数学建模垃圾运输问题论文剖析

数学建模垃圾运输问题论文剖析
数学建模垃圾运输问题论文剖析

垃圾运输问题

垃圾运输问题

摘要

本文对于垃圾运输问题的优化,通过运用目标规划的有关知识对题目给出的坐标数据进行了处理,根据从最远点开始运载垃圾运输费用最低的原则,以及不走回路的前提,采用规划的理论建立了运输车和铲车的调度优化模型,运用MATLAB软件得到了全局最优解,对此类问题的求解提供了一种较优的方案,以达到最少运输费用。

问题(1)包含着垃圾量和运输费用的累积计算问题,因此,文中以运输车所花费用最少为目标函数,以运输车载重量的大小、当天必须将所有垃圾清理完等为约束条件,以运输车是否从一个垃圾站点到达另一个垃圾站点为决策变量,建

立了使得运输费用最小的单目标的非线性规划模型。运用MATLAB求解,得出了

最优的运输路线为10条,此时运输所花费用为2335.05元。通过分析,发现只需6辆运输车(载重量为6吨)即可完成所有任务,且每辆运输车的工作时间均在4个小时左右。具体结果见文中表3。

问题(2),建立了以运行路径最短为目标的单目标非线性规划模型。从而求出了使铲车费用最少的3条运行路线,且各条路线的工作时间较均衡。因此,处理站需投入3台铲车才能完成所有装载任务,且求得铲车所花费用为142.8元,三辆铲车的具体运行路线见文中表4。文中,我们假定垃圾处理站的运输工作从凌晨0:00开始,根据各铲车的运输路线和所花时间的大小,将铲车和运输车相互配合进行工作的时间做出了详细的安排见表5。

问题(3),要求给出当有载重量为6吨、10吨两种运输车时的最优的调度方案。基于第(1)问中的模型,修改载重量的约束条件,用MATLAB分别求解,得出两种调度方案,但总的运输费用不变,均为2508.63元;对于方案一,有9条路径,分别需要6吨的运输车2辆;10吨的运输车5辆,各运输车具体的运输线路见文中表8。对于方案二,有10条路径,分别需要6吨的运输车1辆;10吨的运输车4辆,各运输车具体的运输线路见文中表10。

问题(4),基于问题(1)、问题(2)、问题(3),修改每个站点的垃圾量,用MATLAB分别求解,得到最优的调整方案

最后,对模型的优缺点进行了分析,并给出了模型的改进意见,对解决实际问题具有一定的指导意义。

关键词:目标规划;最优解; MATLAB;调度优化模型

一.问题的重述

某城区有36个垃圾站,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。现有一种载重6吨的运输车。每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑堵车现象);每台车每日平均工作4小时(0:00-4:00,5:00前必须结束)。运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴,请你给出满意的运输调度方案以及计算程序。

问题:

1)运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用)

2)铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用)3)如果有载重量为6吨、10吨两种运输车,又如何调度?

(垃圾点地理坐标数据表见附录一)

4)如果每个垃圾站点的垃圾量是随机数,标准差为该站点平均垃圾量的10%,该如何调整?

二.问题的分析

这是图论中的一个遍历问题,此问题的困难之处在于确定铲车的行走路线,并使得运输车工作时尽量不要等待铲车,才能使得运输车的工作时间满足题目的要求——每日平均工作四小时,为此,应该使铲车跟着运输车跑完一条线路,也就是说,应该使铲车铲完一条线路后再接着铲下一条线路。

第(1)问,对于运输车调度方案的设计,不能仅仅考虑使运输车的行走路线最短,因为此处还存在着垃圾的累积运输的花费问题,因此,我们的目标函数应该是使得所有运输的花费最少。在建模过程中,我们无需考虑投入的运输车台数,只需对各条路径所花费的时间进行和各运输车载重量约束即可,至于投入的车辆数,在各条路径确定后,计算出各路径运输所花费的时间,再根据题目中要求的每辆车平均工作时间为4小时左右进行计算即可。

第(2)问,对于铲车的调度方案,因其无累积计算问题,因此只需要在已确定的各运输路径的基础上,使得铲车的行驶路径为最短。在此方案中,我们将已确定的各条路径看作为节点,建立使铲车运费最少(亦即路径最短)的非线性规划模型,在此需注意的是,由于垃圾运输为夜间运输,所以每辆铲车的工作时间也受到一定的限制,文中,我们假定铲车的工作时间为从(零晨0:00~早4:00),因此每辆铲车的工作时间最多为5个小时,再由所有运输车完成任务所需的总时间判定所需铲车的台数,之后可以根据具体情况进行调整。同时应注意,由于运输车有工作时间的限制,而铲车没有严格的限制(除工作时间不能超过9小时以外),所以,在确定铲车出行的时间时,应保证只可让铲车等待运输车,而不能让运输车等待铲车。

第(3)问,是在第一问的基础上将对运输车载重的约束条件从不大于6吨改为不大于10吨,在求得各条路线中,对于垃圾量不大于6吨的路线,调用6

吨的运输车;对于垃圾量在(6~10吨)之间的路线,调用10吨的运输车。

第(4)问,是在前三问的基础上将对每个站点的垃圾量进行随机调整,使得其标准差为该点平均垃圾量的10%。

三.模型的假设与符号说明

1模型假设

(1)假设各站点每天的垃圾量基本相同;

(2)假设各站点的垃圾都必须在当天清理完,不允许滞留;

(3)不考虑运输车和铲车在行驶过程中出现的堵车、抛锚等耽误时间的情况;

(4)不允许运输车有超载现象;

(5)每个垃圾站点均位于街道路口,便于垃圾的集中、运输;

(6)垃圾只在晚上运输,基本保证运完后,当天不会再有新的垃圾产生;

(7)假设卸垃圾及倒车均在10分钟内完成;

(8)车在装的足够多的情况下应该直接返回原点

2 符号说明

j i x ,

第i 个垃圾站点向第j 个垃圾站点运输的垃圾量; j i u , 运输车是否从第i 个垃圾站点向第j 个垃圾站点运输的0-1变量;

k j i u ,,~第k 辆铲车是否从第i 条路径向第j 条路径运输的0-1变量;

N 假设所需要的铲车的台数

L :垃圾运输路线总条数;

i C :第i 条路线上垃圾集中点的个数,L i ,,2,1 =;

ij X :第i 条路线上的第j 个垃圾集中点的横坐标,i C j L i ,2,1,,,2,1 ==; ij Y :i 条路线上的第j 个垃圾集中点的纵坐标

ij T :第i 条路线上的第j 个垃圾集中点的垃圾量,i C j L i ,2,1,,,2,1 ==; i t :第i 条路线所需要的总时间;

n H :第n 辆车的运输总时间;

1W :运输车空载的总费用;

2W :运输车重载的总费用;

W :运输车的总费用;

Q :铲车空载的总费用

四.模型的建立与求解

模型的建立

4.1 运输车调度方案的模型

由于最远的垃圾集中点的运输时间不超过运输车每天平均工作时间,所以可以先不考虑时间的约束。从而建立如下算法:

1) 确定重载起点

由于每个垃圾集中点的垃圾量及其坐标是不变,重载运输的费用是不变的,所以为了使总运输费用W 最少,只要使空载的费用最少,即尽量安排较远的垃圾集中点在同一路线上,从而确定重载起点1i X .

2)确定运输车路线走向

要求运输时走最短的路线,以及运输费用最低,而且由于运输车的重载费用

1.8元/吨是空载费用0.4元/吨的4.5倍,为了使运输总费用W 最少,那只能从最远的点(1=j )开始运载垃圾,下一个点编号为1+j ,走一条路线,向垃圾处理站(坐标原点)方向运回。顺次经过的点遵循满足条件:

?????≥≥++11ij ij

ij ij Y Y X X 即其横坐标以及纵坐标均不超过前一点的横、纵坐标,并且各点横、纵坐标递减进行搭配,由若干个点组成一条路线。

3)确定运输车路线垃圾集中点数

根据每个垃圾集中点的垃圾量,每条路线上的垃圾总量不超过运输车的最大运输量:L i T i

C j ij ,,2,1,61 =≤∑=

根据上面算法,建立运输车费用优化模型:

L

i T Y Y X X t s X W i C j ij ij ij ij ij L

i i ,,2,1,6..*4.0min 1

1111

1 =?????????≤≥≥=∑∑=++=

4.1.1 运输车调度方案

在运输过程中假设没有运输车等待的情况,在四个小时的工作时间里,根据垃圾运输费用优化模型,得到垃圾集中点分配的路线及其时间i h ,为了达到安排运输车最少,把所有的路线分成N (L N ≤)类,每类配置一辆运输车,每辆运输车的工作时间n H :

4

,2,1,,1,00,,2,1,1

≤=???===∑=n i L

i i i n H N n n i n i E L

i E h H 类

条路线在第类条路线不在第

4.2 铲车调度方案的模型

此模型的建立基于上问模型的结果,从以上运输车的调度方案得出共有10条路径,在此模型中,我们将10条路径分别看作10个节点,而把垃圾处理站看作为第11个节点(以下将各路径均称作节点),建立了使铲车行驶所需费用最小的模型。在此需要说明的是,由于运输车的路径已经确定,我们只能让铲车跟随着运输车,而不能让运输车在垃圾站点等待铲车。由此可以确定,铲车必须跟随着运输车行走完一条路径,才能转到其他路径继续工作。而对于各路径,其行走方案已定,所以各路径内的费用已经确定。因此,我们需要做的是,找出一种调度方案使铲车在各路径之间的行走所需的费用为最小。

4.2.1目标函数的建立

各路径内的费用已定,因此我们建立以下使铲车在各路径之间行走所需费用最小的目标函数如下:

111121,,,111:()N i j i j k

k i j Min F W Q Y u ====+??∑∑∑

2.2.2 约束条件的确立:

(1)对于1到10号的每个节点,只允许一辆铲车通过,且只通过一次:

∑∑====N k j k j t t u

1111,,)10,2,1(1~

∑∑====N k i k t i t u

1111,,)10,2,1(1~

(2)所有的铲车必须从第11号节点(垃圾处理站)出发,并最终回到11号节点,即从11号节点发出的铲车数和最终返回11号节点的铲车数均为N :

N

u u N k t k t N k t k t ==∑∑∑∑====1101,11,1101,,11~~

(3)为保证每辆铲车均从11号节点出发最终回到11号节点,且不重复已走的路径,则需控制铲车所走路径均为一个环,即对于每个节点,只要有铲车进入则必有铲车出,不进则无出,进与出的状态保持一致:

),2,1;11,2,1(~~111,,111,,N k t u u i k

i t i k t i ===∑∑==

(4)对于每个节点,不允许出现铲车向自己节点运行的路径:

)

,2,1;11,2,1(0~,,N k i u k i i ===

(5)不允许出现铲车的路径为,除11号节点以外,在其他节点相互运行的路径:

),2,1;10,2,1,(1~~,,,,N k t i u u k i t k t i ==≤+

(6)由于垃圾的运输均在夜间进行,则每辆铲车的工作时间不能大于5个小时(即假定工作时间为(凌晨0:00~早4:00),另外,由于题目中给定铲车的运行速度,均速度与运输车的平均速度相同,为40公里/小时,的约束条件为:

11111111,,,,,1111(/40)5(1,2,)i j i j k i i j k i j i j Y

u t u k N ====?+?≤=∑∑∑∑

4.2.3铲车规划模型

在给出了目标函数和约束条件后,即可得到一个使得铲车运行费用最小的单目标规划模型如下:

1111

21,,,111:()N i j i j k k i j Min F W Q Y u ====+??∑∑∑

4.3 载重量不同的运输车调度方案模型

此问在第一问的基础上,通过改变垃圾运输车载重量的大小,从而得到垃圾处理厂在拥有不同载重量的运输车时,采用怎样的运输方案使得所花运输费用最少。此模型的目标函数与第一问中的运输车调度方案模型相同,只是在约束条件上将第(6)个约束条件中的载重最多为6吨变成最多为10吨,

Min :363737

3137,37,2,,111()()t t i j i j t i j F W Q X u W x X ====++∑∑∑

37

,1

37

,1

37,,,1,37,36,371,1(1,2,36)

1(1,2,36)

()(1,2,36)..0(,1,237)0(1,2,36)

5110(1,2,36;1,2,37)i t i t i i t k t k t k t k i j j i i i j u t u t x u s x t s t u i j x j x x i j ====?==???==???=+=???==?==???=??≤==?∑∑∑∑ 从而可求出在拥有不同载重量运输车的情况下,各运输车的调度方案。 模型的求解

运输车调度方案模型的求解

在不考虑铲车的情况下,利用SPSS ,首先据题画出散点图:

利用MATLAB 编程(见附录二),对运输车调度方案的模型(1)进行求解,求得各垃圾站点的运输方案如表2所示,此时,求得将所有垃圾运回到37号站点运输车所需费用为2335.05元。

表2:各运输路径所包含的垃圾站点、运输量及所需时间

路径

包含的站点 运输垃圾总量 每条线路所需时间 1

○37—○30—○29—○27—○37 5.3吨 3小时46分钟 2

○37—○28—○26—○21—○25—○19—○37 5.7吨 3小时02分钟 3

○37—○36—○23—○33—○32—○37 5.5吨 2小时46分钟 4

○37—○24—○18—○35—○20—○37 5.2吨 2小时22分钟 5 ○37—○34—○17—○16—○2—○37 5.0吨 2小时7分钟

6

○37—○15—○13—○7—○4—○37 5.6吨 2小时4分钟 7

○37—○14—○31—○5—○6—○37 5.85吨 1小时46分钟 8

○37—○22—○10—○37 3.3吨 1小时23分钟 9 ○37—○12—○8—○3—○37 5.55吨

1小时30分钟 10 ○3

7—○11—○9—○1—○37 4.0吨

1小时30分钟

从上表可以看出,对于这10条路径上的垃圾总量,有8条都超过了5吨,另两条也超过了载重量的一半,运输车得到了充分地利用,结果非常好。 各运输路径以图示表示如下:

由题目可知,每台运输车的平均工作时间为4小时,根据此条件对以上10条路径进行规划,发现用6台运输车即可按要求行走完10条路径,所以,处理站只需投入6台垃圾运输车即可完成任务。各运输车行走的路径分别表示如下:

表3:各运输车的行走路径、具体路线及所需时间

运输车编号

路径编号 行走路线 所需时间 第一辆 2 ○37—○28—○26—○21—○25—○19—○37 3小时02分钟

第二辆 1

○37—○30—○29—○27—○37 3小时46分钟

第三辆

8 ○37—○22—○10—○37 4小时9分钟 3

○37—○36—○23—○33—○32—○37 第四辆

9

○37—○12—○8—○3—○37 3小时37分钟 5

○37—○34—○17—○16—○2—○37 第五辆

4

○37—○24—○18—○35—○20—○37 3小时52分钟 10

○37—○11—○9—○1—○37 第六辆

6

○37—○15—○13—○7—○4—○37 3小时50分钟

7 ○37—○14—○31—○5—○6—○

37

由上表可发现,每辆运输车的运输时间均在4个小时左右,相差很少,很好地达到了时间上的要求,且结果很理想。

3.1铲车调度方案模型的求解

利用LINGO10编程,对铲车调度方案模型(2)进行求解,得到了使铲车运费最少的行走路线。此时,需要投入的铲车数为3台,且所有铲车完成任务所需费用为202.0元,各铲车的具体行驶路线及所花费的时间如下表.

表4:各铲车的具体行驶路线及所花费的时间

铲车 行走路径 具体路线 所需时间 第一台 8,9,

6,5 ○37—○22—○10—○12—○8—○3—○15—○13—○7—○4—○34—○17—○16—○2—○

37 4小时22分

第二台 1,3,10

○37—○30—○29—○27—○36—○23—○33—○32—○

11—○9—○1—○

37 4小时30分 第三台 2,4,7

○37—○28—○26—○21—○25—○19—○24—○18—○

35—○20—○14—○31—○5—○6—○37

4小时26分

由上表可以看出3台铲车的工作时间均为4个多小时,相差不大,工作分配地非常合理。

铲车及运输车调度方案的具体时间安排

在问题的分析中,我们知道,运输车及铲车的工作时间从凌晨0:00~早4:00,对于运输车调度方案,由于第三辆~第六辆都要运输两条路径上的垃圾,因此,需要确定这4辆运输车具体先行驶哪条路径,而此方案的确定依赖于铲车的行走方案。根据以上求得的各铲车和运输车工作所需时间的多少及铲车应配合运输车进行工作的原则,对他们的工作时间进行安排如下表所示。

表5:铲车及运输车相互配合的具体时间安排

铲车1:

运输路线 8 9 6

5 包含站点 ○22—○10 ○12—○8—○3 ○

15—○13—○7—○4 ○34—○17—○16—○2 时间及 车号 到达 时间 车辆 编号 到达 时间 车辆 编号 到达 时间 车辆

编号

到达 时间 车辆 编号 铲车 0:31 1 1:11 1 2:26 1

3:58 1 运输车 0:31 4 1:11 3 2:26 6 3:58

4 铲车2: 运输路线 1 3 10

包含站点 ○30—○29—○27 ○36—○23—○33—○32 ○

11—○9—○1 时间 到达 时间 车辆 编号 到达 时间 车辆 编号 到达

时间

车辆 编号 铲车 1:09 2 2:12 2 4:30

2 运输车 1:09 2 3:20 3

4:50

5 铲车3: 运输路线 2 4 7

包含站点 ○28—○26—○21—○25—○19 ○24—○18—○35—○20 ○14—○

31—○5—○6 时间 到达 时间 车辆 编号 到达 时间 车辆 编号 到达

时间

车辆 编号 铲车 1:06 3 2:42 3 3:49

3 运输车

1:06 1 2:42 5 4:23 6 以上时间安排均是基于工作时间从凌晨0:00开始,从上表3和表4可以看出,每辆运输车和每台铲车的工作时间都不超过5个小时,因此,垃圾处理站可

根据实际情况将工作开始的时间向前或向后推相应的时间即可。

由表5的时间安排可以确定出各运输车的具体行驶路线及出发、返回时间如表6所示. 表6:运输车的行走路线

运输车编号 从37号站点 出发时间

行走路线 返回37号 站点时间 第一辆

0:00 ○37—○28—○26—○21—○25—○19—○37 3:02 第二辆 0:00

○37—○30—○29—○27—○37 3:46 第三辆

0:11

○37—○12—○8—○3—○37 1:41

1:47

○37—○36—○23—○33—○32—○37 4:33 第四辆

0:20

○37—○22—○10—○37 1:23 2:15

○37—○34—○17—○16—○2—○37 4:22 第五辆

0:51

○37—○24—○18—○35—○20—○37 3:13 3:15

○37—○11—○9—○1—○37 4:45 第六辆

0:44

○37—○15—○13—○7—○4—○37 2:48 2:50 ○37—○14—○31—○5—○6—○37 4:36 3.3 载重量不同的运输车的调度方案

3.3.1 方案一

运用LINGO 对模型(3)进行求解可以得到以下7条运输路径,以问题分析中运输车选择的原则即:对于垃圾量不大于6吨的路线,调用6吨的运输车;对于垃圾量在(6~10吨)之间的路线,调用10吨的运输车;,具体数据如表7所示。此情况下求得的运输费用为2326.17元。

表7:方案一的各运输各路径、运输的总垃圾量及运输所需时间

运输路径 包含的垃圾站点 运输总垃圾量 运输所需时间

1 12,10 9 5.6 吨 1.33小时

2 13,8 19,28 5.6 吨 1.38小时

3 18,14,31,5,6 7.35 吨 2.23小时

4 24,17,3,1,26 5.45吨 2.37小时

5 30,29,27,15,11,1

6 8.7吨 3.13小时

6 34,35,20,7,4,2,21 8.4 吨 2.45小时

7 36,23,33,32,22,25 9.9 吨 2.93小时

由以上各条路径上的垃圾总量的大小来对运输车辆进行选择,根据各路径运输所需时间的大小,对各辆运输车的行驶方案进行规划,得到结果如下表。

根据以上数据可得,当有载重量为6吨、10吨二种运输车时,需要各类载重的运输车辆分别为:对于6吨的运输车,需要3辆;对于10吨的运输车,需要4

辆。

3.3.2方案二

运用MATLAB编程对模型(3)求解(见附录三),可以得到另外一种调度方案,共有8条运输路径,所花费用为2326.17元。各路径的垃圾总量、运输所需时间分别表示如下:

表9:方案二的各路径包含的垃圾站点、垃圾总量及运输所需时间

运输路径包含的垃圾站点运输的总垃圾量运输所需时间

1 ,29,27,15 5.5 2.97小时

2 28,26,21,25,19,14,5 8.8 3.2小时

3 36,23,33,32,22,9 8.7 2.93小时

4 24,18,35,31 5.7 2.53小时

5 34,17,16,6,30 5.59 2.12小时

6 13,7,4,2 5.

7 1.72小时

7 12,8,3, 5.55 1.67小时

8 11,10,20,1 5.5 1.33小时

同方案一,可根据各路径的垃圾总量选择运输车辆,根据各路径运输所花时间对运输车的行走路径进行安排。

对于方案二,由以上数据可得:当有载重量为6吨、10吨三种运输车时,需要各类载重的运输车辆分别为:对于6吨的运输车,需要6辆;对于10吨的运输车,需要2辆。相比较来说,对于两种方案,方案二的结果较好。

3.4 每个垃圾站点的垃圾量是随机数,标准差为该站点平均垃圾量的10%模型

五.模型结果的分析与检验

由于题目中没有给出司机的工资额,因此文中只考虑了垃圾的运输费用。但实际生活中,对于垃圾处理站来说,垃圾的运输所需花费不仅包括运输费用还包括付给司机的工资。运输路径越长,运输所需要的时间就越长,所需要的运输车辆越多,从而需要更多的司机,因而花费更大。因此,在给出了司机工资额的情况下,目标函数中还包括付给司机的工资。另外,此时目标函数不再是单目标函数,而是双目标函数。第二个目标函数是使得运输车行驶的路径最短。

六.模型的推广与改进方向

该模型可以应用在很多方面,比如说货物运输、车辆分配等。

七.模型的优缺点

然而,该问题在站点众多,运输路径较大的前提下,缺点就会显得尤为突出。首先是运输车载重的不足,当运输车的载重不能满足其中任一点的垃圾量时,模型就可能不能适用了,该模型优点是算法简单容易实现,精度特别是后两个模型的精度不是很高.前两问只要进行穷举就能得出最优解.第三问的处理原则不算很精确,有待改进

参考文献

【1】全国大学生数学建模竞赛优秀论文汇编。中国物价出版社,2002

【2】宋兆基,徐流美等。MATLAB6.5在科学计算中的应用。清华大学出版社,2005

数学建模飞机运输问题

多变量有约束最优化问题 摘要 本文以一家运输航空公司的一架飞机运载能力100吨和运载货物的容量50000立方英尺有限的情况下,有三种货物(即x1、x2、x3)需要运输,公司规定每吨货物收取一定的费用,而要运输的每种货物的吨数都有规定的上限(最多不超过30吨、40吨、50吨),并且公司规定由于飞机需要保养与维护,飞机须停飞115天,因此每年只有250天的工作时间。在此情况下每天怎样安排运输三种货物使公司每年获得最大利润w。对于此问题只用线性规划的一般方法建立相应的数学模型,在用数学软件求出在给定限行区域内的最优解(w、x1、x2、x3),在对这些最优解进行分析与讨论,确定其为有效最优解。并以此作为公司对三种货物运输安排方式。 对于问题一,求使得运输航空公司获得最大利润w的x1、x2、x3三种货物的吨数,建立相应的数学模型。再根据运输能力最多100吨和运载货物容积的最大50000立方英尺,还有每天公司规定的每种货物的运输上限即x1种货物最多运输30吨,x2种货物最多运输40吨,x3种货物最多50吨,建立约束条件。并用数学软件mathematica进行求解,即为所求的最优解(也就是w=21875,x1=30,x2=7.5,x3=50)。

对于问题二中,要求计算每个约束的影子价格。我们将利用问题一中建立的目标函数和约束条件,将其编写成源程序输入到Lindo软件中进行求解。再将得到的界进行讨论与和模型的稳健性分析并且通过其在题意的理解,解释其含义。 问题三中,对于公司将耗资改装飞机以扩大运货区来增加运输能力,且旧飞机使用寿命为5年,每架飞机的改造要花费200000美元,可以增加2000立方英尺的容积。重量限制仍保持不变。假设飞机每年飞行250天,这些旧飞机剩余的使用寿命约为5年。根据此问题我们将建立数学规划模型,利用Lindo软件计算其影子价格和利润并且与前面进行比较,进行分析。 关键词:线性规划、mathematica软件的应用、Lindo的软件应用。

数学建模大赛货物运输问题

数学建模大赛货物运输 问题 SANY标准化小组 #QS8QHH-HHGX8Q8-GNHHJ8-HHMHGN#

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题 提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的 最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了 较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。 耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方 案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所 以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆 时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6 吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货 车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方 案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司 所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的 双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输 车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分 别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车, 另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。 2、每辆车在运输途中可随时掉头,若要使得成本最小,货运公司怎么安排车辆数应如何调度

数学建模——回归分析

回归分析——20121060025 吕佳琪 企业编号生产性固定资产价值(万元)工业总产值(万元) 1318524 29101019 3200638 4409815 5415913 6502928 7314605 812101516 910221219 1012251624 合计65259801 (2)建立直线回归方程; (3)计算估价标准误差; (4)估计生产性固定资产(自变量)为1100万元时总产值(因变量)的可能值。解: (1)画出散点图,观察二变量的相关方向 x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; plot(x,y,'or') xlabel('生产性固定资产价值(万元)') ylabel('工业总产值(万元)') 由图形可得,二变量的相关方向应为直线 (2)

x=[318 910 200 409 415 502 314 1210 1022 1225]; y=[524 1019 638 815 913 928 605 1516 1219 1624]; X = [ones(size(x))', x']; [b,bint,r,rint,stats] = regress(y',X,0、05); b,bint,stats b = 395、5670 0、8958 bint = 210、4845 580、6495 0、6500 1、1417 stats = 1、0e+004 * 0、0001 0、0071 0、0000 1、6035 上述相关系数r为1,显著性水平为0 Y=395、5670+0、8958*x (3) 计算方法:W=((Y1-y1)^2+……+(Y10-y10)^2)^(1/2)/10 利用SPSS进行回归分析:

数学建模大赛货物运输问题

货物配送问题 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。我们首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,我们在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面我们根据车载重相对最大化思想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为小时,费用为元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。我们采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为小时,费用为元。 针对问题三的第一小问,我们知道货车有4吨、6吨和8吨三种型号。我们经过简单的论证,排除了4吨货车的使用。题目没有规定车子不能变向,所以认为车辆可以掉头。然后我们仍旧采取①~④公司顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为小时,费用为。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重 6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费元/吨公里,运输车空载费用元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题:

#蔬菜运输问题--数学建模

蔬菜运输问题 2012年8月22日 摘要 本文运用floyd算法求出各蔬菜采购点到每个菜市场的最短运输距离,然后用lingo软件计算蔬菜调运费用及预期短缺损失最小的调运方案,紧接着根据题目要求对算法加以修改得出每个市场短缺率都小于20%的最优调运方案,并求出了最佳的供应改进方案。 关键词 最短路问题 floyd算法运输问题 一、问题重述 光明市是一个人口不到15万人的小城市。根据该市的蔬菜种植情况,分别在花市(A),城乡路口(B)和下塘街(C)设三个收购点,再由各收购点分送到全市的8个菜市场,该市道路情况,各路段距离(单位:100m)及各收购点,菜市场①L⑧的具体位置见图1,按常年情况,A,B,C三个收购点每天收购量分别为200,170和160(单位:100 kg),各菜市场的每天需求量及发生供应短缺时带来的损失(元/100kg)见表 1.设从收购点至各菜市场蔬菜调运费为1元/(100kg.100m). ①7 ② 5 4 8 3 7 A 7 ⑼ 6 B ⑥ 6 8 5 5 4 7 11 7 ⑾ 4 ③ 7 5 6 6 ⑤ 3 ⑿ 5 ④ ⑽ 8 6 6 10 C 10 ⑧ 5 11 ⑦图1 表1 菜市场每天需求(100 kg)短缺损失(元/100kg) ①75 10 ②60 8 ③80 5 ④70 10 ⑤100 10 ⑥55 8 ⑦90 5 ⑧80 8 (a)为该市设计一个从收购点至个菜市场的定点供应方案,使用于蔬菜调运及预

期的短缺损失为最小; (b)若规定各菜市场短缺量一律不超过需求量的20%,重新设计定点供应方案 (c)为满足城市居民的蔬菜供应,光明市的领导规划增加蔬菜种植面积,试问增 产的蔬菜每天应分别向A,B,C三个采购点供应多少最经济合理。 二、问题分析 求总的运费最低,可以先求出各采购点到菜市场的最小运费,由于单位重量运费和距离成正比,题目所给的图1里包含了部分菜市场、中转点以及收购点之间的距离,(a)题可以用求最短路的方法求出各采购点到菜市场的最短路径,乘上单位重量单位距离费用就是单位重量各运输线路的费用,然后用线性方法即可解得相应的最小调运费用及预期短缺损失。 第二问规定各菜市场短缺量一律不超过需求量的20%,只需要在上题基础上加上新的限制条件,即可得出新的调运方案。 第三问可以在第二问的基础上用灵敏度分析进行求解,也可以建立新的线性问题进行求解。 三、模型假设 1、各个菜市场、中转点以及收购点都可以作为中转点; 2、各个菜市场、中转点以及收购点都可以的最大容纳量为610吨; 3、假设只考虑运输费用和短缺费用,不考虑装卸等其它费用; 4、假设运输的蔬菜路途中没有损耗; 5、忽略从种菜场地到收购点的运输费用。 四、符号说明 A收购点分送到全市的8个菜市场的供应量分别为a1,b1,c1,d1,e1,f1,g1,h1, B收购点分送到全市的8个菜市场的供应量分别为a2,b2,c2,d2,e2,f2,g2,h2, C收购点分送到全市的8个菜市场的供应量分别为a3,b3,c3,d3,e3,f3,g3,h3, 8个菜市场的短缺损失量分别为a,b,c,d,e,f,g,h(单位均为100kg)。 五、模型的建立和求解 按照问题的分析,首先就要求解各采购点到菜市场的最短距离,在图论里面关于最短路问题比较常用的是Dijkstra算法,Dijkstra算法提供了从网络图中某一点到其他点的最短距离。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。但由于它遍历计算的节点很多,所以效率较低,实际问题中往往要求网络中任意两点之间的最短路距离。如果仍然采用Dijkstra算法对各点分别计算,就显得很麻烦。所以就可以使用网络各点之间的矩阵计算法,即Floyd 算法。 Floyd算法的基本是:从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。i到j的最短距离不外乎存在经过i和j之间的k和不经过k两种可能,所以可以令k=1,2,3,...,n(n是城市的数目),在检查d(i,j)和d(i,k)+d(k,j)的值;在此d(i,k)和d(k,j)分别是目前为止所知道的i到k和k到j的最短距离。因此d(i,k)+d(k,j)就是i到j经过k的最短距离。所以,若有d(i,j)>d(i,k)+d(k,j),就表示从i出发经过k再到j的距离要比原来的i到j距离短,自然把i到j的d(i,j)重写为

数学建模城市垃圾运输问题概论

货运公司运输问题 数信学院14级信计班魏琮 【摘要】 本文是针对解决某港口对某地区8个公司所需原材料A、B、C的运输调度问题提出的方案。首先考虑在满足各个公司的需求的情况下,所需要的运输的最小运输次数,然后根据卸载顺序的约束以及载重费用尽量小的原则,提出了较为合理的优化模型,求出较为优化的调配方案。 针对问题一,在两个大的方面进行分析与优化。第一方面是对车次安排的优化分析,得出①~④公司顺时针送货,⑤~⑧公司逆时针送货为最佳方案。第二方面根据车载重相对最大化思 想使方案分为两个步骤,第一步先是使每个车次满载并运往同一个公司,第二步采用分批次运输的方案,即在第一批次运输中,我们使A材料有优先运输权;在第二批次运输中,我们使B材料有优先运输权;在第三批次中运输剩下所需的货物。最后得出耗时最少、费用最少的方案。耗时为40.3333小时,费用为4864.0元。 针对问题二,加上两个定理及其推论数学模型与问题一几乎相同,只是空载路径不同。采取与问题一相同的算法,得出耗时最少,费用最少的方案。耗时为26.3小时,费用为4487.2元。 针对问题三的第一小问,知道货车有4吨、6吨和8吨三种型号。经过简单的论证,排除了4吨货车的使用。题目没有规定车

子不能变向,所以认为车辆可以掉头。然后仍旧采取①~④公司 顺时针送货,⑤~⑧公司逆时针送货的方案。最后在满足公司需 求量的条件下,采用不同吨位满载运输方案,此方案分为三个步骤:第一,使8吨车次满载并运往同一公司;第二,6吨位车次 满载并运往同一公司;第三,剩下的货物若在1~6吨内,则用6 吨货车运输,若在7~8吨内用8吨货车运输。最后得出耗时最少、费用最省的方案。耗时为19.6833小时,费用为4403.2元。 一、问题重述 某地区有8个公司(如图一编号①至⑧),某天某货运公司要派车将各公司所需的三种原材料A,B,C从某港口(编号⑨)分别运往各个公司。路线是唯一的双向道路(如图1)。货运公司现有一种载重6吨的运输车,派车有固定成本20元/辆,从港口出车有固定成本为10元/车次(车辆每出动一次为一车次)。每辆车平均需要用15分钟的时间装车,到每个公司卸车时间平均为10分钟,运输车平均速度为60公里/小时(不考虑塞车现象),每日工作不超过8小时。运输车载重运费1.8元/吨公里,运输车空载费用0.4元/公里。一个单位的原材料A,B,C分别毛重4吨、3吨、1吨,原材料不能拆分,为了安全,大小件同车时必须小件在上,大件在下。卸货时必须先卸小件,而且不允许卸下来的材料再装上车,另外必须要满足各公司当天的需求量(见表1)。问题: 1、货运公司派出运输车6辆,每辆车从港口出发(不定方向)后运输途中不允许掉头,应如何调度(每辆车的运载方案,运输成本)使得运费最小。

数学建模--运输问题

数学建模--运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第 一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题

数学建模运输问题

数学建模运输问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd 算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd 算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需

求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:-1,第二辆车:,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的(,) i j=位置上的数表示(其中∞表示两个客户之间无直接的 i j(,1,,10) 路线到达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让 他先给客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车 一次能装满10个客户所需要的全部货物,请问货车从提货点出发给

数学建模之回归分析法

什么是回归分析 回归分析(regression analysis)是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析和多元回归分析;按照自变量和因变量之间的关系类型,可分为线性回归分析和非线性回归分析。如果在回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程为: 毫无疑问,多元线性回归方程应该为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差,其中随机误差分为:可解释的误差和不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。

今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟合多元线性回归模型。数据如下图所示:(数据可以先用excel建立再通过spss打开) 点击“分析”——回归——线性——进入如下图所示的界面:

数学建模运输问题

运输问题 摘要 本文主要研究的是货物运输的最短路径问题,利用图论中的Floyd算法、Kruskal算法,以及整数规划的方法建立相关问题的模型,通过matlab,lingo 编程求解出最终结果。 关于问题一,是一个两客户间最短路程的问题,因此本文利用Floyd算法对其进行分析。考虑到计算的方便性,首先,我们将两客户之间的距离输入到网络权矩阵中;然后,逐步分析出两客户间的最短距离;最后,利用Matlab软件对其进行编程求解,运行得到结果:2-3-8-9-10总路程为85公里。 关于问题二,运输公司分别要对10个客户供货,必须访问每个客户,实际上是一个旅行商问题。首先,不考虑送货员返回提货点的情形,本文利用最小生成树问题中的Kruskal算法,结合题中所给的邻接矩阵,很快可以得到回路的最短路线:1-5-7-6-3-4-8-9-10-2;然后利用问题一的Floyd算法编程,能求得从客户2到客户1(提货点)的最短路线是:2-1,路程为50公里。即最短路线为:1-5-7-6-3-4-8-9-10-2-1。但考虑到最小生成树法局限于顶点数较少的情形,不宜进一步推广,因此本文建立以路程最短为目标函数的整数规划模型;最后,利用LINGO软件对其进行编程求解,求解出的回路与Kruskal算法求出的回路一致。 关于问题三,是在每个客户所需固定货物量的情况下,使得行程之和最短。这样只要找出两条尽可能短的回路,并保证每条线路客户总需求量在50个单位以内即可。因此我们在问题二模型的基础上进行改进,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,对于模型求解出来的结果,本文利用Kruskal算法结合题中所给的邻接矩阵进行优化。得到优化结果为:第一辆车:1-5-2-3-4-8-9-1,第二辆车:1-7-6-9-10-1,总路程为280公里。 关于问题四,在问题一的基础上我们首先用Matlab软件编程确定提货点到每个客户点间的最短路线,然后结合一些限定条件建立一个目标模型,设计一个较好的解决方案进行求解可得到一种很理想的运输方案。根据matlab运行结果分析得出4条最优路线分别为:1-5-2,1-4-3-8,1-7-6,1-9-10。最短总路线为245公里,最小总费用为645。 关键词: Floyd算法 Kruskal算法整数规划旅行商问题 一、问题重述 某运输公司为10个客户配送货物,假定提货点就在客户1所在的位置,从第i个客户到第j个客户的路线距离(单位公里)用下面矩阵中的 i j=L位置上的数表示(其中∞表示两个客户之间无直接的路线到i j(,1,,10) (,) 达)。 1、运送员在给第二个客户卸货完成的时候,临时接到新的调度通知,让他先给 客户10送货,已知送给客户10的货已在运送员的车上,请帮运送员设计一个到客户10的尽可能短的行使路线(假定上述矩阵中给出了所有可能的路线选择)。 2、现运输公司派了一辆大的货车为这10个客户配送货物,假定这辆货车一次能 装满10个客户所需要的全部货物,请问货车从提货点出发给10个客户配送

回归分析在数学建模中的应用

摘要 回归分析和方差分析是探究和处理相关关系的两个重要的分支,其中回归分析方法是预测方面最常用的数学方法,它是利用统计数据来确定变量之间的关系,并且依据这种关系来预测未来的发展趋势。本文主要介绍了一元线性回归分析方法和多元线性回归分析方法的一般思想方法和一般步骤,并且用它们来研究和分析我们在生活中常遇到的一些难以用函数形式确定的变量之间的关系。在解决的过程中,建立回归方程,再通过该回归方程进行预测。 关键词:多元线性回归分析;参数估计;F检验

回归分析在数学建模中的应用 Abstract Regression analysis and analysis of variance is the inquiry and processing of the correlation between two important branches, wherein the regression analysis method is the most commonly used mathematical prediction method, it is the use of statistical data to determine the relationship between the variables, and based on this relationship predict future trends. introduces a linear regression analysis and multiple linear regression analysis method general way of thinking and the general steps, and use them to research and analysis that we encounter in our life, are difficult to determine as a function relationship between the variables in the solving process, the regression equation is established by the regression equation to predict. Keywords:Multiple linear regression analysis; parameter estimation;inspection II

数学建模运输问题

华东交通大学数学建模2012年第一次模拟训练题 所属学校:华东交通大学(ECJTU ) 参赛队员:胡志远、周少华、蔡汉林、段亚光、 李斌、邱小秧、周邓副、孙燕青 指导老师:朱旭生(博士) 摘要: 本文的运输问题是一个比较复杂的问题,大多数问题都集中在最短路径的求 解问题上,问题特点是随机性比较强。 根据不同建模类型 针对问题一 ,我们直接采用Dijkstra 算法(包括lingo 程序和手算验证),将问题转化为线性规划模型求解得出当运送员在给第二个客户卸货完成的时,若要他先给客户10送货,此时尽可能短的行使路线为:109832V V V V V →→→→,总行程85公里。 针对问题二,我们首先利用prim 算法求解得到一棵最小生成树: 121098436751V V V V V V V V V V V →→→→→→→→→→ 再采用Dijkstra 算法求得客户2返回提货点的最短线路为12V V →故可得到一条理想的回路是:121098436751V V V V V V V V V V V →→→→→→→→→→ 后来考虑到模型的推广性,将问题看作是哈密顿回路的问题,建立相应的线性规划模型求解,最终找到一条满足条件的较理想的的货车送货的行车路线: 121098436751V V V V V V V V V V V →→→→→→→→→→。 针对问题三,我们首先直接利用问题二得一辆车的最优回路,以货车容量为限定条件,建立相应的规划模型并设计一个简单的寻路算法,最终可为公司确定合理的一号运输方案:两辆车全程总和为295公里(见正文);然后建立线性规划模型得出二号运输方案:两辆车全程总和为290公里(见正文); 针对问题四,

数学建模-回归分析-多元回归分析

1、 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为 多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因变量,比只用一个自变量进行预测或估计更有效,更符合实际。 在实际经济问题中,一个变量往往受到多个变量的影响。例如,家庭消费支出,除了受家庭可支配收入的影响外,还受诸如家庭所有的财富、物价水平、金融机构存款利息等多种因素的影响,表现在线性回归模型中的解释变量有多个。这样的模型被称为多元线性回归模型。(multivariable linear regression model ) 多元线性回归模型的一般形式为: 其中k 为解释变量的数目,j β (j=1,2,…,k)称为回归系数(regression coefficient)。上式也被称为总体回归函数的随机表达式。它的非随机表达式为: j β也被称为偏回归系数(partial regression coefficient)。 2、 多元线性回归计算模型 多元性回归模型的参数估计,同一元线性回归方程一样,也是在要求误差平方和(Σe)为最小的前提下,用最小二乘法或最大似然估计法求解参数。 设( 11 x , 12 x ,…, 1p x , 1 y ),…,( 1 n x , 2 n x ,…, np x , n y )是一个样本, 用最大似然估计法估计参数: 达 到最小。

把(4)式化简可得: 引入矩阵: 方程组(5)可以化简得: 可得最大似然估计值:

3、Matlab 多元线性回归的实现 多元线性回归在Matlab 中主要实现方法如下: (1)b=regress(Y, X ) 确定回归系数的点估计值 其中 (2)[b,bint,r,rint,stats]=regress(Y,X,alpha)求回归系数的点估计和区间估计、并检 验回归模型 ①bint 表示回归系数的区间估计. ②r 表示残差 ③rint 表示置信区间 ④stats 表示用于检验回归模型的统计量,有三个数值:相关系数r2、F 值、与F 对应的 概率p 说明:相关系数r2越接近1,说明回归方程越显著;F>F1-alpha(p,n-p-1) 时拒绝H0,F 越大,说明回归方程越显著;与F 对应的概率p<α 时拒绝H0,回归模型成立。 ⑤alpha 表示显著性水平(缺省时为0.05) (3)rcoplot(r,rint) 画出残差及其置信区间

基于运输问题的数学建模

数学建模一周论文论文题目:基于运输问题的数学模型 1:学号: 2:学号: 3:学号: 专业: 班级: 指导教师: 2011年12 月29 日

(十五)、已知某运输问题的产销平衡表与单位运价表如下表所示 (1)求最优调拨方案; (2)如产地的产量变为130,又B地区需要的115单位必须满足,试重新确定最优调拨方案。 一论文摘要 一般的运输问题就是要解决把某种产品从若干个产地调运到若干个销地,在每个产地的供应量与每个销地的需求量已知,并知道各地之间的运输单价的前提下,如何确定一个使得总的运输费用最小的方案的问题。本论文运用线性规划的数学模型来解决此运输问题中总费用最小的问题。引入x变量作为决策变量,建立目标函数,列出约束条件,借助MATLAB软件进行模型求解运算,得出其中的最优解,使得把某种产品从3个产地调运到5个销地的总费用最小。 针对模型我们探讨将某产品从3个产地调运到5个销地的最优调拨方案,通过运输问题模,得到模型 Z=1011x+1512x+2013x+2014x+4015x+2021x+4022x+1523x+3024x min x+3031x+3532x+4033x+5534x+2535x +30 25 Z= 并用管理运筹学软件软件得出最优解为: min

关键词:运输模型最优化线性规划 二.问题的重述和分析 A(i=1,2,3)和五个销地j B(j=1,2,3,4,5),已知产地i A的产量有三个产地 i s和销地j B的销量j d,和将物品从产地i运到销地j的单位运价ij c,请问:i 将物品从产地运往销地的最优调拨方案。 A,2A,3A三个产地的总产量为50+100+150=300单位;1B,我们知道, 1 B,3B,4B,5B五个销地的总销量为25+115+60+30+70=300单位,总2 A,2A,3A的产量全产量等于总销量,这是一个产销平衡的运输问题。把产地 1 B,2B,3B,4B,5B,正好满足这三个销地的需要。先将安排的部分配给销地 1 运输量列如下表中:

垃圾运输问题

B题:垃圾运输问题 某城区有36个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回。现有一种载重 6吨的运输车。每个垃圾点需要用10分钟的时间装车,运输车平均速度为40公里/小时(夜里运输,不考虑塞车现象);每台车每日平均工作 4小时。运输车重载运费1.8元/吨公里;运输车和装垃圾用的铲车空载费用0.4元/公里;并且假定街道方向均平行于坐标轴。请你给出满意的运输调度方案以及计算程序。 问题: 1. 运输车应如何调度(需要投入多少台运输车,每台车的调度方案,运营费用) 2. 铲车应如何调度(需要多少台铲车,每台铲车的行走路线,运营费用) 3. 如果有载重量为4吨、6吨、8吨三种运输车,又如何调度?

垃圾运输问题的模型及其求解 摘要:本文通过垃圾运输问题的模型建立与求解,总结出这类问题的一般性解法,即根据实际问题构造恰当的有向或无向赋权图,把问题转化成图论中的TSP问题,通过解决这类TSP问题,从而使原问题获得满意的解答. 关键词:垃圾运输问题; TSP问题 图论是一支应用性很强的学科分支,它对自然科学、工程技术、经济管理和社会现象等诸多问题,能够提供很好的数学模型加以解决,所以,在国内外大学生数学建模竞赛中,常会出现用图论模型去解决的实例,如垃圾运输问题,统筹问题等. 1有关概念 定义1[ 1 ] 设G = (V, E) 是连通无向图, (1) 经过G的每一个顶点正好一次的路,称为G的一条哈密顿路或H路; (2) 经过G的每一个顶点正好一次的圈,称为G的一条哈密顿圈或H圈; (3) 含H圈的图称为哈密顿图或H图. 定义2[ 1 ] 设D = (V, A ) 是连通有向图, (1) 经过D的每一个顶点正好一次的圈,称为D的生成圈; (2) 含生成圈的图称为哈密顿图或H图. 定义3[ 1 ] 设G是完全(有向或无向) 赋权图,在G中寻找权最小闭迹的问题称为TSP问题(即Trave ling Salesman Problem) . 若此闭迹是H圈,则称此闭迹为最佳H圈. 容易证明:在满足条件w ( vi vj ) +w ( vj vk ) 下, TSP问题可转化为寻找最佳H圈的问题,这可通过构造一个完全图来实现. 2垃圾运输问题 例1某城区有若干个垃圾集中点,每天都要从垃圾处理厂(第37号节点)出发将垃圾运回. 假定运输 图1运输车线路图 车的线路已确定下来共10条(如图1所示). 为了节省费用, 运输车在每条线路上总是先从远离处理厂的垃圾集中点开始运送垃圾. 现有6辆载重6吨的运输车及装垃圾用的铲车, 它们的平均速度为40 km /h (夜里运输,不考虑塞车现象) ,每个垃圾点需要用10 min的时间装车,每台运输车每日平均工作4 h. 运输车重载运费1. 8元/吨km;运输车和装垃圾用的铲车空载费用0. 4元

数学建模多元回归模型

实习报告书 学生姓名: 学号: 学院名称: 专业名称: 实习时间: 2014年 06 月 05 日 第六次实验报告要求 实验目的: 掌握多元线性回归模型的原理,多元线性回归模型的建立、估计、检验及解释变量的增减的方法,以及运用相应的Matlab软件的函数计算。 实验内容: 已知某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据,见表1。请选择恰当的解释变量和恰当的模型,建立粮食年销售量的回归模型,并对其进行估计和检验。

表1 某市粮食年销售量、常住人口、人均收入、肉、蛋、鱼的销售数据 年份粮食年销售 量Y/万吨 常住人口 X2/万人 人均收 入X3/ 元 肉销售 量X4/万 吨 蛋销售 量X5/ 万吨 鱼虾销 售量 X6/万吨 197498.45560.20153.20 6.53 1.23 1.89 1975100.70603.11190.009.12 1.30 2.03 1976102.80668.05240.308.10 1.80 2.71 1977133.95715.47301.1210.10 2.09 3.00 1978140.13724.27361.0010.93 2.39 3.29 1979143.11736.13420.0011.85 3.90 5.24 1980146.15748.91491.7612.28 5.13 6.83 1981144.60760.32501.0013.50 5.418.36 1982148.94774.92529.2015.29 6.0910.07

1983158.55785.30552.7218.107.9712.57 1984169.68795.50771.1619.6110.1815.12 1985162.14804.80811.8017.2211.7918.25 1986170.09814.94988.4318.6011.5420.59 1987178.69828.731094.6 523.5311.6823.37 实验要求: 撰写实验报告,参考第10章中牙膏销售量,软件开发人员的薪金两个案例,写出建模过程,包括以下步骤 1.分析影响因变量Y的主要影响因素及经济意义; 影响因变量Y的主要影响因素有常住人口数量,城市中人口越多,需要的粮食数量就越多,粮食的年销售量就会相应增加。粮食销量还和人均收入有关,人均收入增加了,居民所能购买的粮食数量也会相应增加。另外,肉类销量、蛋销售量、鱼虾销售量也会对粮食的销售量有影响,这些销量增加了,也表示居民的饮食结构也在发生变化,生活水平在提高,所以相应的,生活水平提升了,居民也有能力购买更多的粮食。

数学建模之回归分析法

什么就是回归分析 回归分析(regression analysis)就是确定两种或两种以上变数间相互依赖的定量关系的一种统计分析方法。运用十分广泛,回归分析按照涉及的自变量的多少,可分为一元回归分析与多元回归分析;按照自变量与因变量之间的关系类型,可分为线性回归分析与非线性回归分析。如果在回归分析中,只包括一个自变量与一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。如果回归分析中包括两个或两个以上的自变量,且因变量与自变量之间就是线性关系,则称为多元线性回归分析。 回归分析之一多元线性回归模型案例解析 多元线性回归,主要就是研究一个因变量与多个自变量之间的相关关系,跟一元回归原理差不多,区别在于影响因素(自变量)更多些而已,例如:一元线性回归方程 为: 毫无疑问,多元线性回归方程应该 为: 上图中的x1, x2, xp分别代表“自变量”Xp截止,代表有P个自变量,如果有“N组样本,那么这个多元线性回归,将会组成一个矩阵,如下图所示: 那么,多元线性回归方程矩阵形式为: 其中:代表随机误差, 其中随机误差分为:可解释的误差与不可解释的误差,随机误差必须满足以下四个条件,多元线性方程才有意义(一元线性方程也一样) 1:服成正太分布,即指:随机误差必须就是服成正太分别的随机变量。 2:无偏性假设,即指:期望值为0 3:同共方差性假设,即指,所有的随机误差变量方差都相等 4:独立性假设,即指:所有的随机误差变量都相互独立,可以用协方差解释。 今天跟大家一起讨论一下,SPSS---多元线性回归的具体操作过程,下面以教程教程数据为例,分析汽车特征与汽车销售量之间的关系。通过分析汽车特征跟汽车销售量的关系,建立拟

相关文档
最新文档