长时期的考验。 二、电镀污水处理方法的选择 在选择电镀污水处理方法之前,应当对各种处理方法的效果、投资、占地面积、设备性能、原材料要求等方面有较为全面了解。电镀污水处理方法很多,但各有所长,也各有所短。因此,要取长补短,往往几种方法组合使用,效果更好。因各电镀厂点生产情况不同、条件不同,电镀污水情况也不同。制订电镀污水处理方案时要根据本厂

含镍废水的处理原理是什么

含镍废水的处理原理是什么 在镀镍漂洗废水中,含有大量的硫酸镍和氯化镍,镍的化合物能刺激人体的精氨酶、羧化酶,引起各种炎症,伤害心肌和肝脏。那么含镍废水的处理原理是什么? 中和沉淀法 采用中和沉淀法处理含镍综合电镀废水,利用化学反应使废水中的Ni2+形成氢氧化镍沉淀,然后再经固液分离装置去除沉淀物,从而达到去除镍及其它重金属的目的。如采用氢氧化钠调节pH值,根据废液中Ni2+的浓度,pH值9.2时,可使Ni2+浓度降低到 1.2mg/L;pH值调至10~12时,Ni2+除去得更彻底。 硫化物沉淀法 金属镍的硫化物溶度积比其氢氧化物小,故硫化物可使金属更完全被去除,但其处理费用高,硫化物处理困难,常作为氢氧化物沉淀法的补充法。

铁氧体法 铁氧体是复合金属氧化物中的一类,其通式为A2BO4或BOA2O3,最常见的铁氧体为磁铁矿FeO、Fe2O3或Fe3O4。废水中金属离子形成铁氧体晶粒而沉淀去除。对不同金属离子有不同的最佳投药比,其中Ni2+与硫酸亚铁比为1∶2~3(废水中含镍30~ 200mg/L),形成的沉淀颗粒大且易于分离,颗粒不会再溶解,无二次污染问题,出水水质好,能达排放标准。缺点是需要消耗较多的NaOH 和热能。 为克服消耗热能和反应速度慢问题,出现了改进的铁氧体法,即GT铁氧体法。原理是:在废水中加入Fe3+,然后将含Fe3+的部分废水通过装有铁屑的反应塔,在常温条件下,反应塔中Fe3+与铁屑反应生成Fe2+。将反应塔中废水与原废水混合,常温下加碱数分钟后即生成棕黑色铁氧体。 化学法处理效果稳定可靠,工艺成熟,然而化学法普遍存在药

剂消耗多、处理费用高、产生大量含镍废渣等缺点,若处理不当极易造成二次污染,不能有效回收镍及水资源。随着新型沉淀剂的研制、废渣的利用及与其它技术相结合发展,该法还将得到进一步发展。 从废水中去除无机汞的方法有硫化物沉淀法、化学凝聚法、活性炭吸附怯、金属还原法、离子交换法和微生物法等。一般偏碱性含汞废水通常采用化学凝聚法或硫化物沉淀法处理。偏酸性的含汞废水可用金属还原法处理。低浓度的含汞废水可用活性炭吸附法、化学凝聚法或活性污泥法处理,有机汞废水较难处理,通常先将有机汞氧化为无机汞,而后进行处理。各种汞化合物的毒性差别很大。元素汞基本无毒;无机汞中的升汞是剧毒物质,有机汞中的苯基汞分解较快,毒性不大;甲基汞进入人体很容易被吸收,不易降解,排泄很慢,特别是容易在脑中积累。毒性最大,如水俣病就是由甲基汞中毒造成的。 我们在平时最好多学习一些水污染安全小知识,饮用水尽量安装家用净水器过虑在饮用,这样更有利于用水安全。

含铬电镀废水处理技术方案

含铬电镀废水处理技术方案 1. 项目概况 揭阳市广润五金实业有限公司位于揭东县埔田镇溪南山村月山顶工业区,主要从事五金类配件电镀、成品制作。 废水主要来源于镀锌、镀铬、钝化、粗化、还原后续清洗等 工序废水,废水中主要含Cr3+、Cr6+、总锌、酸、碱。由于在 生产过程中,将排放一定量的致癌、致畸废水,因此,必须 认真处理,以减少或消除其对环境的污染。为贯彻落实国家 环境保护方针政策,加强环境污染防治,严格执行“三同时” 的要求,该公司特委托我公司进行生产废水处理工程设计方 案的编制。 受业主委托,我公司经安排工程师、技术人员等现场踏勘并结合我公司在同类废水处理工程设计经验,编制本设计方案,供业主及有关部门领导决策。 2. 设计原则与标准 2.1 设计原则 ⑴按照国家有关环保治理的设计规范、标准、要求进行设计,确保各种污染物经治理设施处理后执行国家《电镀污染物排放标准》(GB21900-2008)。 ⑵贯彻执行国家现行的经济建设方针、政策,结合实际情况,充分利用现有的设施(设备)、水、电供应以及管理、技术、维修与

运输条件,合理选定方案,降低工程造价、减少建设投资,降低后期运行维护费用。 ⑶合理系统选用的设备运行安全可靠,管理、操作方便。 ⑷技术先进,工艺合理,适用性强,有较好的耐冲击性、可操作性。 ⑸治理系统自动化程度高,关键环节实行自动控制。 ⑹因地制宜提高土地利用率,总平面布置做到合理、紧凑与周围景观相协调。 ⑺处理效果稳定,有害物去除率高,处理后的废水稳定达到国家排放标准。 2.2 设计范围 本技术方案工作内容:工艺及非标设备设计、提供废水处理工艺设备、电气控制设备,并负责安装、调试及人员培训。工程范围从废水调节池入口至系统末级处理出水达标排放口之间的工艺、设备、电气自动控制的设计及设备制造、安装、调试。 2.3 主要规范、标准及依据 ⑴《电镀污染物排放标准》(GB21900-2008)。 ⑵《电镀废水治理规范》(GBJ136-90)。 ⑶厂方提供的一些基础数据。 ⑷废水处理产生的污泥执行《中华人民共和国固体废物污染环境防治法》中的有关规定。 3. 设计参数

电镀废水处理过程详解及规范

电镀废水处理操作规程 总则 1.为加强污水处理的设备管理、工艺管理和水质管理,保证污水处理安全正常运行,达到净化水质、处理和处置污泥、保护环境的目的,制定本规程。 2.污水处理的运行、维护及其安全除应符合本规程外,尚应符合国家现行有关标准的规定。 1 一般要求 1.1运行管理要求 1.运行管理人员必须熟悉本厂处理工艺和设施、设备的运行要求与技术指标。 2.操作人员必须了解本厂处理工艺,熟悉本岗位设施、设备的运行要求和技术指标。 3.各岗位应有工艺系统网络图、安全操作规程等,并应示于明显部位。 4.运行管理人员和操作人员应按要求巡视检查构筑物、设备、电器和仪表的运行情况。 5.各岗位的操作人员应按时做好运行记录。数据应准确无误。 6.操作人员发现运行不正常时,应及时处理或上报主管部门。 7.各种机械设备应保持清洁,无漏水、漏气等。 8.水处理构筑物堰口、池壁应保持清洁、完好。 9.根据不同机电设备要求,应定时检查,添加或更换润滑油或润滑脂。 1.2安全操作要求 1.各岗位操作人员和维修人员必须经过技术培训和生产实践,并考试合格后方可上岗。 2.启动设备应在做好启动准备工作后进行。 3.电源电压大于或小于额定电压5%时,不宜启动电机。 4.操作人员在启闭电器开关时,应按电工操作规程进行。 5.各种设备维修时必须断电,并应在开关处悬挂维修标牌后,方可操作。 6.雨天或冰雪天气,操作人员在构筑物上巡视或操作时,应注意防滑。 7.清理机电设备及周围环境卫生进,严禁擦拭设备运转部位,冲洗水不得溅到电缆头和电机带电部位及润滑部位。 8.各岗位操作人员应穿戴齐全劳保用品,做好安全防范工作。 9.应在构筑物的明显位置配备防护救生设施及用品。 10.严禁非岗位人员启闭本岗位的机电设备。 1.3维护保养要求 1.运行管理人员和维修人员应熟悉机电设备的维修规定。

电镀废水处理的三种主要解决方法

电镀废水处理的三种主要解决方法 电镀厂(或车间)排放的废水和废液,如镀件漂洗水、废槽液、设备冷却和地面冲洗水等,其水质随生产工艺的不同而不同,一种废水中往往含有不止一种有害成分,如氰化镀镉废水中既含氰又含镉。另外,一般的镀液中常含有有机添加剂。以下电镀厂污水处理方案,了解下该如何处理电镀厂污水。 在电镀和金属加工行业的废水中,锌的主要来源是电镀或酸洗拖泥带水。通过金属洗涤过程将污染物转移到洗涤水中。酸洗工序是先将金属(锌或铜)浸入强酸中,以除去表面的氧化物,然后将其浸入含有强铬酸的光亮剂中,使其增光。污水中含有大量的盐酸、锌、铜等重金属离子和有机光亮剂等,其毒害程度较高,有些有毒物质具有致癌、致畸、致突变等作用,严重危害人类健康。对电镀废水必须认真回收利用,以达到消除或减少电镀废水对环境的污染。 化学反应过程 将一种化学药剂投入电镀废水中,使废水中的污染物氧化,还原化学反应或产生混凝,再与水中分离,使废水净化后排放,达到排放标准。针对含污染物的废水,可采用不同的处理工艺进行处理。例如:在含氰废水中投加氧化剂(氰化镀铜、镉、银、合金等)(可选择次氯酸钠、漂粉、漂白精、氯等);在含铬废水中投加还原剂(可选择亚硫酸氢钠、水合肼、硫酸亚铁等);在碱性锌酸盐镀锌废水中投加混凝剂(可选择亚硫酸氢钠、水合肼、硫酸亚铁等);在酸、碱废水中投加中和药剂等。通过沉淀、气浮、过滤等固液分离措施,从废水中分离出金

属氢氧化物,使废水达到排放标准,分离出的污泥可根据其特性,进行综合利用或无害化处理,防止二次污染。化学方法处理电镀废水属于传统的处理方法,处理效果稳定,成本较低(约每米3分水处理0.2——0.5元),操作管理方便,但处理后产生的污泥需妥善处置,对无回收利用价值的电镀废水,宜采用化学方法处理。 离子化交换法 电镀废水用离子交换法处理,需要根据水质的不同选择不同的处理工艺,废水中的金属离子通过阳树脂交换去除,阴离子通过阴树脂交换去除。经处理后的水为初纯水回流到漂洗槽,树脂再生后的再生液再回流到镀槽,实现了电镀废水的闭路循环系统,无外排废水。当回收的金属溶液浓度或纯度达不到使用要求时,必须加入浓缩或净化装置,以确保回收的金属废液全部返回镀槽中使用。在电镀含铬废水处理中,宜采用酸性阳柱与三阴柱串联循环全饱和初纯水的基本工艺流程,以实现铬酸回收与水循环利用。镀镍厂废水采用双阳柱串联全饱和和一纯水循环的基本工艺流程为宜。硫酸镍的回收与水的循环利用。对氰化镀铜、铜锡合金废水,宜采用除氰阴柱与除铜阳柱串联的基本工艺流程,使钢液中回收的化钠、化钠、水得到回收。碳酸钾镀锌废水宜采用双阳柱串联、全饱和和初纯水循环的基本工艺流程,实现回收氯化锌和水的循环。 电解法处理 含氰镀银、无氰镀银及酸性镀铜废水可采用电解法处理,在镀银生产线的一漂洗槽旁设置回收利用的银电解槽,采用无隔膜单式电解

如东开元污水处理厂污水处理工艺说明废水分类水量表项目含镍

如东开元污水处理厂污水处理工艺说明
一、废水分类水量表
项目 总规划(t/h) 一期规划(t/h) 含镍废水 16 8 化学镍废水 8 4 含铬废水 18 9 含氰废水 2 1 综合废水 20 10 混排废水 8 4 前处理废水 26 13
除以上 7 类废水以外,对以下废液进行收集集中处理
序号 1 2 3 废液项目 高浓度重金属废液、清洗液 限量提升到相应处理系统进行 废酸槽液 处理 前处理碱性脱脂废液 系统无法承受过量的废液委外处理 处理方式 备注
二、工艺简介 1、化学镍废水处理系统

化学镍废水中镍离子通常与镀液中的柠檬酸和次、亚磷酸盐等物质形成络合镍,同时水中存在次、亚磷酸盐, 废水从车间排至废水池,均匀水质水量后,提升至 pH 值调节池,投加硫酸调至酸性,在投加强氧化剂次钠氧化络 合镍,同时氧化次、亚磷酸根转化为正磷酸根,预处理后进入收集池 2。

2、含镍废水处理系统
含镍废水中镍离子通常以离子态存在,与化学镍预处理后的废水混合并调整 pH 值后,进入混凝絮凝沉淀系统, 经过石英砂过滤器和保安过滤器,达到镍离子回收装置进水浊度要求后,进入回收系统,大部分镍被回收利用,出 水进入回调池,化学镍和含镍废水设立独立在线监测系统和排放口,水质达标进入回用工序,不达标回至除镍吸附 柱进行再处理。

3、含铬废水处理系统
含铬废水中含有六价铬和三价铬,先将废水用硫酸调 pH 值至 2~3,再加入还原剂焦亚硫酸钠,将六价铬还原 为三价铬,在下一个反应池中用 NaOH 或 Ca(OH)2 调 pH 值至 7~8,生成 Cr(OH)3 沉淀,再加混凝剂,使 Cr(OH)3 沉淀除去进入中间水池,因靠常规物化沉淀很难将总铬稳定降到排放标准,中间水池水先后进入石英砂过滤器、保 安过滤器和除铬吸附柱,确保废水稳定达标,废水排放设立独立在线监测系统和排放口,水质达标进入回用工序, 不达标回至除铬吸附柱进行再处理。

电镀废水一体化处理工艺

电镀废水一体化处理工艺 摘要:广东省某电镀厂规模为 300 m3/d 的电镀混合废水主要含有 Cr6+、铜和镍等重金属污染物,采用以“铸铁/焦炭反应器”为主体的一体化处理技术,在进水 Cr6+、总铜、总镍和总锌分别为 0.34 mg/L、14.9 mg/L、15.7 mg/L 和3.1 mg/L 时,出水中 Cr6+、总铜、总镍和总锌等主要污染物分别为 0.002(Y)mg/L、0.24 mg/L、0.21 mg/L 和0.13 mg/L ,去除率分别达99.4 、98.4 、98.7 和95.8 ,部分出水回用。 关键词:铁/炭内电解反应器电镀混合废水一体化 随着科技的进步和环保技术的快速发展,许多新技术开始应用于环保行业了,其中以铁/炭内电解反应器为核心的技术在环保工程中应用越来越广泛。这种一体化处理 技术以其独特的优势在电镀废水处理工程中具有广泛的应用前景 1、一体化技术处理混合电镀废水工艺机 破CN-、氧化还原 Cr6+为Cr3+等预处理措施是传统电镀废水处理工艺中必须的,因其投资大、技术参数控制程度高、操作复杂等弊端,在工程设计与应用中具有一定的局限性 相比起来,以为主体技术的工艺则避免了污水的分类收集、预处理等前期工序,废水可直接混合并进入独立设置的调节池内,进行水量水质调节,然后通过水力提升至铸铁/ 焦炭内电解反应器内,在一定条件下反应后进入下步工序。由于此类技术不需要对污水进行分类预处理,而是直接混合处理,因此亦名“一体化处理技术”,其典型的反应机理可表示如下 阳极铸铁

Fe-2e→Fe2+E0(Fe2+/Fe)=-0.44V (1 Cu2++Fe→Fe2++Cu(2 阴极焦炭 2H++2e→2[H]→H2↑E0(H+/H2)=0.00V (3) O2+2H2O+4e→2OH- E0(O2/OH-)=0.41V (4) O2+4H++4e→2H2O E0(O2/H2O)=1.22V (5 不断生成的 Fe2+在强氧化剂 Cr6+作用下,生成具有良好絮凝作用的 Fe3+,同时将Cr6+转化 Cr3+,其反应为 6Fe2++Cr2O2-7+14H+→2Cr3++6Fe3++7H2O(6 同时,如果污水中还含有氰化物,则可发生 CN-+O2→CNO-〔→…→N2〕(7

含氰电镀废水的处理方法

含氰电镀废水的处理方法 含氰电镀废水处理的几种方法:一般有碱性氯化法、电解法、活性炭法。 1碱性氯化法 基本原理是在含氰废水中投加氧化剂(如漂白粉),将氰氧化成二氧化碳和氮。氧化分为两个阶段,第一阶段是将氰化物氧化成氰酸盐,第二阶段再将氰酸盐氧化成二氧化碳和氮气。主要水处理构筑物需设氧化反应池两座、沉淀池一座以及相应的投药装置等。反应池中设pH计及ORP计(氧化还原电位计)控制水质及投药量,并设搅拌装置。第一阶段氧化反应时间控制在10~15min,pH值控制在10~11,第二阶段氧化反应时间控制在10~30min,pH值控制在8左右。 2电解法 电解法处理含氰废水的实质就是次氯酸氧化法,其原理同样是基于氧化反应,与碱性氯化法不同的是其所投加的氧化剂是通过电解食盐水所产生的次氯酸根。因此需设一套电解食盐水装置。该方法的优点是处理效果稳定可靠,管理方便,操作简单,无泥渣,可不设沉淀池。缺点是耗电量较大。 3活性炭法 此种方法主要用于氰化镀铜废水处理。基本原理:含有氰化物的废水在有足够的溶解氧和铜离子的条件下,通过活性炭的催化氧化作用,生成NH3及CuCO3·Cu(OH)2等物质,从而破坏氰化物的毒性,同时铜和氰构成的络合离子被活性炭吸附。基本流程:废水→氧化剂

柱→活性炭柱(两级)→排放或回收。活性炭吸附达饱和后,用6%的硫酸铵和含有效氯为8g/L的次氯酸钠再生。此种方法的优点是投资少,操作简单,费用低,水处理效果好。缺点是再生废液难处理,易造成二次污染。 对于含氰废水,除上述处理方法外,还有离子交换法、薄膜蒸发回收法等。离子交换法同样存在再生废液二次污染的问题,且投资大、成本高。而薄膜蒸发回收法设备较复杂,且需消耗蒸气,辅助设备较多,运行管理不易掌握,因此在中小型电镀生产厂中很少使用。

电镀废水处理论文

前言 据了解,我国的电镀工厂大约有一万多家,每年排放的电镀废水约40亿m2.含Cr(VI)废水是电镀行业的主要废水来源之一。Cr(VI)具有强毒性,是国际抗癌眼睛中心和美国毒理学组织公布的致癌物,具有明显的致癌作用,Cr (VI)化合物在自然界不能被微生物分解,具渗透前移性较强,对人体有强烈的致敏作用。因此,对含Cr(VI)电镀废水的妥善处理,是电镀行业中一个必须解决的环境问题。 电镀行业是通用性强、使用面广、跨行业、跨部门的重要加工工业和工艺性生产技术。由于电镀行业使用了大量强酸、强碱、重金属溶液,甚至包括镉、氰化物、铬酐等有毒有害化学品,在工艺过程中排放了污染环境和危害人类健康的废水、废气和废渣,已成为一个重污染行业。 除了少部分国有大型企业、三资企业及新建的正规专门电镀厂拥有国际先进水平的工艺设施,大多数中小型企业仍然使用简陋而陈旧的设备,操作方式以手工操作为主。我国电镀行业存在的主要问题有: (1)厂点多、规模小,专业化程度低。(2)装备水平低。表现在一方面缺少机械装备,以手工操作为主;另一方面是技术装备水平不高,自动化程度低,可靠性差,产品质量部稳定。(3)管理水平较低,经济效益较差。(4)电镀污染治理水平低,有效治理率低。(5)经营粗放,原材料利用率低。一大部分甚至绝大部分宝贵的原材料流失并变成了污染物。在清洁生产审计中调查的10条电镀加工线中,平均用水量为0.82t/m2,是国外的10倍。 鉴于铬污染的严重危害性,污水综合处理排放标准规定总铬与Cr(VI)的最高允许排放溶度分别为1.5mg/L和0.5mg/L。在控制排放溶度与总量的同时,发展高效、经济的水处理工艺成为研究的热点。 目前,国内外许多研究者对高盐废水作了许多研究,对于含Cr(VI)电镀废水的处理主要采用化学还原法、电解法、微生物法、萃取法等。化学法是当前应用最广泛的一种方法,主要有化学还原法和化学沉淀法。但由于在实际运作中,投料量和PH值较难控制,如果控制不当,可能造成处理效果不佳,如果投料过量,浪费资源,成本不但增加,而且出手COD也会增加,还易形成[Cr2(OH)2SO3]2+络离子,加碱亦难沉淀;如果投料不足,则Cr(VI)还原不充分,出水Cr(VI)还原不充分,出水中Cr(VI)含量不达标。同时,化学法二

化学镀镍废水处理工艺研究

化学镀镍废水处理工艺研究 化学镀镍是以镍盐和次磷酸盐等共同作用生成的非晶镀层,是一种前沿的表面处理技术,被广泛的用于电子、石油、计算机和汽车等领域。以次磷酸盐为还原剂的化学镀镍技术的机理是原子氢理论,该理论认为是H2PO2-催化脱氢产生原子氢并还原镍离子,其总反应式如式(1)所示: 随着化学镀时间的不断延长,溶液中的亚硫酸根离子等副产物达到一定浓度时,化学镀溶液会自发分解,金属一磷合金镀层的沉积受到影响,镀层的耐磨性等性能下降,导致废弃,形成化学镀废液。化学镀镍废液中含有大量难降解有机污染物和无机盐,其中的金属镍含量高达几克每升,镍离子与络合剂EDTA,NTA等结合形成稳定的高浓度难降解工业废液,很难通过传统的化学破络及沉淀方法彻底去除。同时,化学镀镍废液中含有含量较高的次磷酸根和亚磷酸根离子,不加处理会引起水体富营养化。目前,化学镀镍废水主要采用化学沉淀法、离子交换法、膜分离及吸附法进行处理。但离子交换法,膜分离及吸附法存在运行操作技术要求高,膜易受污染以及离子交换剂饱和再生等限制,不能大范围的推广应用。化学破络及沉淀法操作方便、设备简单,在含镍废水中应用较多。如施银燕等采用双氧水和NaOH沉淀去除废水中的镍离子,于泊集等使用氢氧化镁处理不同pH值得含镍废水均取得一定的去除效果。李蛟等用CaO破络合剂处理镀镍废水,结果表明镍离子的最高去除率只有32%,因此,单一的化学试剂处理并无法满足废水中金属离子、无机盐和有机物的同时去除。《污水综合排放标准》(CB 8978-1996)中明确限定磷酸盐的排放限值应低于0. 5 mg / L ,而化学镀废水中次/亚磷酸盐由于溶度积较高,直接投加Ca和Fe离子对其沉淀效果较差,必须将其氧化为正磷酸根再通过沉淀等手段去除。Fenton ( H2 O2 +Fe2+)氧化技术是高级氧化技术的一种,其产生轻基自由基(HO·)氧化电位高达2. 8 eV,可以氧化绝大多数的有机或无机物,具有试剂无毒、绿色、操作简单等特点。因此,通过Fenton氧化技术不仅可以去除化学镀废水中的高浓度有机物,还可以氧化次/亚磷酸盐,回收反应过程中正磷酸根和三价铁形成的高纯度磷酸铁,从而实现资源回收。 本文在化学沉淀的基础上,采用两段式处理工艺,即CaO破络除镍和Fenton氧化法去除有机物和磷,对反应过程中的各影响因索进行了研究。研究表明,该方法不仅能有效的去除废水中的金属镍,更可以回收反应过程中产生的磷酸铁。该工艺处理效率高,操作简单,实用性强,将具有一定的应用价值。 1 实验部分 1.1 实验水样 实验所用废水取自某化学镀镍车间,废水产量约1 t / d,呈浅绿色,该化学镀废水中主要包含硫酸镍、次磷酸氢钠、柠檬酸钠、乙酸和氨水等。该废水性质如表1所示。

电镀废水介绍

电镀废水处理 一、电镀废水简介 电镀工厂(或车间)排出的废水和废液,如镀件漂洗水、废槽液、设备冷却水和冲洗地面水等,其水质因生产工艺而异,有的含铬,有的含镍或含镉、含氰、含酸、含碱等。废水中的金属离子有的以简单的阳离子形态存在(如Ni2+、Cu2+等),有的以酸根阴离子形式存在(如CrO等),有的则以复杂的络合阴离子形式存在【如Au(CN)、Cd(CN)、Cu(P2O7)等】。一种废水中常含有一种以上的有害成分,如氰化镀镉废水中既有氰又有镉。此外,一般镀液中常含有机添加剂。 电镀和金属加工业废水中锌的主要来源是电镀或酸洗的拖带液。污染物经金属漂洗过程又转移到漂洗水中。酸洗工序包括将金属(锌或铜)先浸在强酸中以去除表面的氧化物,随后再浸入含强铬酸的光亮剂中进行增光处理。该废水中含有大量的盐酸和锌、铜等重金属离子及有机光亮剂等,毒性较大,有些还含致癌、致畸、致突变的剧毒物质,对人类危害极大。因此,对电镀废水必须认真进行回收处理,做到消除或减少其对环境的污染。 电镀废水处理设备由调节池、加药箱、还原池、中和反应池、pH调节池、絮凝池、斜管沉淀池、厢式压滤机、清水池、气浮反应、活性炭过滤器等组成。 二、工艺介绍 1、电解法 以处理含铬废水为例,利用可溶性铁阳极,在直流电场作用下,产生亚铁离子,在酸性条件下使废水中以CrO厈和Cr2O崼存在的Cr6+离子还原成为Cr3+离子,随着电解过程中废水pH值升高,形成Cr(OH)3沉淀。采用不同材料的阳极可处理含有其他各种金属离子的废水。

工艺优缺点:电解法操作管理简单,除能够处理镀铬漂洗水外,还可以处理钝化、阳极化、磷化等漂洗水,并有成套设备;但消耗钢材、电能较多,对产生的污泥还没有妥善的处理方法。 2、离子交换法 利用离子交换树脂活性基团上的可交换离子(H+、Na+、OH-等),去除废水中的阳、阴离子。此法处理电镀废水不仅可回用水,还可回收金属离子溶液。这种方法已用于处理含有金、镍、铜、镉、铬等废水。人工合成的专门用于处理电镀废水的弱酸、弱碱大孔树脂,可分别用于去除铬、镍和铜,以及一些金属的氰化络合阴离子(见废水离子交换处理法)。 工艺优缺点:一般说来,离子交换法初次投资较大,操作管理水平要求较高,但处理效果稳定,由于能回用金属和水,是当前电镀废水实现闭路循环的主要治理方法之一。 存在的主要问题是再生废液会有钠、铁、氯根等杂质离子不能直接回用于镀槽中,排入环境会造成污染。 3、膜分离法 利用半透膜或离子交换膜等膜材料,在外加推动力下,使废水中的溶解物和水分离浓缩,以净化废水。在膜分离法中,反渗透法用于含镍、含镉废水的浓缩处理已应用于生产。隔膜电解法用于再生镀铬废液。扩散渗析法可用于酸液回收。膜分离方法成本较高。 工艺优缺点:蒸发浓缩法利用热源和蒸发器在常压或负压下直接浓缩废水。用这种方法处理高浓度废水比较经济,常同三级逆流漂洗、气-水喷淋,或同离子交换法联合使用。生产中广泛采用钛管薄膜蒸发器和蒸发釜来浓缩含铬废水、含氰废水等,也是闭路循环的主要处理流程之一。

含镍废水处理工艺

含镍废水处理工艺 镍系废水进入镍系调匀池;用泵提升至PH:11~13,用自动仪表控制加药(NaOH);使镍离子(Ni+2)与氢氧根(OH-)形成Ni(OH)2,出水导入斜管沉淀池进行固液分离;上层液排入综合系合并处理,污泥则排入镍系污泥池;再以板框压滤机对污泥进行脱水,所得干泥饼再外卖。单独的镍废水处理所产生的泥渣,具有很高的价值,即使外卖给专门的污泥处理企业,价值也比混合废水的泥渣外卖的价值高数十倍。 因为镍系废水处理的污泥具有很高的回收价值。建议企业对镍系废水单独处理,污泥单独收集。因为企业场地限制,一般在废水站建设上很难以做到每一系列的废水彻底分开,这里还是建议电镀企业至少镍系、铜系废水合并处理,这样收集和分类处理,比较容易将电镀废水中的重金属处理彻底,含镍废水处理工艺流程图见下表。 这里需要重点指出的是,如果这系列的废水中含有Zn、Pb、Sn、Al等离子,在处理时需要严格控制PH值,因为,这些金属属于两性金属,他的氢氧化合物可以是酸式也可以是碱式。锌开始沉淀的PH是6.4,完全沉淀的PH值8,沉淀开始溶解的PH值10.5;实际处理的最佳值是8.5~9.0。因此,如果该处理系列废水含锌,则处理时需要严格控制PH在9左右,必要时可以将含锌金属系列废水单独收集、单独处理、单独分离。

目前已经有很多企业对于含镍废水单独收集,在线使用镍回收系统,通过RO膜系统,将清洗水中的镍浓缩,回用于电镀线,清水继续使用在电镀线作为清洗水,这样的方式非常好,对节约用水和减少污染物排放都有非常明显的效果,非常值得采用和排广。 金属镍回收装置 我公司是专业从事废水回用处理的高科技公司,公司在电镀废水处理及回用技术方面做了大量的研究及试验工作,取得了多项研究成果,其中有7项获得专利。工程应用数十个,金属回收装置安装几百多套,设备处理效果良好,运行稳定,获得客户的好评。 适应范围 ◇电镀镍漂洗水回收; ◇电镀铜漂洗水回收; ◇其他性质相类似废水的回收; ◇制造纯水;

相关文档
最新文档