硫磺回收技术

硫磺回收技术
硫磺回收技术

硫磺回收技术 I

1概述

1.1背景介绍

我国是一个原油资源并不丰富的国家,在市场经济条件下,各大炼油厂(尤其是沿海、沿江炼油厂)由过去的以加工低硫原油为主向加工含硫原油转变,随着2001年中国加入WTO,中国市场进一步对外开放,各大炼油厂(尤其是沿海、沿江炼油厂)加工品种日趋多样化、市场化。在进口原油加工中,以加工中东含硫原油为主。表1为上海石化加工的几种不同原油品种的硫、氮含量分析数据。

大庆油0.09 0.16

胜利油0.76 0.38

南海油0.08 0.06

沙轻油 1.80 0.09

阿曼油 1.10 0.13

国产原油多为低硫原油,由表1可以看出进口中东原油硫含量明显高于国产原油。

含硫原油中的硫,在原油蒸馏时,硫按比重的不同分布于各种馏分中。在最轻的馏分中极少出现,而在最重的馏分和渣油中,硫化物含量高于原来的原油。这些馏分以前都用作工业燃料,而这种使用方式显著增加了SO2对大气的污染。大部分工业国家现在都颁布法规,限定燃料油中的硫含量或规定给定装置的SO2排放量。因此对含硫量比较高的燃料油必须在炼油厂进行脱硫或增加烟气脱硫工艺设施。同时,对轻质产品的需求不断增长,重馏分和渣油的轻质化在炼油厂中占有越来越重要的地位。

不论是燃料油脱硫还是重馏分转化为轻质产品的过程中,有机硫化物主要是转化为H2S,经过溶剂吸收与再生、酸性水汽提等装置,产生含H2S很高的气流,习惯上称作“酸性气”。一般地,将胺处理装置产生的酸性气称作“胺酸性气”或“清洁酸性气”,将无侧线抽氨酸性水汽提装置产生的酸性气称作“含氨酸性气”。由于H2S的工业用途很少,而且是毒性很强的危险品,一般是将其转化为硫磺或硫酸。由于硫磺销路好、用途广泛、运输、储存方便,因此,采用Claus装置将酸性气转化为硫磺在炼油厂中被广泛采用。

1.2Claus工艺的发展沿革

1883年英国化学家克劳斯(Claus)提出原始的Claus法工艺,该工艺分为两步,专门用于回收吕布兰法(Leblanc)生产碳酸钠时所消耗的硫磺。第一步是把 CO2导入由水和CaS组成的淤浆中,产生H2S:

CaS(固)+H2O(液)+ CO2 (气) →CaCO3(固)+ H2S (气)

第二步是把H2S和空气混合后导入一个装有催化剂的容器,发生以下反应:

H2S+1/2 O2→1/xSx+ H2O

由于该工艺只能在空速很低的条件下进行(对H2S仅为2~3h-1),而且反应热无法回收。因此,1938年德国法本公司(I.G.Farbenindustrie AG)对Claus法工艺做了重大改革,使H2S的氧化分为两个阶段完成。第一阶段称为热反应阶段,有1/3体积的H2S在反应炉内被氧化为SO2并放出大量的反应热,第二阶段称为催化反应阶段,在催化剂床层上剩余的2/3体积的H2S与生成的SO2继续反应生成硫。经过改进,反应热的大部分被吸收利用。催化转化反应器的进口温度也比较容易调节,大大提高了装置的处理能力。这种经过改革的Claus工艺习惯上称为“改良Claus工艺”或“I.G.- Claus工艺”。改良Claus工艺成为世界上为数众多的硫磺回收装置的基础。以后该工艺虽然又经历了多次变革,并且增加了尾气处理设施,但操作原理未变。

1.3 硫磺产品的用途

硫磺的用途非常广泛,工业上可以制造硫酸、橡胶制品;在农业上可以用来制作杀虫剂、硫肥;医药上可以制造硫胺等产品;军事工业上可以用来制造炸药;食品工业上用作蔗糖脱色等;在半导体工业上也有应用。

目前硫磺的工业用途主要是用来制造硫酸,用硫磺制酸同硫铁矿制酸相比,大大减少了粉尘污染。

在农业上,近年来,外国研究者提出“硫是继氮、磷、钾之后的第四种主要营养元素”。作物对硫的需求量和磷相当,对某些作物而言甚至超过磷(见表2所示),硫的主要作用是与N、H、C、O元素结合生成氨基酸、蛋氨酸、胱氨酸等蛋白质,以提高食品的营养价值,亦是合成油脂、叶绿素、维生

素以及某些酶等成份的必需的基本原料,能够增进作物的御寒和抗旱性。由于目前肥料的消费结构明显地向无硫肥转变(如50年代我国的硫铵产量占氮肥产量的100%,60年代下降到44.9%,70年代下降到6.0%,到90年代已下降到0.7%),大气中SO2的排放量要求日益严格,使得土壤缺硫现象日益严重。1995年世界上缺硫国家和地区已由15年前的36个增加到72个。缺硫不仅抑制到作物的产量,而且降低了产品的质量,进而影响到人类和家畜的健康。因此硫肥的生产与应用日益为人们所重视。不少国家已用N-P2O5-K2O-S 四组分来标明肥料的养份含量。

表2 作物产量和硫、磷需求量(千克/公顷)[1]

作物产量t/ha P S

水稻7(谷粒) 25 20

小麦6(谷粒) 25 25

高粱9(谷粒) 55 42

大豆5(籽实) 30 35

油菜5(籽实) 22 24

甘蓝50(鲜菜) 25 100

国际上,硫磺长效肥生产装置作为硫磺回收装置的下游装置,已占有相当的比重。1998年为止,世界上已有10个硫磺长效肥生产厂。如1998年3月,沙特阿拉伯采用SANDVIK造粒设备建造的硫磺白矾土装置建成投产(见图1所示),该装置所生产的硫磺白矾土(热态液硫+8~10%的白矾土粉末)和土壤中直接添加纯硫磺粉粒相比,能较快转化为植物所能利用的硫源,而且不至于和其它化合物结合生成有害物质影响收成[2]。

图1 硫磺白矾土造粒工艺

我国以前所用的硫肥主要是过磷酸钙,随着化肥工业的发展,重钙、磷铵逐步代替过磷酸钙,使得我国不少地方的土壤缺硫。据我国15省8954个土壤样品的测定结果,有效硫含量低于临界值(10~12mgS/kg)的样品有2779个,占样品总数的31%[1]。为维护作物的养分平衡,达到持续增产的目的,中国含硫肥料的生产和使用将被提到议事日程。

1.4 硫磺的储运

硫磺产品以液体、固体两种状态存在。以前国内硫磺回收装置生产的硫磺基本上都加工成粒状、片状、块状等固体硫磺。固体硫磺储存、运输都比较方便。近年来,随着原油加工能力的不断提高,加工品种中进口含硫原油的比例不断增长,硫磺回收装置的规模也不断增大,如大连西太平洋石化公司、茂名石化公司、镇海炼化公司、齐鲁石化公司、上海石化股份有限公司等先后建成了单套生产能力在6~10万吨/年的大型硫磺回收装置,硫磺的产量大幅增加,而硫磺加工成型的投资比较大,生产操作成本也比较高,从而使固体硫磺的生产成本比较高,同时日本、加拿大不少液体硫磺出口到中国,使得液体硫磺的价格较低(差价一般在100~250元/吨之间),使液体硫磺的需求量不断增

加,固体硫磺的需求量不断减少。因此目前大部分炼油厂的硫磺回收装置都增设了液硫储存及出厂设施,硫磺的出厂主要以液体形式由液硫槽车装运出厂,供一些大用户如硫酸厂用作原料。固体硫磺的生产一方面是为了满足市场需求,另一方面在液硫出厂不畅时生产固体硫磺,便于储存,缓解液硫出厂的压力,以适应硫磺回收装置长周期运行的要求。

2 Claus制硫的基本原理

2.1Claus反应

Claus反应可分为反应炉内的热反应以及反应器内的低温催化反应。

2.1.1反应炉内的热反应

在没有催化剂存在的条件下,酸性气和空气混合在热反应炉内发生燃烧反应,H2S被部分氧化生成SO2,未被氧化的H2S和反应生成的SO2又继续发生氧化还原反应生成S()。

反应过程中放出大量的热,使反应炉温度高达1000~1400℃左右,反应温度和H2S的纯度有关,反应温度和H2S的纯度的关系见图2所示。炉内反应速度很快,通常在1秒内即可完成全部反应,热反应炉内理论转化率可达60%~75%。由于在H2S:SO2=2:1时,H2S转化为S2的转化率最为理想,因此在生产中,严格控制配风量,使过程气中H2S:SO2=2:1。

热反应炉内发生以下反应:

H2S+3/2 O2= H2O+ SO2

2H2S+ SO2=3/xSx +2H2O

图2 火焰温度、转化率和H2S纯度的关系图

2.1.2 反应器内的催化反应

在催化反应器内,继续发生Claus反应。由于Claus反应是放热反应,因此,反应温度越低,则转化率越高,但实际上由于以下因素影响,催化转化反应器的温度一般控制在170℃~350℃之间。

1.在第一催化反应器内,不仅发生Claus反应,也发生COS、C S2的水解反应,而且通常对COS、C S2的水解率还有一定要求,为了保证COS、C S2的水解,反应器出口温度要求为300℃~400℃,故进口温度一般要求在220℃~260℃左右(视催化剂种类及活性不同而定)。

COS、C S2的水解反应方程式如下:

COS+H2O=H2S+ CO2

CS2+2H2O=2H2S+ CO2

2. 由于受到硫露点的影响,当反应温度降至一定程度之后,会有大量的液硫沉积在催化剂表面上,堵塞催化剂微孔,降低催化剂的比表面积,使催化剂丧失活性。因此反应温度也不能太低。

2.2Claus反应热力学

2.2.1平衡常数

从综合后的反应式:H2S+1/2 O2→1/xSx+ H2O可以看出,其正向反应速度正比于H2S和O2的摩尔浓度,而逆向反应速度则正比于硫蒸汽和H2O的摩尔浓度。由于此反应是气相反应,故上述物质的摩尔浓度可以表示为各自的分压(p)。这样,正向反应速率可以表示为:k1(p H

S)·(p O2)1/2,而逆向反应速

2

率则表示为:k2(p Sx)1/X·(p H

O),其中k1和k2分别表示为某一给定温度下的反

2

应速率常数。

随着反应的进行,p H

S和P O2不断下降,从而导致正向反应速率下降,逆

2

向反应速率则逐渐升高,当两者相等时就达到化学平衡状态,即可得到:k1(p H

S)·(p O2)1/2= k2(p Sx)1/X·(p H2O)

2

k= k1/ k2=(p S X)1/X·(p H

O)/[(p H2S)·(p O2)1/2 ]

2

其中:k就是克劳斯反应在某一给定温度下的平衡常数,其值主要取决于反应温度和达到化学平衡时各组分的分压。

2.2.2硫蒸汽的影响

甘姆森等人在对克劳斯反应热力学进行广泛研究后,于1953年首先发表了研究结果[3]。它们对纯H2S与氧反应的化学平衡为基础进行热力学计算,得到了不同反应温度下H2S转化生成硫蒸汽的理论平衡值—理论转化率和温度的关系曲线图。

必须指出,甘姆森等人的研究是根据当时能得到的数据进行的,因而硫蒸汽的种类只包括了S2、S4和S8。1953年以后,很多研究者已确认了S3、S4、S5和S7等种类的存在,而且进一步测定了不同温度下硫蒸汽中不同种类的组成(参阅图3)[4]。

图3 H2S和当量空气反应时硫蒸汽的平衡组成图4 H2S转化为硫的平衡转化率

从图3可以看出,在低温下是高相对摩尔质量的种类占多数,而高温下则反之。如此,对某已系统中固定数量的硫原子而言,在低温下形成的硫蒸汽分子少,相应的硫蒸汽分压则低,有利于平衡向右移动。正由于硫蒸汽组成对平衡转化率有重要影响,故在热力学计算时应该加以考虑。

2.2.3克劳斯反应热力学

在图4示出了甘姆森等人的研究成果(曲线1),也示出了以更先进的热力学数据,并考虑了硫蒸汽中除S2、S4和S8外还存在其它种类的因素后的修正曲线(曲线2和曲线3)[4]。

图4中的曲线和上述关系式k= k1/ k2=(p S X)1/X·(p H2O)/[(p H2S)·(p O2)1/2 ]较全面地阐明了克劳斯制硫工艺的基本原理,其要点可归纳如下:

1.平衡转化率曲线以550℃为转折点分为两个部分,右边部分为火焰反应区,H2S的转化率随温度升高而增加,这代表了工业装置上反应炉内的情况。曲线左边部分为催化反应区,H2S的转化率随温度降低而迅速增加,这代表了反应器的情况。

2.从反应动力学角度看,随着反应温度降低,克劳斯反应的速率也逐渐变慢,低于350℃时的反应速率已不能满足工业要求,而此温度下的理论转化率(假定达到平衡)也仅80%~85%。鉴此,必须使用催化剂加速反应,以求在尽可能低的温度下达到尽可能高的转化率。催化剂虽不能改变最终的平衡组成,但却大大缩短了达到平衡的时间,从而使低温催化反应具有工业价值。

3.从平衡关系式看,O2的化学当量过剩并不能增加转化率,因为多余的O2将和H2S反应而生成SO2,而不是生成元素硫。然而,提高空气中的氧含量和酸性气中的H2S含量则有利于增加转化率,这些原理已经被应用于新工艺的开发,如富氧硫回收工艺(如COPE法等)。

4.降低硫蒸汽分压有利于平衡向右移动,而且硫蒸汽本身又远比过程气中其它组分容易冷凝,这就是工艺装置上两级反应器之间设置冷凝器的原因。同时,从过程气中分离硫蒸汽也能相应地降低其硫露点,使下一级反应器可以在更低的温度下操作(参阅表3)。

表3理论硫露点与其相应产率

系统压力理论硫露点相应产率

备注

p,MPa T,K %

0.05 527 93.5 不除硫

0.1 553 92.0 不除硫

0.2 580 89.7 不除硫

0.1 508 97.1 除去70%硫

参考文献:

[1]刘崇群,硫肥的重要性和我国硫肥的需求趋势,全国磷肥硫酸行业年会交

流资料,1995,洛阳

[2]SANDVIK Process Systems 新闻简报,1998

[3]B.W.Gamson et..Sulphur from hydrogen sulfide. Chem. Eng. Prog. ,49, P.203

(1953)

[4]朱利凯,天然气处理与加工,北京:石油工业出版社,1997,P133

硫磺回收系统的操作要求和工艺指标

一、制硫工艺原理 硫磺回收系统的操作要求和工艺指标 Claus制硫总的反应可以表示为: 2H2S+02/X S x+2H20 在反应炉内,上述反应是部分燃烧法的主要反应,反应比率随炉温变化而变化,炉温越高平衡转化率越高;除上述反应外,还进行以下主反应: 2H2S+3O2=2SO2+2H2O 在转化器中发生以下主反应: 2H2S+SO23/XS x+2H2O 由于复杂的酸性气组成,反应炉内可能发生以下副反应: 2S+2CO2COS+CO+SO2 2CO2+3S=2COS+SO2 CO+S=COS 在转化器中,在300摄氏度以上还发生CS2和COS的水解反应: COS+H2O=H2S+CO2 二、流程描述 来自上游的酸性气进入制硫燃烧炉的火嘴;根据制硫反应需氧量,通过比值 调节严格控制进炉空气量,经燃烧,在制硫燃烧炉内约65%(v)的H2S进行高温克 劳斯反应转化为硫,余下的H2S中有1/3转化为SO2燃烧时所需空气由制硫炉鼓风机供给。制硫燃烧炉的配风量是关键,并根据分析数据调节供风管道上的调节阀,使过程气中的H2S/SO2比率始终趋近2:1,从而获得最高的Claus转化率。 自制硫炉排出的高温过程气,小部分通过高温掺合阀调节一、二级转化器的 入口温度,其余部分进入一级冷凝冷却器冷至160℃,在一级冷凝冷却器管程出 口,冷凝下来的液体硫磺与过程气分离,自底部流出进入硫封罐。 一级冷凝冷却器管程出口160℃的过程气,通过高温掺合阀与高温过程气混合后,温度达到261℃进入一级转化器,在催化剂的作用下,过程气中的H2S和SO2转化为元素硫。反应后的气体温度为323℃,进入二级冷凝冷却器;过程气冷却至160℃,二级冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫封罐。分离后的过程气通过高温掺合阀与高温过程气混合后温度达到225℃进入二级转化器。在催化剂作用下,过程气中剩余的H2S和SO2进一步转化为元素硫。 反应后的过程气进入三级冷凝冷却器,温度从246℃被冷却至1.60~C。三级 冷凝冷却器冷凝下来的液体硫磺,在管程出口与过程气分离,自底部流出进入硫 封罐。顶部出来的尾气自烟囱排放。 三、开车操作规程 1、系统升温 条件确认:制硫炉和一、二、三级冷凝冷却器达到使用条件:一、二、三级 冷凝冷却器内引入除氧水至正常液位;按程序对制硫炉点火;按升温曲线对制硫 炉升温;流程:制硫炉烘炉烟气一废热锅炉一一级冷凝冷却器一高温掺合阀一一 级转化器一二级冷凝冷却器一高温掺合阀一二级转化器一三级冷凝冷却器一为 其扑集器一烟囱;一、二级转化器升温至200~C,废热锅炉蒸汽压力0.04—0.045mpa,冷凝

硫磺回收工艺介绍

硫磺回收工艺介绍

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章总论 .............................................................................. 错误!未定义书签。 1.1项目背景 (2) 1.2硫磺性质及用途2? 第二章工艺技术选择2? 2.1克劳斯工艺 (2) 2.1.1MCRC工艺2? 2.1.2CPS硫横回收工艺2? 2.1.3超级克劳斯工艺2? 2.1.4三级克劳斯工艺....................................................... 2 2.2尾气处理工艺 (2) 2.2.1碱洗尾气处理工艺 (2) 2.2.2加氢还原吸收工艺 (2) 2.3尾气焚烧部分2? 2.4液硫脱气........................................................................................ 2第三章超级克劳斯硫磺回收工艺. (2) 3.1工艺方案 (2) 3.2工艺技术特点?2 3.3工艺流程叙述 (2) 3.3.1制硫部分 (2) 3.3.2催化反应段............................................ 错误!未定义书签。 3.3.3部分氧化反应段....................................... 错误!未定义书签。 3.3.4碱洗尾气处理工艺 (2) 3.3.5工艺流程图2? 3.4反应原理 (2) 3.4.2制硫部分一、二级转化器内发生的反应: (2)

克劳斯硫磺回收主要设备及操作条件(标准版)

克劳斯硫磺回收主要设备及操作条件(标准版) Security technology is an industry that uses security technology to provide security services to society. Systematic design, service and management. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0542

克劳斯硫磺回收主要设备及操作条件(标 准版) 现以直流法为例,这类硫磺回收装置的主要设备有反应炉、余热锅炉、转化器、硫冷凝器和再热器等,其作用和特点如下。 1.反应炉 反应炉又称燃烧炉,是克劳斯装置中最重要的设备。反应炉的主要作用是:①使原料气中1/3体积的H2 S氧化为SO2 ;②使原料气中烃类、硫醇氧化为CO2 等惰性组分。 燃烧在还原状态下进行,压力为20~100kPa,其值主要取决于催化转化器级数和是否在下游需要尾气处理装置。 反应炉既可是外置式(与余热锅炉分开设置),也可是内置式(与

余热锅炉组合为一体)。在正常炉温(980~1370℃)时,外置式需用耐火材料衬里来保护金属表面,而内置式则因钢质火管外围有低温介质不需耐火材料。对于规模超过30t/d硫磺回收装置,外置式反应炉更为经济。 无论从热力学和动力学角度来讲,较高的温度有利于提高转化率,但受反应炉内耐火材料的限制。当原料气组成一定及确定了合适的风气比后,炉膛温度应是一个定值,并无多少调节余地。 反应炉内温度和原料气中H2 S含量密切有关,当H2 S含量小于30%时就需采用分流法、硫循环法和直接氧化法等才能保持火焰稳定。但是,由于这些方法的酸气有部分或全部烃类不经燃烧而直接进入一级转化器,将导致重烃裂解生成炭沉积物,使催化剂失活和堵塞设备。因此,在保持燃烧稳定的同时,可以采用预热酸气和空气的方法来避免。蒸汽、热油、热气加热的换热器以及直接燃烧加热器等预热方式均可使用。酸气和空气通常加热到230~260℃。其他提高火焰稳定性的方法包括使用高强度燃烧器,

低温SCOT硫回收工艺技术及应用_华博

第44卷第3期 辽 宁 化 工 Vol.44,No. 3 2015年3月 Liaoning Chemical Industry May,2015 收稿日期: 2015-01-05 低温SCOT 硫回收工艺技术及应用 华 博 (中电投伊犁能源化工有限责任公司霍城煤制气分公司, 新疆 伊宁 835000) 摘 要:随着以煤为原料的大型现代煤化工的快速发展,新的环保法对煤制甲醇和天然气装置提出了更为严格的要求。综合分析了低温SCOT 硫回收工艺的基本原理、工艺流程、技术特点、液硫脱气技术及应用前景等方面,对硫回收装置的工艺技术优化有着现实意义。 关 键 词:低温SCOT;硫回收;尾气处理;液硫脱气 中图分类号:TQ 530 文献标识码: A 文章编号: 1004-0935(2015)03-0333-04 作为人类主要能源的石油、煤和天然气中含有大量的硫化物,在其加工和产品使用过程中,释放的硫化物是造成环境污染的主要因素。随着国家对环境保护的要求日趋严格,气体脱气、溶剂再生、污水汽提、硫磺回收装置已成为煤气净化厂、炼油厂、大型天然气净化厂、煤炭气化或液化厂必不可少的配套装置。而随着现代煤化工项目的快速发展,煤炭的加工量持续增长,人们将更加关注硫磺回收技术。 SCOT 工艺是Shell 公司开发的尾气处理工艺。主要是将常规Claus 工艺尾气中的SO 2、有机硫、单质硫等所有硫化物经加氢还原转化为H 2S 后,再采用溶剂吸收方法将H 2S 提浓,循环到Claus 装置进行处理。由于其尾气H 2S 含量低,总硫回收率可达99.9%,是目前世界上装置建设较多、发展速度较快、将规模和环境效益与投资效果结合的较好的一种硫回收工艺。 1 基本原理 1.1 克劳斯工艺技术原理 由于克劳斯法工艺技术简单,适用大型化、自动化生产装置,装置效能高,因此已成为从含硫化氢气体中回收元素硫的主要方法。该工艺包括一个高温热反应段和两个催化反应段。 在高温热反应阶段,进料气中三分之一的硫化氢根据以下反应式被燃烧成二氧化硫: 2H 2S + 3O 2 → 2SO 2 + 2H 2O + heat 根据克劳斯平衡反应,二氧化硫和剩余的硫化氢反应生成单质硫: SO 2 + 2H 2S → 1.5 S 2 + 2H 2O - heat 在1 250 ℃的温度条件下,硫磺的转化率为55%~70%。离开燃烧室的混合气体被冷却到180 ℃左右,液体硫磺被冷凝然后分离。 接下来的克劳斯催化反应段将进一步提高硫磺回收率。在反应器中发生如下克劳斯平衡反应: 2H 2S + SO 2 → 3/X S x + 2H 2O + heat 通过使用克劳斯催化剂,克劳斯平衡反应将向生产硫磺的方向进行。从第一和第二反应器出来的单质硫,分别经过冷凝后排出,这样可以保证在下一个催化床层中反应进一步生成硫磺的方向进行。 在高温热反应段中由于副反应会生成的羟基硫和二硫化碳,通过在第一克劳斯反应器中装填钛系克劳斯催化剂可以将这部分有机硫进行水解; COS + H 2O → H 2S + CO 2 CS 2 + 2H 2O → 2H 2S + CO 2 与常规铝系克劳斯催化剂相比,钛系克劳斯催化剂除了具有良好的克劳斯活性外、对有机硫的水解反应具有更好地促进作用,并具有更好地抗结炭性能、耐硫酸盐能力。以上两类催化剂对保证硫回收装置的长周期运行和总硫回收率达标都有极大的帮助。 1.2 低温SCOT 工艺技术原理 (1) 催化加氢段 在加氢反应器中,通过装填钴钼催化剂,在210~260 ℃反应温度及常压下将克劳斯尾气中的硫化物进行加氢还原。 二氧化硫和单质硫的还原反应分别如下: SO 2 + 3H 2 → H 2S + 2H 2O + heat S 8 + 8H 2 → 8 H 2S + heat 通常情况下,克劳斯尾气中已具备有加氢还原 DOI :10.14029/https://www.360docs.net/doc/c816635545.html,ki.issn1004-0935.2015.03.003 网络出版时间:2015-04-03 17:33网络出版地址:https://www.360docs.net/doc/c816635545.html,/kcms/detail/21.1200.TQ.20150403.1733.003.html

硫磺回收工艺介绍

目录 第一章总论 (3) 1.1项目背景 (3) 1.2硫磺性质及用途 (4) 第二章工艺技术选择 (4) 2.1克劳斯工艺 (4) 2.1.1MCRC工艺 (4) 2.1.2CPS硫横回收工艺 (5) 2.1.3超级克劳斯工艺 (6) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (9) 2.2.1碱洗尾气处理工艺 (9) 2.2.2加氢还原吸收工艺 (13) 2.3尾气焚烧部分 (13) 2.4液硫脱气 (14) 第三章超级克劳斯硫磺回收工艺 (15) 3.1工艺方案 (15) 3.2工艺技术特点 (15) 3.3工艺流程叙述 (15) 3.3.1制硫部分 (15) 3.3.2催化反应段 (15) 3.3.3部分氧化反应段 (16) 3.3.4碱洗尾气处理工艺 (17) 3.3.5工艺流程图 (17) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (18) 3.4.3尾气处理系统中 (18) 3.5物料平衡 (19)

3.6克劳斯催化剂 (19) 3.6.1催化剂的发展 (19) 3.6.2催化剂的选择 (21) 3.7主要设备 (21) 3.7.1反应器 (21) 3.7.2硫冷凝器 (21) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (22) 3.7.5废热锅炉 (22) 3.7.6酸性气分液罐 (22) 3.8影响Claus硫磺回收装置操作的主要因素 (23) 3.9影响克劳斯反应的因素 (24) 第四章工艺过程中出现的故障及措施 (26) 4.1酸性气含烃超标 (26) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (28)

硫磺回收工艺介绍

硫磺回收工艺介绍-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

目录 第一章总论 (4) 1.1项目背景 (4) 1.2硫磺性质及用途 (5) 第二章工艺技术选择 (5) 2.1克劳斯工艺 (5) 2.1.1MCRC工艺 (5) 2.1.2CPS硫横回收工艺 (6) 2.1.3超级克劳斯工艺 (7) 2.1.4三级克劳斯工艺 (9) 2.2尾气处理工艺 (10) 2.2.1碱洗尾气处理工艺 (10) 2.2.2加氢还原吸收工艺 (14) 2.3尾气焚烧部分 (14) 2.4液硫脱气 (15) 第三章超级克劳斯硫磺回收工艺 (16) 3.1工艺方案 (16) 3.2工艺技术特点 (16) 3.3工艺流程叙述 (16) 3.3.1制硫部分 (16) 3.3.2催化反应段 (16) 3.3.3部分氧化反应段 (17) 3.3.4碱洗尾气处理工艺 (18) 3.3.5工艺流程图 (18) 3.4反应原理 (18) 3.4.2制硫部分一、二级转化器内发生的反应: (19) 3.4.3尾气处理系统中 (19) 3.5物料平衡 (20)

3.6克劳斯催化剂 (20) 3.6.1催化剂的发展 (20) 3.6.2催化剂的选择 (21) 3.7主要设备 (22) 3.7.1反应器 (22) 3.7.2硫冷凝器 (22) 3.7.3主火嘴及反应炉 (22) 3.7.4焚烧炉 (23) 3.7.5废热锅炉 (23) 3.7.6酸性气分液罐 (23) 3.8影响Claus硫磺回收装置操作的主要因素 (24) 3.9影响克劳斯反应的因素 (25) 第四章工艺过程中出现的故障及措施 (27) 4.1酸性气含烃超标 (27) 4.2系统压降升高 (27) 4.3阀门易坏 (28) 4.4设备腐蚀严重 (29)

硫磺回收催化剂及工艺技术

硫磺回收催化剂及工艺技术 发表时间:2018-08-13T12:00:59.750Z 来源:《基层建设》2018年第17期作者:张治国 [导读] 摘要:综述了20世纪70年代以来中国石化硫磺回收催化剂及工艺技术方面的进步。 内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰市 025350 摘要:综述了20世纪70年代以来中国石化硫磺回收催化剂及工艺技术方面的进步。回顾了LS系列硫磺回收及尾气加氢催化剂的发展历程,介绍了催化剂主要性能及工业应用情况,同时对大型引进硫回收装置催化剂国产化进行了详述。本文提出了对新建大型催化剂及工艺技术。 关键词:硫磺回收;催化剂;工艺 随着我国煤、石油、天然气等工业的发展,各种硫磺回收装置在本世纪得到了非常快速的发展。当前硫磺回收工艺的主要目的就是提高硫磺的回收效率、减少污染的排放方面上,硫磺回收技术的发展方向也主要集中在催化剂的改进、富氧工艺H2S/SO2在线调节比例等方面,而Claus转化加尾气加氢的SCOT工艺是这其中较为具有代表性的。 一、催化剂的主要类型 1.1硫磺回收催化剂 硫磺回收催化剂按制备类型和功能可分为活性Al2O3型、助剂型、TiO2基抗硫酸盐化型、脱“漏氧”保护型、多功能型。 (1)氧化钛基硫磺回收催化剂。氧化钛基催化剂的优点是有机硫(CS2、COS)水解活性高,总硫回收率高,稳定性好,不易发生硫酸盐化中毒。缺点是制备成本较高,孔容、比表面积小,磨耗较大,抗结炭性能差。适用于过程气中有机硫含量较高的反应过程或者没有SCOT单元的硫磺回收装置,提高硫磺回收率,减少硫的排放。 (2)氧化钛改进型氧化铝硫磺回收催化剂。氧化钛改进型氧化铝催化剂的优点是相比氧化钛催化剂孔容、比表面积较大,有机硫水解性能得到一定程度的改善。缺点是结构稳定性差,抗氧能力不理想,易发生硫酸盐化中毒。适用于操作稳定的普通克劳斯反应,一般装填于保护剂的下部。 (3)活性Al2O3型硫磺回收催化剂。活性氧化铝催化剂的优点是初期活性好,压碎强度高,成本低,硫磺回收率高。缺点是易发生硫酸盐化中毒,结构稳定性差,活性下降速度快,CS2、COS等有机硫水解活性降低速度也较快。一般适用于操作稳定的普通克劳斯反应,装填于保护剂的下部。活性氧化铝基催化剂有机硫化合物的水解速度随着温度的升高而增加。使用性能良好的活性氧化铝基催化剂,在反应温度310~330℃内操作,就足以使CS2、COS的水解率达到95%~100%。 (4)硫磺回收催化剂保护剂。硫磺回收催化剂保护剂的优点是添加铁助剂,具有脱漏氧保护功能,保护下游氧化铝基催化剂,同时具有硫磺回收功能,其活性较氧化铝基催化剂略低。可部分装填,也可全床层装填。缺点是有机硫水解性能不理想,结构稳定性差,在超温和高温遇急冷水的工况下,易炸裂粉碎。一般装填于催化剂床层的顶部,脱除多余的氧气,保护下部的氧化铝催化剂,延长催化剂使用周期。 (5)多功能复合型硫磺回收催化剂。多功能复合型硫磺回收催化剂与氧化钛催化剂相比,强度高,磨耗低,孔容、比表面积大;与氧化铝催化剂相比,CS2、COS等有机硫水解活性高,结构稳定性好,耐硫酸盐化能力强。该催化剂还同时具有良好的克劳斯活性、有机硫水解活性和脱漏氧活性,更重要的是该催化剂具有良好的抗结炭性能,明显优于纯氧化铝和纯氧化钛催化剂;特别适用于含烃原料气,提高催化剂的抗结炭性能,从而延长催化剂的使用寿命,延长装置的运行周期,消除由于硫磺回收装置带来的瓶颈制约。 1.2 Claus尾气加氢催化剂 目前工业装置上使用的克劳斯尾气加氢催化剂主要有2种:①使用温度在280~320℃的常规Claus尾气加氢催化剂;②使用温度在220~240℃的低温Claus尾气加氢催化剂。 在传统的Claus+SCOT工艺中,加氢段使用的常规加氢催化剂以γ-Al2O3,为载体、Co、Mo为活性组分。催化剂床层操作温度高,加氢反应器的人口温度一般控制在280℃以上,装置能耗较高。为降低装置运行能耗,简化加氢段再热操作,减小加氢反应器下游段冷却器热负荷,采用低温Claus尾气加氢催化剂。 二、硫磺回收工艺技术 截止2012年,国内约有150余家企业近300套硫磺回收装置运行,其中中国石化59套,中国石油64套,其余为中海油、煤化工、化肥厂、发电厂、冶炼企业等。其中50kt/a以上的装置占总数的30%左右,主要集中在中国石化、中国石油和中化集团公司。通过对已引进的硫磺回收装置消化吸收,借鉴国外先进技术和有益经验,中国石化在硫磺回收装置工艺设计、单元设备改造、催化剂开发应用、分析控制、溶剂生产以及防腐节能等方面取得了显著的进步,并形成了具有自主知识产权的成套硫磺回收工艺技术,可以满足不同酸性气组成、不同工艺条件、不同排放标准和不同规模的硫磺回收装置的要求。 (1)ZHSR硫磺回收工艺。中国石油化工股份有限公司镇海炼化分公司开发的ZHSR硫磺回收工艺,Claus部分采用在线炉再热流程,尾气净化单元采用还原加热炉,不需依靠外供氢源。在尾气净化单元采用了两段吸收、两段再生技术,尾气净化炉通过扩展双比率交叉限位控制方案,使燃料气和空气在一定比例下实现轻度的不完全燃烧,使之既产生热量又产生还原性气体,并通过急冷塔后的H分析仪在线监测和控制尾气净化炉配风量。 (2)SSR硫磺回收工艺。SSR工艺技术是中国石化集团公司1998年度“十条龙”重大攻关项目之一,由山东某石化工程有限公司开发。SSR工艺的主要特点:①对原料酸性气的适应性强,该工艺已经广泛应用于石油化工企业和煤化工企业的硫回收装置,酸性气中H2S 摩尔分数在30%-97%;②不使用在线加热炉,避免了在线炉燃烧产生的惰性气体进入系统;过程气总量比有在线炉的同类工艺少5%~15%,工艺设备规格和工艺管道规格较小,在同等尾气净化度时,尾气污染物绝对排放量相对较少;③用外供氢作氢源,但对外供氢纯度要求不高,从而使该工艺对石油化工企业硫回收装置具有广泛的适应性。 (3)LS-DeGAS降低硫磺回收装置SO2排放成套专利技术。GB16297-1996(大气污染物综合排放标准》自1997年1月1日实施以来,对控制我国石油炼制工业污染物排放和推动技术进步发挥了重要作用。今后我国将执行新的环保标准,GB31570-2015《石油炼制工业污染物排放标准》规定硫磺回收装置烟气SO2排放质量浓度小于400mg/m3,特别地区排放小于200mg/m3。 现有硫磺回收工艺技术已不能满足以上苛刻的环保要求,中国石化齐鲁分公司研究院开发了具有自主知识产权的LS-DEGAS降低硫磺

克劳斯硫磺回收技术的基本原理讲解

前言 在石油和天然气加工过程中产生大量的H2S气体,为了保护环境和回收元素硫,工业上普遍采用克劳斯过程处理含有H2S的酸性气体,其反应方程式如下:’ H2S + 3/2 O2 = S02 + H2O (1) 2H2S + S02 = 3/X Sx +2H2O (2) 其中反应(1)和(2)是在高温反应炉中进行的,在催化反应区(低于538℃)除了发生反应(2)外,还进行下述有机硫化物的水解反应: CS2 + H2O = COS + H2S (3) COS + H20 = H2S + C02(4) 本文回顾了改良克劳斯硫磺回收工艺的发展历程,阐明了工艺方法的基本原理、影响因素及操作条件,进行了扼要的评述. 1、工艺的发展历程 1.1原始的克劳斯工艺 1883年英国化学家C,F·C1aus首先提出回收元素硫的专利技术,至今已有100多年历史。原始的克劳斯法是一个两步过程,其工艺流程示于图1,专门用于回收吕布兰(Leblanc)法生产碳酸钠时所消耗的硫。关于后者的反应过程列于下式: 2NaCl + H2S04 = Na2SO4 + 2HCl (5) Na2SO4 + 2C = Na2S + 2CO2 (6) Na2S + CaCO3 = Na2CO3 + CaS (7)

为了回收元素硫,第一步是把CO2导入由H20和CaS(碱性废料)组成的液浆中,按上述反应式得到H2S,然后在第二步将H2S和O2混合后,导入一个装有催化剂的容器,催化剂床层则预先以某种方式预热至所需要的温度,按←CaS(固)+ H2O (液)+C02(气)= CaC03(固)十H2S(气) (8) 反应式(9)进行反应。反应开始后,用控制反应物流的方法来保持固定的床层温度.显然此工艺只能在催化剂上以很低的空速进行反应。据报导, H2S + 1/2 O2 = 1/X Sx + H2O (9) 如果使用了水合物形式的铁或锰的氧化物,就不需要预热催化剂床层即可以开始反应,然而由于H2S和O2之间的反应是强烈的放热反应,而释放的热量又只靠辐射来发散,因此限制了克劳斯窑炉只能处理少量的H2S气

硫磺回收装置操作手册

文件编号 MZYC-AS-ZY.013-2007(A/0) 受控状态受控 发放编号——————————————— 硫磺回收装置 操作手册 中国神华煤制油有限公司煤制油厂 二〇〇七年

操作手册编审表 编制: 车间审核: 车间主任: 汇审 消防气防队: 技术监督部: 机动部: 安全生产部: 审批:

目录 第1章装置正常开工方案 (1) 1.1开工准备及注意事项 (2) 1.2装置吹扫、贯通、气密 (2) 1.3系统的烘干 (10) 1.4催化剂及其填料填装 (13) 1.5装置投料步骤及关键操作 (15) 1.6装置正常开车步骤及其说明 (19) 1.7装置正常开工盲板表 (20) 第2章装置停工方案 (20) 2.1正常停工方案 (21) 2.2非正常停工方案(紧急停工方案) (28) 第3章事故处理预案 (29) 3.1事故处理的原则 (30) 3.2原料、燃料中断事故处理 (30) 3.3停水事故处理 (32) 3.4停电及晃电 (34) 3.5净化风中断 (36) 3.6其它 (37) 3.7DCS故障处理 (39) 3.8关键设备停运(风机) (40) 第4章装置冬季防冻凝方案 (40) 4.1伴热线流程及现场编号 (41) 4.2防冻凝方案 (41) 4.3相关物料及带水物料管线冬季防冻凝措施 (41) 4.4间断输送物料的管线防冻凝措施 (42) 第5章岗位操作法 (42) 5.1正常及异常操作法 (43) 5.2单体设备操作法 (54) 5.3高温掺合阀操作法 (63) 5.4制硫燃烧燃烧器的操作 (64) 附表一硫磺装置盲板一览表 (68) 附图―硫磺回收装置伴热流程图 (70)

硫磺回收工艺介绍

目录 第一章总论................................................................ 项目背景.............................................................. 硫磺性质及用途 ........................................................ 第二章工艺技术选择 ........................................................ 克劳斯工艺 ............................................................ 工艺.............................................................. 硫横回收工艺 .................................................... 超级克劳斯工艺 .................................................. 三级克劳斯工艺 ................................................ 尾气处理工艺 .......................................................... 碱洗尾气处理工艺 .................................................. 加氢还原吸收工艺 .................................................. 尾气焚烧部分 .......................................................... 液硫脱气.............................................................. 第三章超级克劳斯硫磺回收工艺 ........................................... 工艺方案.............................................................. 工艺技术特点 .......................................................... 工艺流程叙述 .......................................................... 制硫部分.......................................................... 催化反应段 ........................................................ 部分氧化反应段 .................................................... 碱洗尾气处理工艺 .................................................. 工艺流程图 ........................................................ 反应原理.............................................................. 制硫部分一、二级转化器内发生的反应: ............................... 尾气处理系统中 ................................................ 物料平衡..............................................................

克劳斯法硫磺回收工艺技术的应用与趋势

克劳斯法硫磺回收工艺技术的应用与趋势 发表时间:2019-03-05T15:05:11.197Z 来源:《防护工程》2018年第35期作者:田玉玲 [导读] 近年来我国也新建立了很多克劳斯装置,克劳斯装置在我国近80%的炼油厂中都在充分使用。 内蒙古大唐国际克什克腾煤制天然气有限责任公司内蒙古赤峰 025350 摘要:近年来,环境污染问题日益严重,而石化企业在对资源加工处理过程中,不可避免地会产出硫化氢等污染物质。采用克劳斯法硫磺回收工艺,不仅可以最大限度地降低废气对环境的污染问题,而且能够高效地回收硫磺产品,从而提高了能源的利用效率与价值。本文将对硫磺回收工艺技术现状及前景展望进行简要介绍,并提供一些借鉴。 关键词:克劳斯法;硫磺回收工艺;应用;趋势 引言:随着全球含硫原油和天然气资源的广泛的开发,运用克劳斯法从酸性气体中将硫元素回收的工艺已经得到了广泛的使用,近年来我国也新建立了很多克劳斯装置,克劳斯装置在我国近80%的炼油厂中都在充分使用。 1、克劳斯法硫磺回收工艺的优势 首先,克劳斯法硫磺回收工艺具有操作灵活方便和弹性范围大的优点,而且热稳定性、化学稳定性和机械强度也很高,同时维修方便,装置运行平稳可靠,并能减少有害物质的排放,催化剂的使用寿命能多达10年左右;其次,克劳斯法对于硫磺的转化效率和回收效率十分可观,可以实现加工处理过程的连续周期运转,同时副反应的现象能够有效控制,最为关键的是可以满足环保排放的标准要求;再次,克劳斯法对于酸性气浓度不同范围的适应能力较强,不仅可以满足新建装置设备,而且对于传统装置改造升级的情况也较为适合。同时三废问题可以得到最大限度的降低和抑制。基于克劳斯法装置适应性强的特点,因此广泛应用于石化企业硫磺回收与尾气处理环节;最后,相对来讲克劳斯法的系统操作并不复杂,因此投资费用低,而且工艺流程也容易操控和管理。此外硫磺作为生产硫酸产品的重要工业原料,其经济价值更为凸显。 2、硫磺回收工艺技术现状 2.1、氧基硫硫磺回收工艺技术 克劳斯法是一种较为成熟的多方式处理方法,主要是通过提高含氧量亦或增加空气氧气的利率来升级强化设备,从而提高整个硫磺回收设备的回收率,是一种硫磺回收工艺手法,是现代社会最受欢迎的硫回收工艺技术,具有高效能及高效益。事实上,克劳斯硫回收装置的工作原理是借助酸性气体来处理冰冷低温的甲醇,从而完成从属于酸性气体的二硫化氢及单独质子的硫元素。克劳斯法主要的工艺流程从总体上讲共有三种类型,即分流法、燃硫法及部分燃烧法。它的工作流程是最开始利用燃烧炉内1/3的二硫化氢与氧气燃烧进行化学反应从而生成二氧化硫,在这之后充分利用催化剂,使没用尽的二氧化氢与新生成的二氧化硫在催化剂的作用下进行克劳斯化学反应,最后生产完成硫磺回收。它的化学反应公式是H2S+3/2O2=SO2+H2O+519.2KJ,2H2S+SO2=3S+2H20+93KJ。实际上在化学反应的过程中,由于酸性气体的纯度不够高,也就是说酸性气体中掺杂了除硫化二氢之外的二氧化碳、二氧化氢等相当复杂多样化学元素及化学反应其伴随反应及副作用也时常出现,稳定性不够高。 硫磺回收工艺技术的优点大概有以下几点,即相对于其他大型、操作复杂、技术低等、价格高昂的设备来说,该技术操作简单、流程简明易懂,所需要的设备也较少,故而占地面积也是较少的,投资成本较低,可以节约资金;除此之外,由于此技术较高端,所用设备先进,即该设备可以快速地运行生产回收,回收硫磺纯度相对其他设备较高,工作效率高。但凡是都有双面性,硫磺回收工艺技术也有其限制性和缺陷:在整个化学反应的过程中,由于生产条件不够先进,化学平衡始终受到多方面的抵制,普遍常规的Claus工业技术及两级硫在催化剂的作用下的转化过程中硫磺的回收率为90%—95%,就算是较为先进高级的三级硫在催化剂作用下的转化过程中硫磺的回收率也只能最高达到98%。 2.2、选择性催化氧化法制硫 当原料酸性气体中如果硫化氢的含量过低,克劳斯工艺会受到热力学平衡的影响,其反应温度也受到很大的限制,转化率也会降低,但是硫化氢的选择性催化氧化反应并不是平衡的反映,只要有合适的催化剂,就可以使转化率大为提升。按照这个思路,在美国公司率先研究了催化氧化法制硫,这类方法的关键在于氧化剂的选择。催化氧化法主要是分成还原式和循环式,这两种不同的类型方法也不同,还原式的方法主要用于尾气的处理的,循环式的方法主要用于硫磺的回收。这类方法不用借助燃烧炉,而且原料中的酸性气体中的烃类物质含量比较少。硫化氢的含量比较低的情况下,原料在反应后可以直接进人到转化器中,床层的温度应该控制在370℃左右,硫的回收率可以达到80%以上。在采用上述的方法进行处理后,硫化氢为酸性气体,在一级转化器中,反应温度会受到限制,导致硫化氢中的酸性气体的含量不能过高。我国的炼油厂也采用过此类方法,但是当时装置内的硫化氢气体的酸性太强,而且气体非常不稳定,效果不好,而且炼油厂也加工了大量的含硫的原料,在回收中,导致装置的规模过大,在采用还原法进行尾气的处理中,效果并不是特别的理想。 3、对克劳斯法硫磺回收工艺技术应用现状与趋势的探究 3.1、克劳斯低温、富氧和直接氧化工艺 首先,克劳斯低温工艺是在低于硫露点的环境下进行操作的技术,其变革特点就是根据硫露点,进而调节转化器操作温度,因此广泛用于硫回收,且回收效率很理想。然而低温工艺的前期投资成本和后期操作费用也很高,同时比较适用于大型化酸气处理回收;其次,传统克劳斯工艺是以空气作为催化剂,由于空气中所含大量的氮气,因此总硫回收率相对低一些。而克劳斯富氧工艺是以氧气直接作为催化剂,不仅提升了设备的处理能力和效率,同时对于硫化氢含量的范围也极为适应。由于氧气成本较高,为了节约成本提升经济效益,因此要对技术持续改进,目前多以较低的富氧程度下进行处理加工;最后,克劳斯直接氧化工艺可以分为气相氧化法和液相氧化法。由于常规克劳斯工艺中当硫化氢占有比例较低时,设备的温度就会降低,从而影响了加工的深入进行,因此采用直接氧化工艺可以提升硫回收率,而且对于有机硫的去除效果也能达到55%—85%左右。 3.2、工业技术方面 我国已经将硫磺的回收及装置尾气的处理技术从最初的环保作用成功转变成了经济与环境两不误的高端科技。随着各种法律法规的颁布,我国的相关生产商已经在大力建设硫磺回收设备了,与此同时,硫磺回收工艺也在不停地被改进。如今,大多的硫磺回收装置是以

硫磺回收题库

硫磺回收联合装置题库 一、填空题 1、常温下硫磺是一种晶体,温度变化时可发生固、液、气三态转变。硫磺熔点,自燃点,着火点250℃,沸点444.6℃。答案:淡黄色,112~119℃,232℃ 2、硫磺回收酸性气来源主要有股,分别是:溶剂再生单元的富液再生后产生的、非加氢酸性水汽提单元回收的、加氢酸性水汽提单元回收的清洁酸性气。 答案:三,清洁酸性气,含氨酸性气 3、硫磺生产中,变化频繁,又非常关键的操作条件是。 答案:气风比 4、酸气带烃必须及时,保证,否则将导致产。 答案:加大配风,炉膛温度,黑硫磺 5、在克劳斯反应过程中,空气量的不足和过剩均使转化率。 答案:降低 6、在检查运行装置中,有无硫化氢气体泄漏,可用进行检测。答案:便携式H2S 报警仪 7、进一步回收尾气中的剩余硫化物以及元素硫,在加氢还原反应器内进行加氢还原反应,将SO2、Sx还原成,COS、CS2水解成。答案:H2S,H2S 8、硫磺回收单元:包括、尾气处理、酸性气火炬和成型包装等。公称规模,单系列1.5×104 t/a。操作弹性。

答案:二系列硫回收,30~120% 9、利用溶剂在低温下对硫化氢的选择吸收特性,吸收克劳斯尾气中的硫化氢。 答案:MDEA 10、硫磺回收主燃烧室温度一般控制。 答案:1100~1350℃ 11、尾气加氢反应器出口设置蒸汽发生器,产生 Mpa低压蒸汽;尾气焚烧炉出口设置蒸气过热器及蒸汽发生器,产生 Mpa蒸汽。答案:0.4,4.0 12、尾气采用热焚烧后经100米烟囱排空,满足《石油炼制工业污染物排放标准》(征求意见稿)小于 mg/Nm3的要求。 答案:400 13、酸性气分液罐分离出的液体均进入酸性水排液罐,再由压至系统酸性水管网。 答案:N2 14、硫磺回收采用二级转化Claus制硫工艺,过程气采用自产 MPa 中压蒸气加热方式。 答:4.0 15、反应炉采用进口高强度烧嘴,保证酸性气中和类杂质全部氧化,尾气净化部分还原所需H2由燃烧炉中的分解产生。答:氨、烃、硫化氢 16、溶剂再生单元再生塔底重沸器热源由 MPa蒸汽提供,以防

硫磺回收问答题答案

A 1、影响硫回收率的基本因素可能有哪些? 答:1)尾气中H2S和SO2之比大于或小于4:12)克劳斯反应器床层温度偏高或偏低3)克劳斯催化剂活性下降4)硫捕集网效率低5)硫冷凝器后过程气温度高6)装置负荷偏低或偏高7)装置酸性气浓度低 2、为什么液硫管线要用0.4MPa蒸汽伴热? 答:根据液硫的粘温特性,液硫在130-160℃时粘度小,且流动性最好,而饱和蒸汽压为0.4MPa的蒸汽其对应的温度正好为145℃左右,因此液硫管线用0.4MPa蒸汽伴热, 3、尾气单元急冷水PH值迅速下降,如何处理? 答:原因:1)克劳斯尾气SO2含量多。2)尾气中携带硫单质进入急冷塔。3)还原气体含量不足。4)加氢反应器入口温度低或Cat活性下降,造成SO2穿透。 处理:1)加强Claus单元操作,控制H2S:SO2为4:1 2)控制好三级硫冷器温度,检查液硫管线是否畅通。3)适当提高加氢反应器入口温度,若Cat活性无法恢复,应择机更换Cat。4)调整加氢炉操作,提高还原气体含量。5)加强急冷水更换,必要时应注氨。 4、CLAUS转化器催化剂活性下降现象? 1)床层的温升变小。2)床层的阻力降增大。3)转化率下降。4)有机硫水解明显下降。 B 1、急冷塔压降异常是由什么原因造成的?如何处理? 原因:1)系统杂质多,开工前清洗不彻底。2)急冷塔入口过程气SO2含量多。3)尾气中携带单质硫进入急冷塔。4)急冷水过滤效果差。 处理方法1)加强急冷水的置换,加强过滤。2)加强克劳斯操作,控制硫化氢与二氧化硫比值达到4;调整还原气体含量、反应器温度至正常范围。3)控制好克劳斯三级硫冷器温度,检查液硫线是否畅通。4)即时清洗或更换过滤器(SR-401)过滤网。5)如果堵塞严重,以上处理措施无法消除应停工处理。 2、尾气单元紧急停车按扭启动后,哪些阀门动作? 答:关闭主燃料气第一切断阀XV40106,打开主燃料气放空阀XV40108,关闭主燃料气第二切断阀 XV40109,关闭燃烧空气切断阀XV40125,关闭燃烧空气控制阀xv40124,关闭蒸气控制阀FV40102,关闭蒸气切断阀XV40103,关闭蒸汽控制阀FV40103,关闭CLAUS尾气去加氢炉控制阀HV31007A,打开 CLAUS尾气去尾炉控制阀HV31007B. 3、克劳斯反应器入口温度对装置有何影响? 答:从反应器来的过程气在反应器床层催化剂作用使硫化氢和二氧化硫发生反应,该反应是放热反应,温度越低越有利,但温度低于硫的露点温度会造成液流析出而使催化剂失去活性,这样会造成硫转化率下降。另外要使装置得到高的硫转化率,必须在催化剂的作用使COS 和CS2发生水解,而该水解

硫磺回收技能大赛理论题库

硫磺回收技能大赛题库 一、填空题 1.硫回收氧化炉超温的原因有上游装置的异常功能,分析器故障或仪表故障 2.如果蒸汽发生故障,则工艺气温度降低,再加热器即不可运行。这会引起催化反应器温度下降并催化剂失活,最终硫沉积于反应器中及管路中成为可能的阻塞。 3.尾气冷却循环水的PH值必须进行检测,因为当PH值小于6时,可能会发生腐蚀。为了提高PH值,需向系统中注入氢氧化钠溶液。 4.尾气处理采用催化加氢水解反应工艺,使克劳斯硫回收装置尾气中的COS、CS2、SO2等转化为H2S。 5.硫化物的危害主要有:使催化剂中毒、堵塞管道设备、腐蚀管道设备、污染溶剂、污染环境、降低产品质量。 6.硫回收装置尾气处理采用催化加氢水解反应工艺,使克劳斯硫回收装置尾气中的COS、CS2、SO2等转化为H2S,然后使用二乙醇胺(MDEA),通过低温吸收、热解吸工艺回收其中的H2S,最后所回收的H2S返回至克劳斯硫回收单元。 7.克劳斯富氧燃烧炉中发生的化学反应主要为: 8. 当克劳斯反应器床层发生氧化、自燃;仪表出现故障,误操作导致床层温度升高,反应器就会出现床层超温事故。 9.酸性气燃烧炉用N2做冷却剂。 10.酸性气1/3在酸性气体燃烧炉反应生成SO2。 11.富氧燃烧产生硫单质、SO2的同时,还要调节工艺气中H2S:SO2的比例达到2:1,以利于后续的克劳斯反应达到最佳的硫转化率; 12.硫回收尾气冷却是在激冷塔中,通过与循环冷却水直接接触来完成。 13. 克劳斯工艺可分为三种方法:即部分燃烧法、分硫法和燃硫法。烯烃硫回收工艺采用部分燃烧法。 14. 酸性水严禁排地沟,应送酸水汽提装置处理。 15.硫回收装置工艺气离开第一段克劳斯反应器后,工艺气进入1#硫冷凝器,在这里气体被冷却到170°C左右,部分硫蒸气冷凝下来。所回收的热量用于产生饱和低低压蒸气。

[VIP专享]硫磺回收装置技术问答

目录: 问答题: 1.仪表风中断如何进行处理? 如有动力风,先改入动力风,联系调度查明原因,尽快处理;仪表方面:风开阀改现场副线阀控制,风关阀改上下游阀控制。 2.硫磺回收装置循环水中断如何进行处理? 如有新鲜水,将机泵冷却水改用新鲜水;停循环水,只对急冷塔有影响;若停水时间长,可将SCOT临时停工。 3.硫磺回收装置停电如何处理? 装置一旦停电,所有机泵停止转动,反应炉和焚烧炉发生联锁自保,酸性气已改放火炬。必须采用如下措施:通知调度,将酸性气改至其他硫磺回收装置;停再生系统热源,酸性气停出装置;克劳斯系统用1.0MPa蒸汽保温;注意各反应器床层温度,若温度高,可用氮气吹扫至烟囱;及时联系有关部门,查明原因,如停电超过15min,则请示后按紧急停工处理。 4.如何处理DCS控制卡件损坏事故? 立即联系仪表人员修理;在更换卡件时,如数据仅为显示点,则对生产无影响,岗位平稳操作即可;对于带控制回路的点,控制回路会自动切至手动进行控制,与外操联系,依据现场仪表或一次表

指示进行手动控制;对于输出锁位的控制阀,应联系外操将控制阀改副线操作。 5.克劳斯反应器超温时如何处理? 克劳斯反应器超温时的原因主要是催化剂吸附的硫接触氧发生着火燃烧;降低配风量,调整硫化氢、二氧化硫的比例;反应器入口注氮气或蒸汽。 6.开车方案应包括哪些内容? 1 开工组织机构; 2 开工的条件确认; 3 开工前的准备条件; 4 开 工的步骤及应注意的问题;5 开工过程中事故预防和处理;6 开工过程中安全分析及防范措施;7 附录,重要的参数和控制点、网络图。 7.停工方案应包括哪些内容? 1 设备运行情况; 2 停工组织机构; 3 停工的条件确认; 4 停工前 的准备条件;5 停工的步骤及应注意的问题;6 停工后的隔绝措施; 7 停工过程中事故预防和处理;8 停工过程中安全分析及防范措 施;9 附录,重要的参数和控制点。 8.什么是设备检查?设备检查的目的是什么? 1 设备检查是指对设备的运行状况、工作性质、磨损腐蚀程度等 方面进行检查和校验; 2 设备检查能够及时查明和消除设备隐患,针对发现的问题提出 解决的措施,有目的地做好维修前的准备工作,以缩短维修时间,提高维修质量。

相关文档
最新文档