穿根法解不等式

穿根法解不等式
穿根法解不等式

用"穿根法"解不等式的基本方法是什么?

摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。

在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x

1)(x-x

2

)…(x-x

n

),规范了序轴的

概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。

关键词:穿根法;解不等式;原理;步骤;应用

穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理

穿根法解不等式时,一般先将其化为形如:f(x)=(x-x

1)(x-x

2

)…(x-x

n

)>0(或<0)的标

准形式,主要考察f(x)的符号规律。在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。

(一)一次不等式

标准形式:f(x)=x-x

1

>0(或<0)

我们将x-x

1=0的根x

1

标在序轴上,可以发现:x

1

右边的点都是大于x

1

的点,即是x-x

1

>0

的解;而x

1左边的点都是小于x

1

的点,即是x-x

1

<0的解。所以可以如图标注,图中+、- 用

以表示f(x)=x-x

1

的符号。

我们还可以以动态的思想来考察该问题。当一点x=a从x

1右侧向x

1

左侧移动时,f(x)=x-x

1

经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。

(二)二次不等式

标准形式:f(x)=(x-x

1)(x-x

2

)>0(或<0)

(1) x

1≠x

2

时,不妨设x

1

2

将f(x)=0的二根x

1、x

2

标在序轴上,则可以发现:处于(-∞, x

1

),(x

2

,+∞)内的点满足

f(x)>0,处于(x

1,x

2

)内的点满足f(x)<0。

当我们动态考察该问题时,我们也可以发现:当点x=a在x

2右方时,x-x

1

、x-x

2

均正,

故有f(x)>0;而当点x=a从x

2右侧移动到左侧时,x-x

2

变为负值,而x-x

1

符号不变,所以有

f(x)必然变号,此时由正变负;而再当点x=a从x

1右侧移动到左侧时,x-x

1

由正变负,而x-x

2

符号不变,所以f(x)又一次变号,此时由负变正。

总之,无论从哪个方面看,f(x)的符号都可以如图标注。

(2) x

1=x

2

时,即形如f(x)=(x-x

1

)2时

显然,(-∞,x

1)与( x

1

,+∞)都是f(x)>0的解。

而若动态的考察此问题,则有点x=a 从x

1右侧移动向左侧移动时,由于平方项内的x-x

1

由正到0又到负,所以f(x)经历了由正到0又回到正的过程。故而f(x)在x

1

两侧符号同正,

只有在x=x

1

处为0。

(三)高次不等式

标准形式:f(x)=(x-x

1)(x-x

2

)…(x-x

n

)>0(或<0),x

1

≤x

2

≤…≤x

n

(1) x

1

2

<…

n

时动态考察f(x)的符号,则当点x=a在x

n

右方时,x-x

i

(i=1,2,…,n)

均大于0,故而f(x)>0;而当点x=a从x

n 右侧移动到左侧时,x-x

n

符号变化,而其余任一x-x

i

均不变号,所以有f(x)由正变负;类似可得:对任一i,当点x=a从x

i

右侧移动到左侧时,

x-x

i 符号变化,而其余每个x-x

j

(j≠i)都不变号,所以有f(x)必然变号,或由正变负,或由

负变正。就这样,由于每过一个x

i 都恰有一个因式x-x

i

变号,所以我们可以从最右上方开始

画一条依次穿过各根的线,这正是穿根法的原理和名称由来。

(2) x

1≤x

2

≤…≤x

n

且有等号成立时其标准形式可写为

f(x)=(x-x

1)m1(x-x

2

)m2…(x-x

n

)mn >0(或<0),x

1

2

<…

n

,m

i

∈N* (i=1,2,…,n)当点x=a

在x

n 右方时,所有x-x

i

(i=1,2,…,n)均为正,故而f(x)为正。而每当x=a从x

i

右侧移动到

x i 左侧时,若m

i

为奇,则(x-x

i

)mi由正变负,f(x)符号改变;而若m

i

为偶,则(x-xi)mi符号不

变,f(x)符号也不变,原正仍为正,原负仍为负。这里值得一提的是,每当x=x

i

成立,即有

f(x)= 0。所以,使用穿根法当遇到m

i 为奇,则穿根线在根x

i

穿过序轴;当遇到m

i

为偶,则

穿根线与根x

i

接触即回,好像被序轴弹了回去。此称为“奇穿偶回”。

二、步骤

(一)一元高次不等式

对于不等式f(x)>0,其中f(x)为x的高次多项式,用穿根法解的步骤如下:(1)整理——原式化为标准型

把f(x)进行因式分解,并化简为下面的形式:f(x)=(x-x

1)m1(x-x

2

)m2…(x-x

n

)mn>0(或<0),

m

i

∈N* (i=1,2,…,n)

(2)标根——在序轴上标根

将f(x)=0的n个不同的根x

1,x

2

, (x)

n

按照大小顺序标在序轴上,将序轴分为n+1个区间。

(3)画线——画穿根线

从最大根右上方开始,按照大小顺序依次经过每个根画一条连续曲线,作为穿根线。遇奇次根穿过序轴,遇偶次根弹回,即“奇穿偶回”。

(4)选解——写出解集如例图,在序轴上方的曲线对应的区间为f(x)>0解集,在序轴下方的曲线对应的区间为f(x)<0解集。

(二)分式不等式

一、先将不等式整理成f(x)/g(x)>0或f(x)/g(x)<0的形式,其中,f(x)、g(x)为整式。

二、f(x)/g(x)>0 f(x)?g(x)>0 f(x)/g(x)<0 f(x)?g(x) <0即将分式不等式转化为整式不等式再处理。

(三)含等号的整式、分式不等式

对于整式不等式,要注意写解集时将各个根包括进去。一般只需将开区间符号改为闭区间符号,同时注意必要时合并区间。

对于分式不等式,尤其要注意分母非0。

f(x)/g(x)≥0f(x)?g(x)≥0 且g(x)≠0

f(x)/g(x)≤0f(x)?g(x)≤0且g(x)≠0

这样就要求在标根时,将能够使不等式成立的根标为实点,否则标为虚点。

(四)注意

分式不等式和高次不等式在化简时每一步变形都应是不等式的等价变形。对于变形中出现的形如x2+px+q=0的因式,若其△≥0,则继续分解。若△<0,则直接消去,因为此时该式恒大于0。

三、应用范例

例1 解不等式:(x-1)2(x+1)(x-2)(x+4)<0

具体步骤:

1.将(x-1)2(x+1)(x-2)(x+4)=0的根记入演算数据区。其中,由于1是偶次根,在其下加一点以区别于其它奇次根。

2.画有向直线作为序轴,在序轴上由小到大、由左到右标根。每标一根,在数据区相应根下打一标记表示已取。标偶次根时,在序轴该根位置上方或下方加一点,即偶次根标重(cong)点。

3.从最大根2的右上方开始画穿根线,首先让线穿过根2,当接着到1时,由于1是偶次根,附近有重点,故线被弹回。然后线又依次穿过根-1和-4。如图。

4.穿根线与序轴围成的区域,序轴上方标“+”号,表示f(x)在该区间取正值。序轴下方标“-”号,表示f(x)在该区间取负值。

5.所有的根均不能使不等式成立,故各根均标上虚点。

6.写出解集,一般用区间方式列出。

解:用穿根法作图如右,可知原不等式解集为:(-∞,-4)∪(-1,1)∪(1,2)

例2 解不等式:(x+2)(x+1)2(x-1)3(x-2)≤0

解:用穿根法作图如右。(注意“奇穿偶回”,每个根都标为实点。)

可知原不等式解集为:(-∞,-2]∪{-1}∪[1,2]

说明:也可将原不等式转化为(x+2)(x+1)2(x-1)(x-2)≤0以后,再用穿根法做。

例3 解不等式:(x-1)(x-2)(x-3)(x-4)>120

解:将原不等式变形:[(x-1)(x-4)][(x-2)(x-3)]-120>0

(x2-5x+4)(x2-5x+6)-120>0

(x2-5x)2+10(x2-5x)-96>0

(x2-5x+16)(x2-5x-6)>0

(x2-5x+16)(x-6)(x+1)>0

∵x2-5x+16恒大于零,于是得与原不等式同解的不等式(x-6)(x+1)>0

对此也可用穿根法解决,如图

所以,原不等式的解集是:(-∞,-1)∪(6,+∞)

例4解不等式:(3x-5)/(x2+2x-3)≤2

解:原不等式(3x-5-2x2-4x+6)/(x2+2x-3)≤0

(2x2+4x-6-3x+5)/(x2+2x-3)≥0

(2x2+x-1)/(x2+2x-3)≥0

(x+1)(2x-1)/(x+3)(x-1)≥0

(x+1)(2x-1)(x+3)(x-1)≥0且(x+3)(x-1)≠0

如图,用穿根法,注意区分实点和虚点,可得原不等式解集为:

(-∞,-3)∪[-1,1/2]∪(1,+ ∞)

例5 解关于x的不等式:(x-1)(x-t)<0

解:1)t<1时,如图用穿根法,可得原不等式解集为:(t,1)

2)t=1时,如图用穿根法,可得原不等式解集为:

3)t>1时,如图用穿根法,可得原不等式解集为:(1,t)

例6若a≠±1,解关于x的不等式(x-a)/(x+1)(x-1)≤0

解:1)a<-1时,如图用穿根法,

∴原不等式解集为:(-∞,a)∪(-1,1)

2) -1

∴原不等式解集为:(-∞,-1)∪[a,1)

3) a>1时,如图用穿根法,

∴原不等式解集为:(-∞,-1)∪(1,a]

说明:解整式、分式不等式注意事项,可记以下口诀:移项调号,分解排序,奇穿偶回,分母非零,参数讨论,小心等号。

四、小结

穿根法通过序轴、标根、穿根线及区间正负标志,形象的表示f(x)=(x-x

1)(x-x

2

)…(x-x

n

)

值的符号变化规律,较好体现了数形结合的思想,具备直观明晰的优点。它还有数轴标根法、区间法,根轴法等名称,但相对来说,用“序轴标根法”作为学名比较确切,简称为“穿根法”较为形象。此方法通用性强,思想方法灵活独特、易于领会。它主要用于解一元高次不等式和分式不等式,对于一元一次、二次不等式,也一样适用。系统地了解领会此方法的原理应用、来龙去脉,对于学生提高数学思维素质和解题水平,具有重要意义。

解不等式(知识点、题型详解)

不等式的解法 1、一元一次不等式ax b > 方法:通过去分母、去括号、移项、合并同类项等步骤化为ax b >的形式,若0a >,则b x a > ;若0a <,则b x a < ;若0a =,则当0b <时,x R ∈;当0b ≥时,x ∈?。 【例1-1】(1)21 33 ax -> 解:此时,因为a 的符号不知道,所以要分:a =0,a >0, a <0这三种情况来讨论. 由原不等式得a x >1, ①当a =0时,? 0>1.所以,此时不等式无解. ② 当a >0时,? x > a 1, ③当a <0时,?x -+-a b x b a 。 解:R a ∈,012>+-a a ∴ 01)1(32 2<+-++-a a x a a 的解为3 1- +b a ∴ 解b a b a x 23)(6+-- < 由题意b a b a 23) (631+--=- ∴ 043>=b a 代入所求:062>--b bx ∴ 3-,12,x x 是 方程2 0ax bx c ++=的两实根,且12x x <,则其解集如下表:

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数得系数为正。 使用方法: ①在数轴上标出化简后各因式得根,使等号成立得根,标为实点,等号不成立得根要标虚点。 ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“〉”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) 错误!≤1 解: (1) 原不等式等价于(x +4)(x+5)2(x —2)3>0 (2) 根据穿根法如图 不等式解集为 {x x< 1 3 或\f( 1 , 2 )【例2】 解不等式:(1)2x 3-x 2—15x 〉0;(2)(x+4)(x+5)2(2—x)3<0。 【分析】 如果多项式f(x)可分解为n 个一次式得积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法"求解,但要注意处理好有重根得情况、 解:(1)原不等式可化为

x(2x+5)(x-3)〉0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)得阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x〈—4或x >2}、 【说明】 用“穿根法”解不等式时应注意..............:.①各一次项中......x .得.系数必为正.....;.②对于偶次或奇次重根可参照.............(.2.).得解法转化为不含重.........根得不等式.....,.也可直接用“穿根法.........",..但注意...“奇穿偶不穿”.........其法如图.... (5..-.2.). .. 二. 数轴标根法”又称“数轴穿根法” 第一步:通过不等式得诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前得系数为 正数) 例如:将x^3—2x^2—x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x —2)(x-1)(x+1)=0得根为:x 1=2,x 2=1,x 3=—1 第三步:在数轴上从左到右依次标出各根。 例如:—1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”得右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根、 第五步:观察不等号,如果不等号为“〉",则取数轴上方,穿根线以内得范围;如果不等号为“<”则取数轴下方,穿根线以内得范围。x得次数若为偶数则不穿过,即奇过偶不过。 例如:

穿根法解高次不等式

穿根法解高次不等式 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点, 等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿 透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使 “<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或 (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 根据穿根法如图

不等式解集为 {x x< 1 3 或 1 2 ≤x ≤1或x>2}. 【例2】 解不等式:(1)2x 3-x 2-15x >0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】 如果多项式f(x)可分解为n 个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x <-5或-5<x <-4或x >2}. 【说明】 用“穿根法”解不等式时应注意:①各一次项中.....................x .的系..数必为正;②对于偶次或奇次重根可参照..................(2)...的解法转化为不含重根..........的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿”........其法如....图.(5..-.2).. ..

数轴标根法又称数轴穿根法或穿针引线法

“数轴标根法”又称“数轴穿根法”或“穿针引线法” 是高次不等式的简单解法 当高次不等式f(x)>0(或<0)的左边整式、分式不等式φ(x)/h(x)>0(或<0)的左边分子、分母能分解成若干个一次因式的积(x-a1)(x-a2)…(x -an)的形式,可把各因式的根标在数轴上,形成若干个区间,最右端的区间f (x)、φ(x)/h(x)的值必为正值,从右往左通常为正值、负值依次相间,这种解不等式的方法称为序轴标根法。 为了形象地体现正负值的变化规律,可以画一条浪线从右上方依次穿过每一根所对应的点,穿过最后一个点后就不再变方向,这种画法俗称“穿针引线法”,如图1(图片自上而下依次为图一,二,三,四)。 步骤 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如:将x^3-2x^2-x+2>0化为(x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x1=2,x2=1,x3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第四步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根。 第五步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。x的次数若为偶数则不穿过,即奇过偶不过。 例如: 若求(x-2)(x-1)(x+1)>0的根。

在数轴上标根得:-1 1 2 画穿根线:由右上方开始穿根。 因为不等号为“>”则取数轴上方,穿跟线以内的范围。即:-12。(如图四) 奇过偶不过 就是当不等式中含有有单独的x偶幂项时,如(x^2)或(x^4)时,穿根线是不穿过 (X-1)^2. 0点的。但是对于X奇数幂项,就要穿过0点了。还有一种情况就是例如: 当不等式里出现这种部分时,线是不穿过1点的。但是对于如(X-1)^3的式子,穿根线要过1点。也是奇过偶不过。可以简单记为“奇穿过,偶弹回”。(如图三,为(X-1)^2) 注意事项 运用序轴标根法解不等式时,常犯以下的错误: 出现形如(a-x)的一次因式时,匆忙地“穿针引线”。 例1 解不等式x(3-x)(x+1)(x-2)>0。 解 x(3-x)(x+1)(x-2)>0,将各根-1、0、2、3依次标在数轴上,由图1可得原不等式的解集为{x|x<-1或03}。 事实上,只有将因式(a-x)变为(x-a)的形式后才能用序轴标根法,正确的解法是: 解原不等式变形为x(x-3)(x+1)(x-2)<0,将各根-1、0、2、3依次标在数轴上,,原不等式的解集为{x|-1

高次不等式的解法

高次不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2-4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4 (2) 变形为 (2x-1)(x-1) ≥0 根据穿根法如图

不等式解集为 {x x<1 3 或 1 2 ≤x≤1或x>2}. 【例2】解不等式:(1)2x3-x2-15x>0;(2)(x+4)(x+5)2(2-x)3<0. 【分析】如果多项式f(x)可分解为n个一次式的积,则一元高次不等式f(x)>0(或f(x)<0)可用“穿根法”求解,但要注意处理好有重根的情况. 解:(1)原不等式可化为 x(2x+5)(x-3)>0 顺轴.然后从右上开始画曲线顺次经过三个根,其解集如图(5-1)的阴影部分. (2)原不等式等价于 (x+4)(x+5)2(x-2)3>0 ∴原不等式解集为{x|x<-5或-5<x<-4或x>2}. 【说明】用“穿根法”解不等式时应注意:①各一次项中 .....................x.的系 .. 数必为正;②对于偶次或奇次重根可参照..................(2) ...的解法转化为不含重根 .......... 的不等式,也可直接用“穿根法”,但注意...................“奇穿偶不穿” ........其法如 ....图.(5..-.2)....

专题8-数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x 前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2=1,x 3=-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律: “奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练: 1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1 - 、1、3。在数轴上把它们标出(如图1)。 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1 (+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什

元高次不等式的解法

元高次不等式的解法 The manuscript was revised on the evening of 2021

一元高次不等式的解法 步骤:正化,求根,标轴,穿线(奇过偶不过),定解 穿根法(零点分段法)(高次不等式:数轴穿根法: 奇穿,偶不穿)解题方法:数轴标根法。 解题步骤: (1)首项系数化为“正” (2)移项通分,不等号右侧化为“0” (3)因式分解,化为几个一次因式积的形式 (4)数轴标根。 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 解法:①将不等式化为0123()()()()0n a x x x x x x x x ---->形式,并将各因式中的x 系数化“+”(为了统一方便) ②求根,并将根按从小到大的在数轴上从左到右的表示出来; ③由右上方穿线,经过数轴上表示各根的点。(即从右向左、从上往下:看x 的次数:偶次根穿而不过,奇次根一穿而过)。注意:奇穿偶不穿。 ④若不等式(x 系数化“+”后)是“0>”,则找“线”在x 轴上方的区间;若不等式是“0<”,则找“线”在x 轴下方的区间: 注意:“≤或≥”标根时,分子实心,分母空心。 例1: 求不等式223680x x x --+>的解集。 解:将原不等式因式分解为:(2)(1)(4)0x x x +--> 由方程:(2)(1)(4)0x x x +--=解得1232,1,4x x x =-==,将这三个根按从小到大顺序在数轴上标出来,如图 由图可看出不等式223680x x x --+>的解集为:{}|21,4x x x -<<>或 (1)()()()()00,f x f x g x g x >??> ()() ()()(2)00;f x f x g x g x

完整版一元二次不等式及其解法教学设计

元二次不等式及其解法 设计思想】 新的课程标准指出:数学课程应面向全体学生;促进学生获得数学素养的培养和提高; 逐步形成数学观念和数学意识;倡导学生探究性学习。这与建构主义教学观相吻合。本节课 正是基于上述理念,通过对已学知识的回忆,引导学生主动探究。强调学习的主体性,使学 生实现知识的重构,培养学生“用数学”的意识。本节课的设计以问题为中心,以探究解决 问题的方法为主线展开。这种安排强调过程,符合学生的认知规律,使数学教学过程成为学 生对书本知识的再创造、再发现的过程,从而培养学生的创新意识。 教材分析】 本节课是人教社普通高中课程标准实验教材数学必修5 第三章《不等式》第二节一元 次不等式及其解法,本节主要内容是从实际问题中建立一元二次不等式,并能解一元二次不 等式。这一节共分三个课时,本节课属于第一课时,课题为《一元二次不等式及其解法》。学数学的目的在于用数学,除了让学生探究并掌握一元二次不等式的解法外,更重要的是要领 悟函数、方程、不等式的密切联系,体会数形结合,分类讨论,等价转换等数学思想。 学情分析】 学生在初中就开始接触不等式,并会解一元一次不等式。 教学目标】 知识与技能:通过学生自主预习与课上探究掌握一元二次方程、一元二次不等式、二次函数 之间的关系和一元二次不等式的解法; 过程与方法:自主探究与讨论交流过程中,培养学生运用等价转化和数形结合等数学思想解 决数学问题的能力; 情感态度价值观:培养学生的合作意识和创新精神。 教学重点】一元二次不等式的解法。 教学难点】一元二次方程、一元二次不等式和二次函数的关系。 教学策略】 探究式教学方法 创设问题情境——界定问题——选择问题解决策略——执行策略——结果评价)课前准备】教具:“几何画板”及PPT 课件. 粉笔:用于板书示范. 第1 页共4 页

不等式解法15种典型例题

不等式解法15种典型例题 典型例题一 例1 解不等式:(1)015223>--x x x ;(2)0)2()5)(4(3 2<-++x x x . 分析:如果多项式)(x f 可分解为n 个一次式的积,则一元高次不等式0)(>x f (或0)(-+x x x 把方程0)3)(52(=-+x x x 的三个根 3,2 5,0321=-==x x x 顺次标上数轴.然后从右上开始画线顺次经过三个根,其解集如下图的阴影部分.∴原不等式解集为? ????? ><<-3025x x x 或 (2)原不等式等价于 0)2()5)(4(32>-++x x x ???>-<-≠????>-+≠+?2 450)2)(4(05x x x x x x 或 ∴原不等式解集为 {}2455>-<<--

穿根法解不等式的原理

穿根法解不等式的原理、步骤和应用范例 摘要:本文通过阐述穿根法解不等式的原理、步骤和应用范例,尝试对其进行系统性的论述。在原理层面,提出该方法中不等式的标准形式为f(x)=(x-x1)(x-x2)……(x-x n)∨0,规范了序轴的概念,先后由一元一次、二次到高次不等式,动态考察了f(x)的符号变化规律,并介绍如何使用穿根法表达此规律;在步骤层面,对解高次不等式、分式不等式和含等号不等式的操作步骤进行了分类详述;然后通过6个应用范例,进一步展现了穿根法解不等式的具体操作细节和若干注意事项。论文最后概括说明了穿根法的特征和实用意义。 关键词:穿根法;解不等式;原理;步骤;应用 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。

一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是 大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示 f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x1

一元二次不等式及其解法练习题.doc

一元二次不等式及其解法练习 班级: 姓名: 座号: 1 比较大小: (1)2 6+ (2)2 21)-; (3 ; (4)当0a b >>时,12log a _______12 log b . 2. 用不等号“>”或“<”填空: (1),____a b c d a c b d >><>? (4)2211 0___a b a b >>?. 3. 已知0x a <<,则一定成立的不等式是( ). A .220x a << B .22x ax a >> C .20x ax << D .22x a ax >> 4. 如果a b >,有下列不等式:①22a b >,②11 a b <,③33a b >,④lg lg a b >, 其中成立的是 . 5. 设0a <,10b -<<,则2,,a ab ab 三者的大小关系为 . 6.比较(3)(5)a a +-与(2)(4)a a +-的大小. 7. 若2()31f x x x =-+,2()21g x x x =+-,则()f x 与()g x 的大小关系为( ). A .()()f x g x > B .()()f x g x = C .()()f x g x < D .随x 值变化而变化 8.(1)已知1260,1536,a a b a b b <<<<-求及的取值范围. (2)已知41,145a b a b -≤-≤--≤-≤,求9a b -的取值范围. 9. 已知22 ππ αβ-≤<≤,则2αβ-的范围是( ). A .(,0)2 π - B .[,0]2π - C .(,0]2π- D .[,0)2 π - 10.求下列不等式的解集. (1)2230x x +->; (2)2230x x -+-> (3)2230x x -+-≤.

穿根法解不等式及习题

穿根法解不等式 穿根法,又称序轴标根法,是解一元整式、分式不等式的重要通用方法,特别在解简单高次不等式时,一直居于主流地位。然而,该方法目前尚未进入中学正式教材,在很多资料中,对此法也往往是只提应用,而对其来龙去脉,叙述不清,建构模糊。现结合中学一线教学经验,通过阐述其原理、步骤和应用范例,尝试对其进行系统性的论述。 一、原理 穿根法解不等式时,一般先将其化为形如: f(x)=(x-x1)(x-x2)…(x-x n)>0 (或<0) 的标准形式,主要考察f(x)的符号规律。 在穿根法中我们引入序轴的概念。序轴是一条有向直线,类似于数轴,但上面不必标出原点,也不必考虑长度单位,只要求在其上标数时,按由左至右,从小到大的顺序即可。 (一)一次不等式 标准形式:f(x)=x-x1>0 (或<0) 我们将x-x1=0的根x1标在序轴上,可以发现:x1右边的点都是大于x1的点,即是x-x1>0的解;而x1左边 的点都是小于x1的点,即是x-x1<0的解。 所以可以如图标注,图中+、- 用以表示

f(x)=x-x1的符号。 我们还可以以动态的思想来考察该问题。当一点x=a 从x1右侧向x1左侧移动时,f(x)=x-x1经历了由正到0又到负的符号变换。由此也可得出f(x)的符号可以如图标注的结论。 (二)二次不等式 标准形式:f(x)=(x-x1)(x-x2) >0 (或<0) (1) x1≠x2时,不妨设x10,处于(x1,x2)内的 点满足f(x) <0。 当我们动态考察该问题时,我们也可 以发现:当点x=a在x2右方时,x-x1、x-x2均正,故有f(x) >0;而当点x=a从x2右侧移动到左侧时,x-x2变为负值,而x-x1符号不变,所以有f(x)必然变号,此时由正变负;而再当点x=a从x1右侧移动到左侧时,x-x1由正变负,而x-x2符号不变,所以f(x)又一次变号,此时由负变正。 总之,无论从哪个方面看,f(x)的符号都可以如图标注。 (2) x1=x2时,即形如f(x)=(x-x1)2时 显然,(-∞,x1)与( x1 ,+∞)都是f(x) >0的解。 而若动态的考察此问题,则有 点x=a 从x1右侧移动向左侧移动时, 由于平方项内的x-x1由正到0又到负,所以f(x)经历了由正到0又回

一元二次不等式及其解法(教学反思

专题一元二次不等式及其解法教学反思一元二次不等式及其解法的复习重点是1:从实际情境中抽象出一元二次不等式模型;2:一元二次不等式及其解法。由于是复习课,根据我们学生的实际情况,我是这样安排复习的:一、我先给学生展示高考考纲及考情,再检测学生对一元二次不等式的概念及“三个二次”之间关系的理解,引导学生梳理相关知识点。这一环节反映出学生基础知识掌握的比较熟悉。(五六分钟)二、为了检测学生对本节知识的应用情况,我要求学生完成,有三位学生主动板演,让其他学生批改,在引导学生一元二次元二次不等式的方法步骤,以次调动学生的学习积极性,也体现了先学后讲的课堂模式。这一环节只有一位没有完整的写出解题过程,后来有地四个同学补充完成。总体来说学生完成的还可以(大约12多分钟)。三、为了让学生明确本节知识在高考中的考察形式及出题难度,我选了两个热点题,启发引导学生对问题的分析及其解答。从学生分析问题的思维过程反映出一部分学生能较熟练地运用知识,而剩下的学生对基础知识的理解不到位对知识逆用不熟悉,思考问题的角度单一,思维方法不灵活。另外运算能力还有待提高。还有由于时间关系,没能检查学生完成资料课时作业的对应联系。(大约15分钟) 通过本节课,有几个方面以后上课必须要注意: 1、教学内容安排要合理。每一节的教学内容要适合学生的实际情况,不能好多,也不太少了。 2、课堂突发情况的调控能力还要提高。 3、调动学生学习积极性还需要学习更多好的方法。 4、有效课堂必须是完整的课堂,无论是课前复习,新课导学,典型例题、当堂练习、学习小结还是当堂检测都应该完整完成。今后的课堂一定要向着这个目标努力。 5、在今后的复习中要进一步提高学生的数学运算能力。培养学生良好的思维能力,注重培养学生的发散思维。

用穿根法解不等式(经典归纳)

一元高次不等式的解法 这里主要介绍“数轴标根法”解高次不等式,简单快捷.“数轴标根法”又称“数轴穿根法”、“穿针引线法”或“序轴标根法”. 一、解题步骤 求不等式32638x x x -+<-+的解集 1. 化简:移项使右侧为0,将x 最高次项系数化为正数,再将左侧分解为几个一次因式积的形式. 将32638x x x -+<-+化为323680(2)(1)(4)0x x x x x x --+>?+--> 2. 求根:将不等式换成等式解出所有根. (2)(1)(4)0x x x +--=的根为12x =-,21x =,34x = 3. 标根:在数轴上从左到右依次标出各根. -2 1 4 4. 穿根:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右根”上去,一上一下依次穿过各根. 5. 写解:大于号取上方,小于号取下方,取穿根线以内的范围,将各解集求并. 不等式32638x x x -+<-+的解集为:{}|21,4x x x -<<>或 二、易错提示 求解不等式:)0)(0(0022110><>++++--a a x a x a x a n n n n 1. 分解因式:将不等式化为0123()()()()0n a x x x x x x x x ---->L 形式. 2. 正化系数:将各因式中的x 系数化为正数. 3. 奇穿偶不穿:从右上方往左下方穿线,依次经过数轴上表示各根的点,看各一次因式的次数,偶次根穿而不过,奇次根一穿而过,简称“奇穿偶不穿”. 4. 解分式不等式:可化为一元高次不等式进行求解,如遇“≤或≥”,在标根时,分子实心,分母空心. 三、分式不等式解法

一元二次不等式及其解法知识梳理及典型练习题

一元二次不等式及其解法 1.一元一次不等式解法 任何一个一元一次不等式经过不等式的同解变形后,都可以化为ax>b(a≠0)的形式. 当a>0时,解集为;当a<0时,解集为. 2.一元二次不等式及其解法 (1)我们把只含有一个未知数,并且未知数的最高次数是2的不等式,称为__________不等式. (2)使某个一元二次不等式成立的x的值叫做这个一元二次不等式的解,一元二次不等式所有的解组成的集合叫做一元二次不等式的________. (3)一元二次不等式的解:

(1)化分式不等式为标准型.方法:移项,通分,右边化为0,左边化为 f (x ) g (x ) 的形式. (2)将分式不等式转化为整式不等式求解,如: f (x ) g (x )>0 ? f (x )g (x )>0; f (x ) g (x ) <0 ? f (x )g (x )<0; f (x )g (x )≥0 ? ?????f (x )g (x )≥0,g (x )≠0; f (x ) g (x )≤0 ? ?????f (x )g (x )≤0,g (x )≠0. (2014·课标Ⅰ)已知集合A ={x |x 2 -2x -3≥0},B ={x |-2≤x <2},则A ∩B =( ) A.[-2,-1] B.[-1,2) C.[-1,1] D.[1,2) 解:∵A ={x |x ≥3或x ≤-1},B ={x |-2≤x <2},∴A ∩B ={x |-2≤x ≤-1}=[-2,-1].故选A . 设f (x )=x 2 +bx +1且f (-1)=f (3),则f (x )>0的解集为( ) A.{x |x ∈R } B.{x |x ≠1,x ∈R } C.{x |x ≥1} D.{x |x ≤1} 解:f (-1)=1-b +1=2-b ,f (3)=9+3b +1=10+3b , 由f (-1)=f (3),得2-b =10+3b , 解出b =-2,代入原函数,f (x )>0即x 2 -2x +1>0,x 的取值范围是x ≠1.故选B. 已知-12<1 x <2,则x 的取值范围是( )

专题数轴穿根法

专题:数轴穿根法 “数轴穿根法”又称“数轴标根法” 第一步:通过不等式的诸多性质对不等式进行移项,使得右侧为0。(注意:一定要保证x前的系数为正数) 例如: (x-2)(x-1)(x+1)>0 第二步:将不等号换成等号解出所有根。 例如:(x-2)(x-1)(x+1)=0的根为:x 1=2,x 2 =1,x 3 =-1 第三步:在数轴上从左到右依次标出各根。 例如:-1 1 2 第三步:画穿根线:以数轴为标准,从“最右根”的右上方穿过根,往左下画线,然后又穿过“次右跟”上去,一上一下依次穿过各根。 第四步:观察不等号,如果不等号为“>”,则取数轴上方,穿根线以内的范围;如果不等号为“<”则取数轴下方,穿根线以内的范围。 例如: 若求(x-2)(x-1)(x+1)>0的解。 因为不等号威“>”则取数轴上方,穿根线以内的范围。即:-12。 穿根法的奇过偶不过定律:“奇穿过,偶弹回”。 还有关于分式的问题:当不等式移项后,可能是分式,同样是可以用穿根法的,但是注意,解不能让原来分式下面的式子等于0 专项训练:

1、解不等式0)3)(1)(12(>--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)12(+x 、)1(-x 、)3(-x 的根分别是 1-、1、3。在数轴 3)从最大根3的右上方开始,向左依次 穿线(数轴上方有线表示数轴上方有函数 图象,数轴下方有线表示数轴下方有函数图象,此线并不表示函数的真实图象)。 4)数轴上方曲线对应的x 的取值区间,为0)3)(1)(12(>--+x x x 的解集,数轴下方曲线对应的x 的取值区间,为 0)3)(1)(12(<--+x x x 的解集。 ∴不等式0)3)(1)(12(>--+x x x 的解集为),3()1,2 1(+∞- 。 在上述解题过程中,学生存在的疑问往往有:为什么各因式中未知数的系数为正;为什么从最大根的右上方开始穿线;为什么数轴上方曲线对应的x 的集合是大于零不等式的解集,数轴下方曲线对应x 的集合是小于零不等式的解集。 2、解不等式0)3()12 1)(2(32<--+x x x 解析:1)一边是因式乘积、另一边是零的形式,其中各因式未知数的系数为正。 2)因式)2(+x 、2)121(-x 、3)3(-x 的根分别为2-、2、3,在数轴上把它们标出(如图2)。

知识讲解 一元二次不等式及其解法 基础

一元二次不等式及其编稿:张希勇 审稿:李霞 【学习目标】 1.掌握一元二次不等式的解法,体会数形结合的思想; 2.理解一元二次不等式、一元二次方程与二次函数之间的关系; 3.能利用一元二次不等式解决简单的实际问题. 【要点梳理】 要点一、一元二次不等式及一元二次不等式的解集 只含有一个未知数,并且未知数的最高次数是2的不等式,称为一元二次不等式.比如:250xx ??.一元二次不等式的一般形式:20axbxc ???(0)a ?或20axbxc ???(0)a ?. 设一元二次方程20(0)axbxca ????的两根为12xx 、且12xx ?,则不等式20axbxc ???的解集为??21xxxxx ??或,不等式20axbxc ???的解集为??21xxxx ?? 要点诠释:讨论一元二次不等式或其解法时要保证(0)a ?成立. 要点二、一元二次不等式与相应函数、方程之间的联系 对于一元二次方程20(0)axbxca ????的两根为12xx 、且12xx ?,设ac b42???,它的解按照0??,0??,0??可分三种情况,相应地,二次函数2yaxbxc ???(0)a ?的图像与x 轴的位置关系也分为三种情况.因此我们分三种情况来讨论一元二次不等式20axbxc ???(0)a ?或20axbxc ???(0)a ?的解集.

要点诠释: (1)一元二次方程20(0)axbxca????的两根12xx、是相应的不等式的解集的端点的 取值,是抛物线?y cbxax??2与x轴的交点的横坐标; (2)表中不等式的二次系数均为正,如果不等式的二次项系数为负,应先利用不等式的性质转化为二次项系数为正的形式,然后讨论解决; (3)解集分0,0,0??????三种情况,得到一元二次不等式20axbxc???与20axbxc ???的解集. 要点三、解一元二次不等式的步骤 (1)先看二次项系数是否为正,若为负,则将二次项系数化为正数; (2)写出相应的方程20axbxc???(0)a?,计算判别式?: ①0??时,求出两根12xx、,且12xx?(注意灵活运用因式分解和配方法); ②0??时,求根abxx221???; ③0??时,方程无解 (3)根据不等式,写出解集. 用程序框图表示求解一元二次不等式ax2+bx+c>0(a>0)的过程

讲义—一元高次不等式的解法

一元高次不等式的解法 一、可解的一元高次不等式的标准形式 12()() ()0(0)n x x x x x x --->< (1)左边是关于x 的一次因式的积; (2)右边是0; (3)各因式最高次项系数为正。 二、一元高次不等式的解法 数轴标根法: 1、将高次不等式变形为标准形式; 2、求根12,, ,n x x x ,画数轴,标出根; 3、从数轴右上角开始穿根,穿根时的原则是“奇穿偶回” 4、写出所求的解集。 三、典型例题 例1、0)3)(2)(1(<---x x x 解:方程0)3)(2)(1(=---x x x 为1,2,3 标根穿根 3 2 1 解集为(,1)(2,3)-∞ 例2、2 (1)(2)(1)0x x x x --+≥ 解:方程2(1)(2)(1)0x x x x --+=的根为0,1,2,—3 标根穿根 2 -1 1 解集为[1,0]{1} (2,)-+∞ 注意: 1、奇穿偶回。 2、得解集不要忘了1.

例3、(1)(2)(3)0x x x -+-> 例4、2 (2)(3)(21)0x x x x -+--≥ 例5、2(1)(2)(45)0x x x x ---+≥ 注意:∵ 2 2 45(2)10x x x -+=-+> ∴原不等式变形为标准形式(1)(2)0x x --≥ 例6、3 22210x x x --+≤ 【练习】 1、2(1)(3)(68)0x x x x +--+≥ 2、22 (328)(12)0x x x x +-+-≤ 3、22 (23)(67)0x x x x ----≥ 4、22 (45)(1)0x x x x --++≤ 5、23(2)(3)(6)(8)0x x x x -+-+≥ 6、4 3 220x x x +--> 7、3 2 330x x x +--> 将二次三项式尽量因式分解为一次式 二次三项式不能因式分解且二次项系数为正,则此式一定为正数 不等式左边尽量因式分解为一次式 将一次项系数化为正数。

穿根法与分式不等式

不等式的解法---穿根法 一.方法:先因式分解,再使用穿根法. 注意:因式分解后,整理成每个因式中未知数的系数为正. 使用方法: ①在数轴上标出化简后各因式的根,使等号成立的根,标为实点,等号不成立的根要标虚点. ②自右向左自上而下穿线,遇偶次重根不穿透,遇奇次重根要穿透(叫奇穿偶不穿). ③数轴上方曲线对应区域使“>”成立, 下方曲线对应区域使“<”成立. 例1:解不等式 (1) (x+4)(x+5)2(2-x)3<0 (2) x 2 -4x+1 3x 2-7x+2 ≤1 解: (1) 原不等式等价于(x+4)(x+5)2(x-2)3>0 根据穿根法如图 不等式解集为{x ∣x>2或x<-4且x (2) 变形为 (2x-1)(x-1) (3x-1)(x-2) ≥0 原不等式等价于(21)(1)(31)(2)0 (31)(2)0 x x x x x x ----≥??--≠? 根据穿根法如图 不等式解集为 {x |x< 1 3 或 1 2 ≤x ≤1或 分式不等式的解法 (1)()() ()()00f x f x g x g x >??> (2) ()()()()()000f x g x f x g x g x ?≥??≥??≠??

一、解不等式: 1、 3 2 x x - ≥ - 2、 21 1 3 x x - > + 3、 2 2 32 23 x x x x -+ ≤ -- 4、 221 2 x x x -- < - 5、 () 2 3 9 x x x - ≤ - 6、 1 01 x x <-< 二、填空题。 1. 不等式 2 2 331 372 x x x x ++ > -+ 的解集是 2. 不等式 31 1 3 x x + >- - 的解集是 7. 不等式 2 1 21 x x x + ≤ + 的解集是 8. 不等式 21 1 2 x x - > -+ 的解集是

一元二次不等式及其解法教学讲义

一元二次不等式及其解法教学讲义 ZHI SHI SHU LI 知识梳理) 1.一元二次不等式的解法 (1)将不等式的右边化为零,左边化为二次项系数大于零的不等式ax2+ bx+c>0(a>0)或ax2+bx+c<0(a>0). (2)计算相应的判别式. (3)当Δ≥0时,求出相应的一元二次方程的根. (4)利用二次函数的图象与x轴的交点确定一元二次不等式的解集. 2.三个二次之间的关系 判别式 Δ=b2-4ac Δ>0Δ=0Δ<0二次函数 y=ax2+bx+c (a>0)的图象 一元二次方程ax2+bx+c=0 (a>0)的根有两相异实根 x1,x2 (x10 (a>0)的解集{x|x>x2或 x0)的解集 {x| x10(a≠0)恒成立的充要条件是:a>0且b2-4ac<0(x∈R). 2.ax2+bx+c<0(a≠0)恒成立的充要条件是:a<0且b2-4ac<0(x∈R). 注意:在题目中没有指明不等式为二次不等式时,若二次项系数中含有参数,应先对二次项

系数为0的情况进行分析,检验此时是否符合条件. 3.二次不等式解集的“边界值”是相应二次方程的根. 4.简单分式不等式的解法 (1)f (x )g (x ) >0(<0)?f (x )g (x )>0(<0); (2)f (x ) g (x )≥0(≤0)?? ???? f (x )· g (x )≥0(≤0)g (x )≠0. 5.简单的指数与对数不等式的解法 (1)若a >1,a f (x )>a g (x )?f (x )>g (x ); 若0a g (x )?f (x )1,log a f (x )>log a g (x )?f (x )>g (x )>0; 若0log a g (x )?02} [解析] 由(x -1)(2-x )≥0可知(x -2)(x -1)≤0,所以不等式的解集为{x |1≤x ≤2}.故选A . 2.不等式1-x 2+x ≥0的解集为( B ) A .[-2,1] B .(-2,1] C .(-∞,-2)∪(1,+∞) D .(-∞,-2]∪(1,+∞) [解析] 原不等式化为????? (1-x )(2+x )≥0, 2+x ≠0, 即? ???? (x -1)(x +2)≤0 x +2≠0,所以-20的解集是(-12,1 3),则a +b 的值是( D ) A .10 B .-10 C .14 D .-14 [解析] 由题意知-12,1 3 是ax 2+bx +2=0的两根,则a =-12,b =-2,所以a +b =-14.

相关文档
最新文档