概率论第四章习题

概率论第四章习题
概率论第四章习题

第四章

一、填空题

1.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则E(X2)=__________

2.已知随机变量X与Y相互独立,且X~P(2), Y~N(3,1),设随机变量Z=X2Y9,则E(Z)=__________, D(Z)=__________

3.设X的概率密度为f(x)=,且E(X)=,则a=__________, b=__________

4.设随机变量X服从参数为的泊松分布,已知E(X2+2X4)=0,

则P{X0}=__________

5.某车间生产的圆盘其直径在区间(a, b)服从均匀分布,则圆盘面积的数学期望为__________

二、选择题

1.设相互独立的随机变量X和Y的方差为4和2,则随机变量3X2Y的方差是__________

(A) 44 (B) 28 (C) 16 (D) 8

2.设两个相互独立的随机变量X与Y分别服从正态分布N(0,1)和N(2,3),则__________

(A) P{X+Y≤0}= (B) P{X+Y≤2}=

(C) P{XY≤0}= (D) P{XY≤2}=

3.设X与Y为两个随机变量,则下列等式中正确的是__________

(A) D(X+Y)=D(X)+D(Y) (B) D(XY)=D(X)D(Y)

(C) E(X+Y)=E(X)+E(Y) (D) E(XY)=E(X)E(Y)

4.设二维随机变量(X,Y)满足E(XY)=E(X)E(Y),则X与Y__________

(A)相关 (B)不相关 (C)独立 (D)不独立

5.设二维随机变量(X,Y)服从D={(x,y)|x2+y2≤a2}上的均匀分布,则____

(A) X和Y不相关,不独立 (B) X和Y相互独立

(C) X和Y相关 (D) X和Y均服从(a, a)上的均匀分布

三、计算题

1.设学校乘汽车到火车站的途中有3个交通岗,设在各交通岗遇到红灯是相互独立的,其概率均为,试求途中遇到红灯次数的数学期望与方差

2.设随机变量U在区间[2, 2]上服从均匀分布,随机变量

X=, Y=

试求: (1) X和Y的联合分布律 (2) D(X+Y)

3.设随机变量X和Y的联合分布在以点(0,1), (1,0), (1,1)为顶点的三角形区域上服从均匀分布,试求随机变量Z=X+Y的数学期望和方差

4.设随机变量(X,Y)的概率密度为f(x,y)=,求E(X), E(Y), Cov(X,Y), XY , D(X+Y)

5.设(X,Y)服从二维正态分布,且有D(X)=X2, D(Y)=Y2.证明当a2 =时,随机变量W=XaY与V=X+aY相互独立

概率论与数理统计第三章课后习题答案

习题三 1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与 出现反面次数之差的绝对值.试写出X 和Y 的联合分布律. 222??222 ??= 2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到红球的只数.求X 和Y 的联合分布律. 324 C 35= 32 4 C 35= 322 4 C 35= 11322 4 C C 12C 35=132 4 C 2C 35 = 21322 4 C C 6C 35 = 2324 C 3 C 35 = 3.设二维随机变量(X ,Y )的联合分布函数为 F (x ,y )=?????≤ ≤≤≤., 020,20,sin sin 其他ππy x y x 求二维随机变量(X ,Y )在长方形域? ?? ? ??≤<≤<36,40πππy x 内的概率. 【解】如图πππ {0,}(3.2)463 P X Y <≤ <≤公式 ππππππ(,)(,)(0,)(0,)434636 F F F F --+

ππππππ sin sin sin sin sin0sin sin0sin 434636 2 (31). 4 =--+ =- 题3图 说明:也可先求出密度函数,再求概率。 4.设随机变量(X,Y)的分布密度 f(x,y)= ? ? ?> > + - . ,0 ,0 ,0 ,)4 3( 其他 y x A y x e 求:(1)常数A; (2)随机变量(X,Y)的分布函数; (3)P{0≤X<1,0≤Y<2}. 【解】(1)由-(34) 00 (,)d d e d d1 12 x y A f x y x y A x y +∞+∞+∞+∞ + -∞-∞ === ???? 得A=12 (2)由定义,有 (,)(,)d d y x F x y f u v u v -∞-∞ =?? (34)34 00 12e d d(1e)(1e)0,0, 0, 0, y y u v x y u v y x -+-- ??-->> ? == ?? ? ?? ?? 其他 (3) {01,02} P X Y ≤<≤< 12 (34)38 00 {01,02} 12e d d(1e)(1e)0.9499. x y P X Y x y -+-- =<≤<≤ ==--≈ ?? 5.设随机变量(X,Y)的概率密度为 f(x,y)= ? ? ?< < < < - - . ,0 ,4 2,2 ), 6( 其他 y x y x k (1)确定常数k; (2)求P{X<1,Y<3}; (3)求P{X<1.5}; (4)求P{X+Y≤4}. 【解】(1)由性质有

概率论与数理统计练习题第四章答案

概率论与数理统计练习题 系 专业 班 姓名 学号 第四章 随机变量的数字特征(一) 一、选择题: 1 . 设 随 机 变 量 X ,且()E X 存在,则()E X 是 [ B ] (A )X 的函数 (B )确定常数 (C )随机变量 (D )x 的函数 2.设X 的概率密度为 910()9 00 x e x f x x -?≥?=??

*5.设随机变量(,1,2,,)ij X i j n =L 独立且同分布,()2ij E X =,则行列式 11121212221 2n n n n nn X X X X X X Y X X X = L L M M M L 的数学期望() E Y = 0 (考研题 1999) 三、计算题: 1.袋中有5个乒乓球,编号为1,2,3,4,5,从中任取3个,以X 表示取出的3个球中最大编号,求().E X 2.设随机变量2 ~(,)X N μσ,求(||).E X μ - 3.设随机变量X 的密度函数为0()0 x e x f x x -?≥=?

概率论与数理统计第四章习题及答案

概率论与数理统计习题 第四章 随机变量的数字特征 习题4-1 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如发现其中的次品数多于1个,就去调整设备,以X 表示一天中调整设备的次数,试求)(X E (设诸产品是否为次品是相互独立的). 解:设表示一次抽检的10件产品的次品数为ξ P =P (调整设备)=P (ξ>1)=1-P (ξ≤1)= 1-[P (ξ=0)+ P (ξ=1)] 查二项分布表 1-=. 因此X 表示一天调整设备的次数时X ~B (4, . P (X =0)=??? ? ??04×× =. P (X =1)=???? ??14××=, P (X =2)= ???? ??24××=. P (X =3)=???? ??34××=, P (X =4)= ??? ? ??44××=. 从而 E (X )=np =4×= 习题4-2 设随机变量X 的分布律为Λ,2,1,323)1(1==???? ??-=+j j X P j j j ,说明X 的数学期望不存在. 解: 由于 1 11 1133322(1) ((1))3j j j j j j j j j P X j j j j ∞ ∞∞++===-=-==∑∑∑,而级数1 12j j ∞ =∑发散,故级数1 11 33(1) ((1))j j j j j P X j j ∞ ++=-=-∑不绝对收敛,由数学期望的定义知,X 的数学期望不存在. 习题X -2 0 2 k p 求)53(),(),(2 2 +X E X E X E . 解 E (X )=(-2)+0+2= 由关于随机变量函数的数学期望的定理,知 E (X 2)=(-2)2+02+22= E (3X 2+5)=[3 (-2)2+5]+[3 02+5]+[3 22 +5] = 如利用数学期望的性质,则有 E (3X 2+5)=3E (X 2)+5=3+5=

概率论第4章习题参考解答

概率论第4章习题参考解答 1. 若每次射击中靶的概率为0.7, 求射击10炮, 命中3炮的概率, 至少命中3炮的概率, 最可能命中几炮. 解: 设ξ为射击10炮命中的炮数, 则ξ~B (10,0.7), 命中3炮的概率为 =??==733 103.07.0}3{C P ξ0.0090 至少命中3炮的概率, 为1减去命中不到3炮的概率, 为 =??-=<-=≥∑=-2 010103.07.01}3{1}3{i i i i C P P ξξ0.9984 因np +p =10×0.7+0.7=7.7不是整数, 因此最可能命中[7.7]=7炮. 2. 在一定条件下生产某种产品的废品率为0.01, 求生产10件产品中废品数不超过2个的概率. 解: 设ξ为10件产品中的废品数, 则ξ~B (10,0.01), 则废品数不超过2个的概率为 =??=≤∑=-2 0101099.001.0}2{i i i i C P ξ0.9999 3. 某车间有20部同型号机床, 每部机床开动的概率为0.8, 若假定各机床是否开动彼此独立, 每部机床开动时所消耗的电能为15个单位, 求这个车间消耗电能不少于270个单位的概率. 解: 设每时刻机床开动的数目为ξ, 则ξ~B (20,0.8), 假设这个车间消耗的电能为η个单位, 则η=15ξ, 因此 2061.02.08.0}18{}15 270 {}27015{}270{20 18 2020=??==≥=≥ =≥=≥∑=-i i i i C P P P P ξξξη 4. 从一批废品率为0.1的产品中, 重复抽取20个进行检查, 求这20个产品中废品率不 大于0.15的概率. 解: 设这20个产品中的废品数为ξ, 则ξ~B (20,0.1), 假设这20个产品中的废品率为η, 则η=ξ/20. 因此 ∑=-??=≤=≤=≤3 20209.01.0}3{}15.020 { }15.0{i i i i C P P P ξξ η=0.867 5. 生产某种产品的废品率为0.1, 抽取20件产品, 初步检查已发现有2件废品, 问这20 件中, 废品不少于3件的概率. 解: 设ξ为这20件产品中的废品数, 则ξ~B (20,0.1), 又通过检查已经知道ξ定不少于2件的条件, 则要求的是条件概率 } 2{} 23{}2|3{≥≥?≥= ≥≥ξξξξξP P P 因事件}3{}2{≥?≥ξξ, 因此2}23{≥=≥?≥ξξξ 因此

概率论习题第三章答案

第三章连续型随机变量 3、1设随机变量 ξ 的分布函数为F(x),试以F(x)表示下列概率: 。 )()4();()3();()2();()1(a P a P a P a P >≥≤=ξξξξ 。 )(解:)0(1)()4(); (1)()3(); 0()(P 2); ()0()()1(+-=>-=≥+=≤-+==a F a P a F a P a F a a F a F a P ξξξξ 3、2函数x 211 F(x)+=就是否可以作为某一随机变量的分布函数,如果 在其它场合恰当定义。 在其它场合恰当定义;)(,0)3(,0)2(1<<∞-∞<<∞ <<∞-x x x 解:(1)F(x)在),(∞-∞内不单调,因而不可能就是随机变量的分布函数; (2)F(x)在)0∞,(内单调下降,因而也不可能就是随机变量的分布函数; (3)F(x)在) ,(-0∞内单调上升、连续且,若定义 ???≥<<∞=01 0)()(~x x X F x F - 则)(~ x F 可以就是某一随机变量的分布函数。 3、3函数 sinx 就是不就是某个随机变量ξ的分布函数?如果ξ的取值范围为 []。,);(,);(,)(?? ??????????πππ230302201 解:(1)当?? ????∈2,0πx 时,sinx 0≥且1sin 20=?πxdx ,所以 sinx 可以就是某个随机变量的分布密度; (2) 因为12sin 0≠=?πxdx ,所以sinx 不就是随机变量的分布密度; (3) 当 ?????? ∈23, ππx 时,sinx<=0所以sinx 不就是随机变量的分布密度。 3、4设随机变量ξ具有对称的分布函数p(x),即p(x)=p(-x) 证明:对任意的a>0,有

概率论与数理统计习题及答案第三章

习题3-1 1. 而且12{P X X =. 求X 1和X 2的联合分布律. 解 由12 {0}1P X X ==知12{0}0P X X ≠=. 因此X 1和X 2的联合分布必形 于是根据边缘概率密度和联合概率分布的关系有X 1和X 2的联合分布律

(2) 注意到12{0,0}0P X X ===, 而121{0}{0}04 P X P X =?== ≠, 所以X 1和X 2 不独立. 2. 一盒子中有3只黑球、2只红球和2只白球, 在其中任取4只球. 以X 表示取到黑球的只数, 以Y 表示取到红球的只数. 求X 和Y 的联合分布律. 解 从7只球中取4球只有354 7 =C 种取法. 在4只球中, 黑球有i 只, 红 球有j 只(余下为白球4i j -- 只)的取法为 4322i j i j C C C --,0,1,2,3,0,1,2,i j i j ==+≤4. 于是有 022 322 1{0,2}35 35 P X Y C C C ====,111322 6{1,1}35 35 P X Y C C C ====, 121322 6 {1,2}35 35 P X Y C C C ====,202322 3 {2,0}35 35 P X Y C C C ==== , 211 322 12{2,1}35 35P X Y C C C ==== ,220 322 3{2,2}35 35P X Y C C C === = , 301 322 2 {3,0}3535P X Y C C C === =, 310 322 2 {3,1}3535 P X Y C C C ====, {0,0}{0,1}{1,0}{3,2}0P X Y P X Y P X Y P X Y ============. 3. (,)(6),02,24, 0,.f x y k x y x y =--<<<

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

概率论与数理统计统计课后习题答案-总主编-邹庭荣-主编-程述汉-舒兴明-第四章

第四章习题解答 1.设随机变量X ~B (30, 6 1),则E (X )=( D ). A.6 1 ; B. 65; C.6 25; D.5. 1 ()3056 E X np ==?= 2.已知随机变量X 和Y 相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E (XY )=( A ). A. 3; B. 6; C. 10; D. 12. ()1()3E X E Y == 因为随机变量X 和Y 相互独立所以()()()3E XY E X E Y == 3.设X 表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X 2的数学期望E (X 2)=____18.4______. (10,0.4)()4() 2.4X B E X D X ==: 22()(())()18.4E X E X D X =+= 4.某射手有3发子弹,射一次命中的概率为3 2,如果命中了就停止射击,否则一直射到子弹用尽.设表示X 耗用的子弹数.求E (X ). 解: X 1 2 3 P 2/3 2/9 1/9 22113()233999 E X = +?+?= 5.设X 的概率密度函数为 , 01()2,120,x x f x x x ≤≤?? =-<≤??? 其它 求2() ,().E X E X 解:12 20 1 ()()(2)1E X xf x dx x dx x x dx +∞-∞ ==+-=? ??, 12 22320 1 7 ()()(2)6 E X x f x dx x dx x x dx +∞ -∞ ==+-= ? ??.

概率论第三章题库

第三章 多维随机变量及其分布 一、选择题 1、(易)设任意二维随机变量(X ,Y )的两个边缘概率密度函数分别为f X (x )和f Y (y ),则以 下结论正确的是( ) A.? +∞ ∞-=1)(dx x f X B. ? +∞ ∞ -= 2 1 )(dx y f Y C. ? +∞ ∞ -=0)(dx x f X D. ? +∞ ∞ -=0)(dx y f Y 2、(易)设二维随机变量221212(,)~(,,,,)X Y N μμσσρ,则X ~( ) A. 211(,)N μσ B. 221(,)N μσ C. 2 12 (,)N μσ D. 2 22(,)N μσ 3、(易)设二维随机变量(X ,Y )服从区域D :x 2 +y 2 ≤1上的均匀分布,则(X ,Y )的概率密度为( ) A. f(x ,y)=1 B. 1(,)0, x y D f x y ∈?=? ?, (,),其他 C. f(x ,y)=1 π D. 1 (,)0, x y D f x y π?∈?=???, (,),其他 4、(中等)下列函数可以作为二维分布函数的是( ). A .1,0.8,(,)0, .x y F x y +>?=? ?其他 B .?????>>??=--.,0,0,0,),(00其他y x dsdt e y x F y x t s C . ??= ∞-∞ ---y x t s dsdt e y x F ),( D .? ????>>=--. , 0, 0,0,),(其他y x e y x F y x 5、(易)设二维随机变量(X ,Y )的概率密度为f (x ,y )=?????<<<<,, 0; 20,20,41 其他y x 则P{0

概率论知识点总结复习整理

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用E表 示。 在一次试验中,可能出现也可能不出现的事情(结果)称为 随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全 体样本点的集合称为样本空间. 样本空间用S或Ω表示. 一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集

一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A∪ā= S,且Aā=Φ。 运算律: 设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC Y= A I B A B

(完整版)概率论第四章答案

习题4-1 1. 设随机变量X 求()E X ;E (2-3 X ); 2()E X ;2(35)E X +. 解 由定义和数学期望的性质知 2.03.023.004.0)2()(-=?+?+?-=X E ; (23)23()23(0.2) 2.6E X E X -=-=-?-=; 8.23.023.004.0)2()(2222=?+?+?-=X E ; 4.1358.235)(3)53(22=+?=+=+X E X E . 2. 设随机变量X 的概率密度为 ,0,()0, 0.x e x f x x -?>?=???≤ 求X e Z X Y 22-==和的数学期望. 解 ()(2)2()22x E Y E X E X x x ∞ -====?e d , 220 1 ()()3 X x x E Z E e e e dx ∞ ---==?= ?. 3. 游客乘电梯从底层到电视塔顶观光, 电梯于每个整点的第5分钟、第25分钟和第 55分钟从底层起行. 假设一游客在早八点的第X 分钟到达底层侯梯处, 且X 在区间[0, 60] 上服从均匀分布. 求该游客等候电梯时间的数学期望. 解已知X 在[0,60]上服从均匀分布, 其概率密度为 1 ,060,()600, .x f x =?????≤≤其它 记Y 为游客等候电梯的时间,则 5,05,25,525,()55,2555,65, 5560. X X X X Y g X X X X X -<-<==-<-

概率论第四章课后习题解答

概率论第四章习题解答 1(1)在下列句子中随机地取一个单词,以X 表示取到的单词所饮食的字母个数,写出X 的分布律并求数学期望()E X 。 “THE GIRL PUT ON HER BEAUTIFUL RED HAT ” (2)在上述句子的30个字母中随机地取一个字母,以Y 表示取到的字母所在单词所包含的字母数,写出Y 的分布律并求()E Y (3)一人掷骰子,如得6点则掷第二次,此时得分为6加第二次得到的点数;否则得分为第一次得到的点数,且不能再掷,求得分X 的分布律。 解 (1)在所给的句子中任取一个单词,则其所包含的字母数,即随机变量X 的取值为:2,3,4,9,其分布律为 所 以 151115()234988884 E X =?+?+?+?=。 (2)因为Y 的取值为2,3,4,9 当2Y =时,包含的字母为“O ”,“N ”,故 1 21 {2}3015 C P Y == =; 当3Y =时,包含的3个字母的单词共有5个,故 当4Y =时,包含的4个字母的单词只有1个,故 当9Y =时,包含的9个字母的单词只有1个,故

112314673 ()234915215103015 E Y =? +?+?+?== 。 (3)若第一次得到6点,则可以掷第二次,那么他的得分为:X =7,8,9,10,11,12; 若第一次得到的不是6点,则他的得分为1,2,3,4,5。由此得X 的取值为: 1,2,3,4,5,7,8,9,10,11,12。 2 某产品的次品率为,检验员每天检验4次,每次随机地取10件产品进行检验,如果发现其中的次品多于1,就去调整设备。以X 表示一天中调整设备的次数,试求()E X 。(设诸产品是否为次品是相互独立的。) 解 (1)求每次检验时产品出现次品的概率 因为每次抽取0件产品进行检验,且产品是否为次品是相互独立的,因而可以看作是进行10次独立的贝努利试验,而该产品的次品率为,设出现次品的件数为 Y ,则(10,0.1)Y B :,于是有 1010{}(0.1)(0.9)k k k P Y k C -== (2 )一次检验中不需要调整设备的概率 则需要调整设备的概率 {1}1{}10.73610.2639P Y P Y >=-≤=-= (3)求一天中调整设备的次数X 的分布律

概率论第三章练习题

习 题 三 1.(1)盒子中装有3只黑球,2只红球,2只白球,在其中任取4只球.以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.(2)在(1)中求Y}-3P{X 3},Y P{X 2X},P{Y Y},P{X <=+=>. 2.设随机变量)Y X,(的概率密度为 ?? ?<<<<--=其他,0,42,20),6(),(y x y x k y x f (1) 确定常数k . (2)求3}Y 1,P{X <<. (3)求 1.5}P{X <. (4)求4}Y P{X ≤+. 3.设随机变量)Y X,(具有分布函数 ?? ?>>+--=----其他,0,0,0,1),(F y x e e e y x y x y x 求边缘概率密度. 4.将一枚硬币掷3次,以X表示前2次出现H的次数,以Y表示3次出现H的次数.求X,Y的联合分布律以及)Y X,(的边缘分布律. 5.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤≤≤-=其他,0,0,10), 2(8.4),(x y x x y y x f 求边缘概率密度. 6.设二维随机变量)Y X,(的概率密度为 ?? ?≤≤=其他,0,1,),(22y x y cx y x f (1)确定常数C. (2)求边缘概率密度.

7.设二维随机变量)Y X,(的概率密度为 ?? ?<<=-其他,0,0,),(y x e y x f y 求边缘概率密度. 8.设X 和Y 是两个相互独立的随机变量,X 在区间)1,0(上服从均匀分布,Y 的概率密度为 ?????≤>=-.0,0,0,2 1)(2Y y y e y f y 求X 和Y 的联合概率密度. 9.设X 和Y 是两个相互独立的随机变量,其概率密度分别为 ?? ?≤≤=.,0,10,1)(X 其他x x f ???>=-.,0,0,)(Y 其他y e y f y 求随机变量Y X Z +=的概率密度. 10. 设随机变量X 和Y 相互独立,且具有相同的分布,它们的概率密度均为 ?? ?>=-.,0,1,)(1其他x e x f x 求随机变量Y X Z +=的概率密度. 11. 设二维随机变量)Y X,(的概率密度为 ?????>>+=+-其他,0,0,0,)(2 1),()(y x e y x y x f y x (1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 12. 某种商品一周的需求量是一个随机变量,其概率密度为 ?? ?≤>=-.0,0,0,)(t t e t t f t 设各周的需求量是相互独立的.求 (1) 两周的需求量的概率密度. (2) 三周的需求量的概率密度.

概率论答案第三章测试题

第三章测试题 1箱子里装有12件产品,其中两件是次品.每次从箱子里任取1件产品,共取两次(取后不放回).定义随机变量X Y ,如下: 0X=1???,若第一次取出正品,若第一次取出次品 0Y=1??? ,若第二次取出正品,若第二次取出次品 (1)求出二维随机变量X Y (,)的联合分布律及边缘分布律; (2)求在Y=1的条件下,X 的条件分布律。 解 (2) 2 设二维随机变量 X Y (,)的概率密度Cy(2-x),0x 1,0y x, f(x,y)=0,.≤≤≤≤??? 其他 (1)试确定常数C ;(2)求边缘概率密度。 解 (1)1)(=??+∞∞-+∞∞-dy dx x f 即1)2(100=??-x dxdy x Cy x ,5 12 = ∴C 3设X Y (,)的联合分布律为: 求(1)Z X Y =+的分布律;(2)V min(X ,Y )=的分布律 (2)

4设X 和Y 是两个相互独立的随机变量,X 服从(0,1)上的均匀分布,Y 的概率密度为: y 212Y e ,y 0 f (y )0,y 0 -??>=? ≤?? (1)求X 和Y 的联合概率密度; (2)设含有a 的二次方程为2 a 2Xa Y 0++=,试求a 有实根的概率。 解 (1)X 1,0x 1 f (x )0,other <<<==∴-other y x e y f x f y x f y Y X , 00,10,21)()(),(2 (2)2 a 2Xa Y 0++=有实根,则0442≥-=?Y X ,即求02 ≥-Y X 的概率 ?-=??=??=≥---≥-1 01 00 20 2 2 22 121),(}0{dx e dy e dx dxdy y x f Y X P x x y y x 3413.0)0()1(211 2 2=Φ-Φ=?- dx e x π ,π23413.010 22=?∴-dx e x

概率论习题解答(第4章)

概率论习题解答(第4章)

第4章习题答案 三、解答题 1. 设随机变量X 的分布律为 求)(X E ,)(2 X E ,)53(+X E . 解:E (X ) = ∑∞ =1 i i xp = ()2-4.0?+03.0?+23.0?= -0.2 E (X 2 ) = ∑∞ =1 2 i i p x = 44.0?+ 03.0?+ 43.0?= 2.8 E (3 X +5) =3 E (X ) +5 =3()2.0-?+5 = 4.4 2. 同时掷八颗骰子,求八颗骰子所掷出的点数和的数学期望. 解:记掷1颗骰子所掷出的点数为X i ,则X i 的分布律为 6 ,,2,1,6/1}{Λ===i i X P 记掷8颗骰子所掷出的点数为X ,同时掷8颗骰子,相当于作了8次独立重复的试验, E (X i ) =1/6×(1+2+3+4+5+6)=21/6 E (X ) =8×21/3=28 3. 某图书馆的读者借阅甲种图书的概率为p 1,借阅乙种图书的概率为p 2,设每人借阅甲乙

{}k X == λ λ-e k k ! ,k = 1,2,... 又P {}5=X =P {}6=X , 所以 λ λ λλ--= e e ! 6!56 5 解得 6=λ,所以 E (X ) = 6. 6. 设随机变量 X 的分布律为 ,,4,3,2,1,6 }{2 2Λ--== =k k k X P π问X 的数学期望是否存在? 解:因为级数∑∑∑∞ =+∞ =+∞ =+-=-=?-1 1 2 1 211 221 1 )1(6)6)1(()6) 1((k k k k k k k k k k πππ, 而 ∑∞ =11k k 发散,所以X 的数学期望不存在. 7. 某城市一天的用电量X (十万度计)是一个随机变量,其概率密度为 ?????>=-.0 ,0,9 1)(3 /其它x xe x f x 求一天的平均耗电量. 解:E (X ) =??? ∞ -∞ -∞∞ -==0 3/20 3/9191)(dx e x dx xe x dx x f x x x =6. 8. 设某种家电的寿命X (以年计)是一个随机变量,其分布函数为 ?????>-=.0 , 5,25 1)(2 其它x x x F 求这种家电的平均寿命E (X ).

概率论与数理统计第三章测试题

第3章 多维随机变量及其分布 一、选择题 1.设,X Y 是相互独立的随机变量,其分布函数分别为()(),X Y F x F y ,则()m i n ,Z X Y =的 分布函数是( ) (A) ()()()max ,Z X Y F z F z F z =???? (B) ()()()min ,Z X Y F z F z F z =???? (C) ()()()111Z X Y F z F z F z =---???????? (D) ()()Z Y F z F y = 2.设两个相互独立的随机变量X 和Y 分别服从正态分布N(0,1) 和 N(1,1),则 (A )2 1)0(=≤+Y X P (B )2 1)1(=≤+Y X P (C )2 1)0(=≤-Y X P (D )2 1)1(=≤-Y X P 3.设二维随机变量(),X Y 服从于二维正态分布,则下列说法不正确的是( ) (A) ,X Y 一定相互独立 (B) ,X Y 的任意线性组合12l X l Y +服从于一维正态分布 (C) ,X Y 分别服从于一维正态分布 (D) 当参数0ρ=时,,X Y 相互独立 4.,ξη相互独立且在[]0,1上服从均匀分布,则使方程220x x ξη++=有实根的概率为( ) (A) 1 (B) 12 (C) 0.4930 (D) 4 5.设随机变量,X Y 都服从正态分布,则( ) (A) X Y +一定服从正态分布 (B) ,X Y 不相关与独立等价 (C) (),X Y 一定服从正态分布 (D) (),X Y -未必服从正态分布 6.设随机变量X, Y 相互独立,且X 服从正态分布),0(21σN ,Y 服从正态分布),0(22σN ,则 概率)1|(|<-Y X P (A )随1σ与2σ的减少而减少 (B )随1σ与2σ的增加而减少 (C )随1σ的增加而减少,随2σ的减少而增加 (D )随1σ的增加而增加,随2σ的减少而减少 7.设),(Y X 的联合概率密度为: ?? ?<+=, , 0; 1,/1),(22他其y x y x f π 则X 与Y 为 (A ) 独立同分布 (B )独立不同分布 (C )不独立同分布 (D )不独立不同分布 8.设X i ~ N (0 , 4), i =1, 2, 3, 且相互独立, 则 ( ) 成立。

概率论习题第四章答案

第四章 大数定律与中心极限定理 4.1 设D(x)为退化分布: D(x)=?? ?≤>, 0,00 ,1x x 讨论下列分布函数列的极限是否仍是分布函数? (1){D(x+n)}; (2){D(x+ n 1)}; (3){D(x-n 1 )},其中n=1,2,…。 解:(1)(2)不是;(3)是。 4.2 设分布函数列Fn(x)如下定义: Fn(x)=?? ?????>≤<-+-≤n x n x n n n x n x ,1 ,2 ,0 问F(x)=∞ →n lim Fn(x)是分布函数吗? 解:不是。 4.3 设分布函数列{ Fn(x)}弱收敛于分布函数F(x),且F(x)为连续函数,则{Fn(x)}在(∞∞-,)上一致收敛于F(x)。 证:对任意的ε>0,取M 充分大,使有 1-F(x)<ε,;M x ≥? F(x)<ε, ;M x ≤? 对上述取定的M ,因为F(x)在[-M ,M]上一致连续,故可取它的k 分点:x 1=MN 时有 <-)()(i i n x F x F ε,0≤i ≤k+1 (2) 成立,对任意的x ∈(∞∞-,),必存在某个i (0≤i ≤k ),使得],(1+∈i i x x x ,由(2)知当n>N 时有 +<≤++)()()(11i i n n x F x F x F ε, (3) ->≥)()()(i i n n x F x F x F ε, (4) 有(1),(3),(4)可得 +-<-+)()()()(1x F x F x F x F i n ε)()(1i i x F x F -≤++ε<2ε, )()(x F x F n ->--)()(x F x F i εε2)()(1->--≥+δi i x F x F , 即有<-)()(x F x F n 2ε成立,结论得证。

概率论与数理统计总结之第四章

第四章 数学期望和方差 数学期望: 设离散型随机变量X 的分布律为,2,1,}{===k p x X P k k … 若级数k k k p x ∑∞=1绝对收敛,则称级数k k k p x ∑∞ =1的和为随机变量X 的数学期望,记为 E(X),即E(X)=k k k p x ∑∞ =1 设连续型随机变量X 的概率密度为f(x), 若积分?∞∞-dx x xf )(绝对收敛,则称积分?∞ ∞-dx x xf )(的值为随机变量X 的数学期望,记为E(X),即E(X)=?∞ ∞-dx x xf )( 数学期望简称期望,又称为均值 数学期望E(X)完全由随机变量X 的概率分布所确定,若X 服从某一分布也称E(X)是这一分布的数学期望 定理 设Y 是随机变量X 的函数:Y=g(X)(g 是连续函数) 1)X 是离散型随机变量,它的分布律为,2,1,}{===k p x X P k k …,若k k k p x g )(1∑∞ =绝对收敛,则有[]==)(()(X g E Y E k k k p x g )(1∑∞ = 2)X 是连续型随机变量,它的概率密度为f(x )。若?∞ ∞-dx x f x g )()(绝对收敛,则有E(Y)=E[g(X)]=?∞ ∞-dx x f x g )()( 数学期望的几个重要性质:

1.设C 是常数,则有E(C)=C 2.设X 是一个随机变量,C 是常数,则有E(CX)=CE(X) 若A,B 相互独立,则有E(AB)=E(A)E(B) 3.设X,Y 是两个随机变量,则有E(X+Y)=E(X)+E(Y) 方差 设X 是一个随机变量,若})]({[2X E X E -存在,则称})]({[2X E X E -为X 的方差,记为D(X)或Var(X),即D(X)=Var(X)=})]({[2X E X E - )(X D ,记为σ(X),称为标准差或均方差 对于离散型随机变量,k k k p X E x X D ∑∞=-=1 2)]([)( 对于连续型随机变量,dx x f X E x X D )()]([)(2?∞∞ --= 随机变量X 的方差计算公式:22)]([)()(X E X E X D -= 方差的几个重要性质: 1.设C 是常数,则D(C)=0 2.设X 是随机变量,C 是常数,则有)()(2X D C CX D = 3.设X,Y 是两个随机变量,则有 ))}())(({(2)()()(Y E Y X E X E Y D X D Y X D --++=+ 特别地,若X,Y 相互独立,则有 D(X+Y)=D(X)+D(Y) 4.D(X)=0的充要条件是X 以概率1取常数C ,即P{X=C}=1,显然这里C=E(X)

概率论与数理统计_第四版_第四章

第四章 随机变量的数字特征 1.(1)在下列句子中随机地取一个单词 , X 表示取到的单词所包的字 母个数,写出 X 的分布律并求 E ( X ). “T HE GIR L PU T ON HER BEA U TIF UL RED HA T ”. (2)在上述句子的 30个字母中随机地取一个字母 , Y 表示取 的字母所 在单词所包含的字母数 ,写出 Y 的分布律并求 E (Y ). (3)一人掷骰子 ,如得6点则掷第2次,此时得分为 6 +第次得到的点数 ; 否则得分为 ,且不能再掷 ,求得分 X 的分布律及 E ( X ). .所 8个单 词,其中含2个字母 ,含 解 (1)随机试验 4个字母,含9个字母的各有一个单词 ,另有5个单词含3个字母,所 X 的分布 律为 X 2 3 4 9 1 8 5 8 1 8 1 8 p k 数学期望 1 8 5 8 1 1 15 4 E ( X ) = 2 × + 3 × + 4 × + 9 × . = 8 8 (2)随机试验 字母组成 ,共有30个 ,Y 的可能值也是 2,3,4,9. ,其中 Y = 2的有2个, S 由各个 Y = 3的有 15个, Y = 4的有4个, Y = 9的有9个,所 Y 的分布律为 Y 2 3 4 9 2 30 15 30 4 30 9 30 p k 2 30 + 3 × 15 + 4 × 30 4 30 9 30 73 15 数学期望 E (Y ) = 2 × (3)分布律为 + 9 × . = X 1 2 3 4 5 7 8 9 10 11 1 2 1 6 1 6 1 6 1 6 1 6 1 36 1 36 1 36 1 36 1 36 1 36 p k

概率论 第三章测试题

第三章测试题 1、已知随机变量,ξη的分布列分别为 求(),()E D ξξ 2、设随机变量(,)ξη的分布列为 求(),(),(),(|1),(|1),(),(),(,),E E E E E D D Cov ξηξηξηξηηξξηξηρ=-=。 3、设随机变量ξ的概率密度函数为1|1|,02 ()0, x x f x --<=? ≤?, 2Y e ξ ξ-=+,21Z ξ=-, 求(),()E Y E Z 。

10、设随机变量(,)ξη的协方差矩阵为4339-?? ?-?? ,求ξηρ。 11、设随机变量(,)ξη的概率密度函数为212, 01(,)0,y y x f x y ?≤≤≤=? ?其它 ,求 (),(),(),(),(,),E E D D Cov ξηξηξηξηρ。 12、设随机变量(,)ξη的概率密度函数为,01,0(,)0, cxy x y x f x y <<<?? =??-

相关文档
最新文档