穿根法解高次不等式口诀

穿根法解高次不等式口诀

在数轴上表示出根

从最大根的右上方开始划线

从大到小依次穿过所有跟

线在数轴上方表示此范围内函数值大于零线在数轴下方表示此范围内函数值小于零根处函数值为零

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

数学人教版七年级下册解含参数的一元一次不等式组的解集

《解含字母的一元一次不等式组的解集》教学设计 抚顺市第五十六中学尹丽红教材分析:本章内容是人教版七年级数学(下)第九章,是在学习了《二元一次方程组》和《一元一次不等式(组)》后的基础上安排的内容,是为今后学习一次函数打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含字母的一元一次不等式组的解集》的基础和关键。通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

一元一次不等式组的概念和解集

课题:7.3 一元一次不等式组及解集 学习目标: 1、知道什么是一元一次不等式组,什么是一元一次不等式组的解集。什么叫做解一元一次不等式组。 2、能利用数轴正确的找出简单的一元一次不等式组的解集。 3、能直接找出一个简单的一元一次不等式组的解集。 学习重点:会找一元一次不等式组的解集 学习难点:会找一元一次不等式组的解集。 【自主学习】 一、认真阅读教材34-35页内容,完成以下问题: (一):小莉带5元钱去超市买作业本,她拿了5本,付款时钱不够,于是小莉 退掉一本,收银员找给她一些零钱,请你估计一下,作业本单价约是多少元?(你能否用两个不等式来表示?) 34-35 页内容(二)认真阅读教材____________ _ 。一元一次不等式组叫做______ _______ 。解集叫做一元一次不等式组的 。叫做解不等式组(三)、求下列两个不等式的解集,并在同一条数轴上表示出来 ①2x+3>0② 3x-13+x〈4-1-5-4-35-2132O】【学 习探究 (一)利用数轴找出下列不等式组的解集3x>(1) ②>x7,x≤3(2) x≤7, x>3(3) x<7, 4 / 1 (4)

不等式组解集口诀“大大取大,小小取小,大小小大取中间,大大小小无处找”【当堂检测】 1.画数轴找出下列不等式组的解集。 x2<x>-2(2) (1) ②3x<,x>1, x>1x>-1(3) (4) ②-2x<3x<,, 2.直接说出下列不等式组的解集。 x<2(1) x<5, x>3(2) 2 / 4 ②x<1, -2x>(3) 1<x,-(4)

0?x?32?? 3. 解不等式组13x?3?x??)解: 解不等式①,得( )解不等式②,得( )所以不等式的解集为( 14P35)、写出下列不等式组的解集:(教材练习 0x?2x???5x???3?x?)1()(2)(3??? )4(2x???71?xx?????0?x? {2>x ;)不等式组(1__ 的解集是_ -1x 【课后练习】1、填空。 ≥{-1x<)不等式组(2 ;的解集-2x <{4x<)不等式组(__; 3 的解集 是__ 1x>{5>x)不等式组解集是___ ___(4。-4x<【应用与拓展】mx??._____ ____ m 无解,则若不等式组的取值范围是?5x?? / 34 4 / 4

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

穿根法解不等式的原理

穿根法解不等式的原理、步骤和应用范例 摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-x n)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。 关键词:穿根法;解不等式;原理;步骤;应用 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是 大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示 f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x1

穿根法解不等式及习题

穿根法解不等式 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。 一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示

f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x10,处于(x1,x2)内的 点满足f(x) <0。 当我们动态考察该问题时,我们也可 以发现:当点x=a在x2右方时,x-x1、x-x2均正,故有f(x) >0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。 总之,无论从哪个方面看,f(x)的符号都可以如图标注。 (2) x1=x2时,即形如f(x)=(x-x1)2时 显然,(-∞,x1)与( x1 ,+∞)都是f(x) >0的解。 而若动态的考察此问题,则有 点x=a 从x1右侧移动向左侧移动时, 由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回

(完整版)含参数的一元一次不等式组的解集教学设计

《含参数的一元一次不等式组的解集》教学设计 扬大附中东部分校杨定兵 教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。 教学目标: (1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。 (2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。 (3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。 学习重点: (1)加深对一元一次不等式组的概念与解集的理解。 (2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。学习难点: (1)一元一次不等式组中字母参数的讨论。 (2)运用数轴分析不等式组中参数的范围。 教学难教学难点突破办法: (1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

用穿根法解不等式(经典归纳)

一元高次不等式的解法 这里主要介绍“数轴标根法”解高次不等式,简单快捷.“数轴标根法”又称“数轴穿根法”、“穿针引线法”或“序轴标根法”. 一、解题步骤 求不等式32638x x x -+<-+的解集 1. 化简:移项使右侧为0,将x 最高次项系数化为正数,再将左侧分解为几个一次因式积的形式. 将32638x x x -+<-+化为323680(2)(1)(4)0x x x x x x --+>?+--> 2. 求根:将不等式换成等式解出所有根. (2)(1)(4)0x x x +--=的根为12x =-,21x =,34x = 3. 标根:在数轴上从左到右依次标出各根. -2 1 4 4. 穿根:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根. 5. 写解:大于号取上方,小于号取下方,取穿根线以内的范围,将各解集求并. 不等式32638x x x -+<-+的解集为:{}|21,4x x x -<<>或 二、易错提示 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 1. 分解因式:将不等式化为0123()()()()0n a x x x x x x x x ---->L 形式. 2. 正化系数:将各因式中的x 系数化为正数. 3. 奇穿偶不穿:从右上方往左下方穿线,依次经过数轴上表示各根的点,看各一次因式的次数,偶次根穿而不过,奇次根一穿而过,简称“奇穿偶不穿”. 4. 解分式不等式:可化为一元高次不等式进行求解,如遇“≤或≥”,在标根时,分子实心,分母空心. 三、分式不等式解法

不等式组及其解集

专题19 不等式组及其解集 1.一元一次不等式组:把几个含有相同未知数的一元一次不等式合起来,组成一个一元一次不等式组. 2.不等式组的解集:一般地,几个不等式的解集的公共部分,叫作由它们所组成的不 等式组的解集,解不等式组就是求它的解集. 不等式组(a -2 解不等式②,得x≤2 把不等式①和②的解集在数轴上表示出来,如图19-1所示. ∴不等式的解集为-2?x b >,x a x b ???23 x x ≤??-??-+?≤??①②()41710,85,3x x x x +≤+???--

拓展与变式2 不等式组的所有整数解的和是 . 拓展与变式3 若|x+1|=x+1,|2x-7|=7-2x ,则满足条件的所有非负整数x 有 . 【反思】根据题意列出不等式(组),解出不等式组从而找出符合条件的解,注意非负整数即自然数,也就是0和正整数. 例2 如果a>2,那么不等式组的解集为 ,的解集为 . 【分析】把每个不等式的解集表示在数轴上(或用口诀),结合数轴找不等式组的解集. 【解】把不等式的解集表示在数轴上, 不等式组表示在数轴上如图19-2所示, 可知解集为x >a . 不等式组表示在数轴上如图19-3所示, 可知解集为2??>?,2x a x ≤??>? ,2 x a x >??>?,2x a x ≤??>? ,2x a x >??≥? ,2 x a x ?2,11x m n x m +>+??-<-? ①②0,12.2 3x a x x x -≥??-+?+>??①②

一元一次不等式组的解集

一元一次不等式组的解集 组成一元一次不等式组的几个不等式的解集的公共部分叫做一元一次不等式组的解集. 要点 (1)求几个一元一次不等式的解集的公共部分,通常是利用数 轴来确定的,公共部分是指数轴上被各个不等式解集的区域都覆盖的部分。 (2)用数轴表示由两个一元一次不等式组成的不等式组的 解集,一般可分为以下四种情况: 列不等式解应用题的基本步骤 列不等式解应用题的基本步骤与列方程解应用题的步骤相

类似,即 (1)审:认真审题,分清已知量、未知量; (2)设:设出适当的未知数; (3)找:找出题中的不等关系,要抓住题中的关键字,如“大于”“小于”“不大于”“至少”“不 超过”“超过”等关键词的含义; (4)列:根据题中的不等关系,列出不等式或不等式组; (5)解:解出所列的不等式或不等式组的解集; (6)答:检验是否符合题意,写出答案。 总结 知识要点总结注意问题 1.一元一次不等式组的解法2.一元一次不等式组的应用1.一元一次不等式组的解题 步骤: ①先整理一元一次不等式组; ②分别求两个不等式的解集; ③利用数轴找到解集的公共 部分; ④写出不等式组的解集 2.一元一次不等式组的应用: ①先根据题意列出一元一次 1.解不等式组时, 容易出现两个解 集不符合符号方 向的错误 2.利用数轴来确 定解集时,两个端 点处是空心还是 实心容易出现错 误

不等式组; ②解这个一元一次不等式组; ③根据实际意义找出符合题意的相关整数解; ④下结论.3.利用一元一次不等式组解决实际问题时,容易忽视实际问题的意义 解题方法总结1.能利用数轴找解集的尽可能应用2.利用数轴找整数解应找全面

专题数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2 =1,x 3 =-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律:“奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练:

1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1-、1、3。在数轴 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为 0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1(+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什么从最大根的右上方开始穿线;为什么数轴上方曲线对应的x 的集合是大于零不等式的解集,数轴下方曲线对应x 的集合是小于零不等式的解集。 2、解不等式0)3()12 1)(2(32<--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)2(+x 、2)121(-x 、3)3(-x 的根分别为2-、2、3,在数轴上把它们标出(如图2)。

讲义—一元高次不等式的解法

一元高次不等式的解法 一、可解的一元高次不等式的标准形式 12()() ()0(0)n x x x x x x --->< (1)左边是关于x 的一次因式的积; (2)右边是0; (3)各因式最高次项系数为正。 二、一元高次不等式的解法 数轴标根法: 1、将高次不等式变形为标准形式; 2、求根12,, ,n x x x ,画数轴,标出根; 3、从数轴右上角开始穿根,穿根时的原则是“奇穿偶回” 4、写出所求的解集。 三、典型例题 例1、0)3)(2)(1(<---x x x 解:方程0)3)(2)(1(=---x x x 为1,2,3 标根穿根 3 2 1 解集为(,1)(2,3)-∞ 例2、2 (1)(2)(1)0x x x x --+≥ 解:方程2(1)(2)(1)0x x x x --+=的根为0,1,2,—3 标根穿根 2 -1 1 解集为[1,0]{1} (2,)-+∞ 注意: 1、奇穿偶回。 2、得解集不要忘了1.

例3、(1)(2)(3)0x x x -+-> 例4、2 (2)(3)(21)0x x x x -+--≥ 例5、2(1)(2)(45)0x x x x ---+≥ 注意:∵ 2 2 45(2)10x x x -+=-+> ∴原不等式变形为标准形式(1)(2)0x x --≥ 例6、3 22210x x x --+≤ 【练习】 1、2(1)(3)(68)0x x x x +--+≥ 2、22 (328)(12)0x x x x +-+-≤ 3、22 (23)(67)0x x x x ----≥ 4、22 (45)(1)0x x x x --++≤ 5、23(2)(3)(6)(8)0x x x x -+-+≥ 6、4 3 220x x x +--> 7、3 2 330x x x +--> 将二次三项式尽量因式分解为一次式 二次三项式不能因式分解且二次项系数为正,则此式一定为正数 不等式左边尽量因式分解为一次式 将一次项系数化为正数。

穿根法与分式不等式

不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2 -4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 原不等式等价于(21)(1)(31)(2)0 (31)(2)0 x x x x x x ----≥??--≠? 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或 分式不等式的解法 (1)()() ()()00f x f x g x g x >??> (2) ()()()()()000f x g x f x g x g x ?≥??≥??≠??

一、解不等式: 1、 3 2 x x - ≥ - 2、 21 1 3 x x - > + 3、 2 2 32 23 x x x x -+ ≤ -- 4、 221 2 x x x -- < - 5、 () 2 3 9 x x x - ≤ - 6、 1 01 x x <-< 二、填空题。 1. 不等式 2 2 331 372 x x x x ++ > -+ 的解集是 2. 不等式 31 1 3 x x + >- - 的解集是 7. 不等式 2 1 21 x x x + ≤ + 的解集是 8. 不等式 21 1 2 x x - > -+ 的解集是

穿根法解不等式的原理

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 穿根法解不等式的原理、步骤和应用范例 摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-x n)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。 关键词:穿根法;解不等式;原理;步骤;应用 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。

然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。 一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是大于x1的点,即是x-x1>0的解;而x1 左边的点都是小于x1的点,即是x-x1<0的 解。所以可以如图标注,图中+、- 用以表 示f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变

利用数轴确定一元一次不等式组的解集

利用数轴确定一元一次不等式组的解集 利用数轴来确定一元一次不等式组的解集,就是利用数形结合的思想,将抽象转化为直观。在确定一元一次不等式组的解集教学中用数轴来帮助找解集,便于学生接受理解,并能直观完美、准确无误的找到解集,对于一元一次不等式组中参数字母的时候,利用数轴解决问题更直观、更准确。 利用数轴来确定一元一次不等式组的解集分三步曲——求解、画图、定解集。 第一步分别求出不等式组中每个不等式的解集,即求解; 第二步画数轴分别表示出每一个不等式的解集,即画图; 最后在数轴上找出各个不等式解集的公共部分,即定解集。 下面我们就通过几道例题,体验借助数轴的好处: 例1、请确定下列一元一次不等式组的解集: 解:由①得: x >3 由②得: x ≥-1 画数轴表示不等式组的解集: 学生很容易从数轴上观察出这一元一次不等式组解集的公共部分:x >3,所以确定这个不等式组的解集:x >3。(简记“同大取大”) x +1≥0 ② x -3>0 ① ○ ●

例2、请确定下列一元一次不等式组的解集: 解:由①得: x ≤-1 由②得: x <1 画数轴表示不等式组的解集: 学生很容易从数轴上观察出这一元一次不等式组解集的公共部分:x ≤-1,所以确定这个不等式组的解集:x ≤-1。(简记“同小取小”) 例3、请确定下列一元一次不等式组的解集: 解:由①得: x >-2 由②得: x ≤2 画数轴表示不等式组的解集: 学生很容易从数轴上观察出这一元一次不等式组解集的公共部分:-2<x ≤2,所以确定这个不等式组的解集:-2<x ≤2。(简记2x +3<5 ② 2x +5≤9 ② ○ ● ○ ● x +1≤0 ① 3x +6>0 ①

相关文档
最新文档