发动机排放污染物的影响因素

发动机排放污染物的影响因素
发动机排放污染物的影响因素

发动机排放污染物的生成机理和影响因素

主要内容:介绍了汽车尾气中的主要污染物CO、HC、NO X和微粒的生成机理及其影响因素。

1 一氧化碳

1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的

中间产物。

影响一氧化碳生成的因素

理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不均匀,在排气中还含有少量CO。即使混合气混合的很均匀,由于燃烧后的温度很高,已经生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,所以,排气中总会有少量CO存在。可见,凡是影响空燃比的因素,即为影响CO生成的因素。

1. 进气温度的影响

一般情况下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情况有很大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。

进气温度/℃海拔高度/m 怠

速转速/(r/min)

图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的影响

V/(km/h)

图2-6 某汽油机等速工况排气成分实测结果

2. 大气压力的影响

大气压力P 随海拔高度而变化,由经验公式

()

5.256010.02257 kPa P P h =- (2-4)

式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。

当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示:

()32731.293 kg/m 273760

P T ρ=+ (2-5) 式中:T -温度,℃。

可以认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密

度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。

3. 进气管真空度的影响

当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真

空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。

4. 怠速转速的影响

图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓

度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些问题得到解决,一般从净化的观点,希望怠速转速规定高一点较好。

5. 发动机工况的影响

发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图

2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 很快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

2 碳氢化合物

车用柴油机中的未燃HC都是在缸内的燃烧过程中产生并随排气排放。汽油发动机中未燃HC的生成与排放主要有以下三种途径。

(1)在气缸内的燃烧过程中产生并随废气排出,此部分HC主要是燃烧过程中未燃烧或燃烧不完全的碳氢燃料。

(2)从燃烧室通过活塞组与气缸之间的间隙漏入曲轴箱的窜气中含有大量未燃燃料,如果排入大气中也构成HC排放物。

(3)从汽油机的燃油系统蒸发的燃油蒸汽。

影响碳氢化合物生成的因素

未燃HC排放主要是由于缸内混合气过浓、过稀或局部混合不均引起燃烧不完全而导致的,造成燃烧不完全的因素大致有混合气的质量、发动机的运行条件、燃烧室结构参数及点火与配气正时等。

1. 混合气质量的影响

混合气质量的优劣主要体现在燃油的雾化蒸发程度、混合气的均匀性、空燃比和缸内残余废气系数的大小等方面。混合气的均匀性越差则HC排放越多。当空燃比略大于理论空燃比时,HC有最小值;混合气过浓或过稀均会发生不完全燃烧,废气相对过多则会使火焰中心的形成与火焰的传播受阻甚至出现断火,致使HC排放量增加。

2. 运行条件的影响

1)汽油机运行条件的影响

(1)负荷的影响:发动机试验结果表明:当空燃比和转速保持不变,并按最大功率调节点火时刻时,改变发动机负荷,对HC的相对排放浓度几乎没有影响。但当负荷增加时,HC排放量绝对值将随废气流量变大而几乎呈线性增加。

(2)转速的影响:发动机转速对HC排放浓度的影响则非常明显。转速较高时,HC排放浓度明显下降,这是由于气缸内混合气的扰流混合、涡流扩散及排气扰流、混合程度的增大改善了气缸内的燃烧过程、促进了激冷层的后氧化,后者则促进了排气管内的氧化反应。

(3)点火时刻的影响:点火时刻对HC排放浓度的影响体现在点火提前角上。点火延迟(点火提前角减小)可使HC排放下降,这是由于点火延迟使混合气燃烧时的激冷壁面面积减小,同时使排气温度增高,促进了HC在排气管内的氧化。但采用推迟点火,靠牺牲燃油经济性来降低HC排放是得不偿失的。因此,点火延迟要适当。

(4)壁温的影响:燃烧室的壁温直接影响了激冷层厚度和HC的排气后反应。据研究,壁面温度每升高1℃,HC排放浓度相应降低0.63×10-6~1.04×10-6。因此提高冷却介质温度有利于减弱壁面激冷效应,降低HC排放。

(5)燃烧室面容比的影响:燃烧室面容比大,单位容积的激冷面积也随之增大,激冷层中的未燃烃总量必然也增大。因此,降低燃烧室面容比是降低汽油机HC排放的一项重要措施。

2)柴油机运行条件的影响

(1)喷油时刻的影响:柴油机喷油时刻(喷油提前角)决定了气缸内的温度。喷油提前角θ增大,缸内温度较高,使HC排放量下降。在一台自然吸气式直喷柴油机上进行的试验证实:在13工况下,当θ 偏离最佳值时,缸内温度及反应区的气体环境均发生变化。θ平均减小1°CA,HC的体积分数平均增加8.97%;θ平均增加1°CA,HC平均下降1.97%。

(2)喷油嘴喷孔面积的影响:当循环喷油量及喷油压力不变时,改变喷孔面积不仅改变了喷油时间的长短,并且同时改变了油雾颗粒大小和射程的远近,即影响油气混合的质量,必将导致HC排放量的变化。有试验结果证实:在13工况下,以喷孔直径为0.23㎜的四孔

喷油嘴的喷孔面积为参考基础,当面积减小1%时,HC 的体积分数相应减小1.23%;当面积

增加1%时,HC 的体积分数相应增大7.71%。这说明喷孔面积加大时,雾化和混合质量变差,HC 排放量增加幅度较大;反之,燃烧得到改善,但HC 排放量降低幅度较小。

(3)冷却水进水温度的影响:冷却水温相对降低,将导致气缸内温度降低,HC 排放量

会相对增加。试验证明:以冷却水进水温度75℃为比较标准,当进水温度下降到65℃时,13工况下的HC 体积分数平均增加37.21%。

(4)进气密度的影响:进入柴油机的空气密度降低,使缸内空气量减少,燃烧不完善,

HC 排放量一般会增加。试验证明:进气压力在0.0967~0.0947MPa 的变化范围内,空气密

度每下降1%,13工况下HC 平均减少0.99%。

3 氮氧化物

3.1车用发动机排气中的氮氧化物NO X 包含NO 和NO 2,其中大部分是NO ,它们是N 2在

燃烧高温下的产物。

影响NO X 生成的因素

1. 影响汽油机NO X 排放的因素

1)过量空气系数和燃烧室温度的影响

由于a φ直接影响燃烧时的气体温度和可利用的氧浓度,所以对NO X 生成的影响是很大

的。当a φ小于1时,由于缺氧即使燃烧室内温度很高NO X 的生成量仍会随着a φ的降低而降

低,此时氧浓度起着决定性作用;但当a φ大于1时,NO X 生成量随温度升高而迅速增大,此时温度起着决定性作用。由于燃烧室的最高温度通常出现在a φ≈1.1,且此时也有适量的氧浓度,故NO X 排放浓度出现峰值。如果a φ进一步增大,温度下降的作用占优势,则导致NO

生成量减少。

2)残余废气分数的影响

汽油机中燃烧室内的混合气由空气、已蒸发的燃油蒸气和已燃气组成,后者是前一工作

循环留下的残余废气,或由废气再循环系统(EGR )中从排气管回流到进气管并进入气缸的燃烧废气。残余废气分数χi 定义为:缸内残余废气质量m i 与进气终了气缸内充量质量m c

之比,即

图2-10 排气中NO 的体积分数随点火提前角的变化

χi =m i /m c (2-12)

式中:m c =m e +m i +m r ,m e 和m r 分别为进入气缸的空气和燃油质量。

残余废气分数主要取决于发动机负荷和转速。减小发动机负荷即减小节气门开度和提高

转速,均加大了进气阻力,使残余废气分数增大。压缩比较高的发动机残余废气分数较小。 通过废气再循环可大大增加气缸中的残余废气分数。当可燃混合气中废气分数增大时,既减小了可燃气的发热量又增大了混合气的比热容,都使最高燃烧温度下降,从而使NO 排放降低。

3)点火时刻的影响

由于点火时刻对燃烧室内温度和压力有明显影响,故其对NO 生成的影响也很大。图2-10

表示了三种空燃比下排气中NO 的体积分数随点火提前角θ的变化趋势。从该图可以看出:随着θ的减小,NO 排放量不断下降;当θ值很小时,下降速率趋缓。

增大点火提前角使较大部分燃料在压缩上止点前燃烧,增大了最高燃烧压力值,从而导

致较高的燃烧温度,并使已燃气在高温下停留的时间较长,这两个因素都将导致NO 排放量增大。因此延迟点火和使用比理论混合气较浓或较稀的混合气都能使NO 排放降低,但同时也会导致发动机热效率降低,严重影响发动机经济性、动力性和运转稳定性,因此应慎重对待。

2. 影响柴油机NO X 排放的因素

柴油机与汽油机的主要差别之一在于燃油是在燃烧刚要开始前才喷入燃烧室的,燃烧期

间燃油分布不均匀,引起已燃气体中温度和成分不均匀。上述影响汽油机NO X 排放的大部分因素也适用于柴油机。

与汽油机一样,柴油机气缸内达到的最高燃烧温度也有控制NO 生成的作用。在燃烧过

程中最先燃烧的混合气量(紧接着滞燃期的预混合燃烧)对NO 的生成量有很大影响 。因为这部分混合气在随后的压缩过程中由于被压缩,使温度升到较高值,从而导致NO 生成量的增加。然后这些燃气在膨胀过程中膨胀并与空气或温度较低的燃气混合,冻结已生成的NO 。

图2-11 车用柴油机燃油消耗率e b 、烟度F S 、气体排放 CO 、NOx 、HC 随喷油提前角inj θ的变化

因此,在燃烧室中存在温度较低的空气是压燃式发动机的第二个独特之处。这也就是柴油机中NO成分的冻结发生得比汽油机早以及NO的分解倾向较小的原因。

1)喷油定时的影响

试验表明,柴油机气缸内NO生成率大约从燃烧开始后20?CA内达到最大值,其数值大小大致与预混燃烧期内燃烧的混合气数量成正比。喷油提前角减小,使燃烧推迟,燃烧温度

图2-12 传统柴油机的典型放热规律(虚线)

与低排放柴油机的优化放热规律(实线)

1-推迟燃烧始点,降低NO X排放;

2-降低初始燃烧温度减少NO X生成;

3-维持中期快速燃烧和燃烧温度,

降低微粒排放;

4-缩短扩散燃烧期,降低燃料消耗率、

排气温度和微粒排放

较低,生成的NO X较少。这种推迟喷油的方法是降低柴油机NO X排放的最简单易行且有效的方法,但会使燃油消耗率略有提高。图2-11表示现代车用柴油机的喷油定时在从上止点前8?CA~4?CA范围内变化时,柴油机性能和排放的相对变化趋势。

2)放热规律的影响

图2-12表示柴油机燃烧放热规律的两种模式:传统放热规律模式(虚线)和低排放放热规律模式(实线)。图中χc为燃料已燃质量分数,dχc/dθ为放热率。传统模式在压缩上止点前即由于不可控预混合燃烧而出现一个很高的放热率尖峰,接着是由于扩散燃烧造成的一个平缓的放热率峰。前者导致生成大量NO;而后者(缓慢拖拉的燃烧)导致柴油机热效率恶化,微粒排放增加。低排放放热模式一般都在上止点后开始放热,第一峰值较低,使NO X生成较少;中期扩散燃烧尽可能加速,使燃烧过程提前结束,不仅提高热效率,也能降低微粒排放。

3)负荷与转速的影响

柴油机的NO X排放与负荷和转速的关系如图2-13所示。NO X排放随负荷增大而显著增加,这是因为随负荷增大可燃混合气的平均空燃比减小,使燃烧压力和温度提高所致。但当负荷超过某一限度时,NO X的摩尔分数反而下降,这是因为燃烧室中氧相对缺少而导致燃烧恶化,温度提高的效果被氧含量的相对减少所抵消,甚至有余。此情形在超负荷运转时更为明显。

柴油机转速对NO X排放的影响比负荷的影响小。对非增压柴油机,一般最大转矩转速下的NO X体积分数大于标定转速下的值,其原因主要在于低转速下,NO X生成反应占有较多的时间。

图2-13 柴油机不同负荷下的NO X排放和对应的空燃比

(直喷式自然吸气车用柴油机,6×102mm×118mm,c =16.5)

4 微粒

1、汽油机中的排气微粒有三种来源:含铅汽油中的铅、有机微粒(包括碳烟)、来自汽油中的硫所产生的硫酸盐。

车用汽油机用含铅量0.15g/L的含铅汽油运转时,微粒排放量在100~150mg/km范围内,其主要成分为铅化合物,铅质量分数占25%~60%,微粒尺寸分布为80%的直径小于0.2μm,这种微粒是由排气中的铅盐冷凝生成的。因此,以质量计的排放量在发动机冷起动时较高。目前,由于含铅汽油的淘汰及贵金属三效催化剂的应用,铅微粒当然也不再排放。

硫酸盐排放主要涉及在排气系统中有氧化催化剂的车用发动机。汽油中的硫在燃烧中转化为SO2,被排气系统中催化剂氧化成SO3后,与水结合生成硫酸雾。因此,汽油机硫酸盐的排放量直接取决于汽油中的硫含量。

碳烟排放只在使用很浓的混合气时才会遇到,对调整良好的汽油机不是主要问题。

此外当发动机技术状态不良(例如气缸活塞组严重磨损),导致润滑油消耗很大时,会产生排气冒蓝烟,这是未燃烧润滑油微粒构成的气溶胶。此时发动机性能明显恶化,需立即检修。

2.影响微粒生成的因素

1. 负荷与转速的影响

图2-16为柴油机的微粒排放量与负荷和转速的关系。由该图可看出:在高速小负荷时,单位油耗的微粒排放量较高,且随负荷的增加,微粒排放量降低;而在低速大负荷时,微粒排放量又由于燃空比的增加而有所升高。

微粒排放量随负荷有这样的变化趋势,是由于小负荷时燃空比和温度均较低,气缸内稀薄混合气区较大,且处于燃烧界限之外而不能燃烧,造成了冷凝聚合的有利条件,从而有较多微粒(主要成份是未燃燃油成份和部分氧化反应产物)生成;在大负荷时,燃空比和温度均较高,造成了裂解和脱氢的有利条件,使微粒(主要成份是碳烟)排放量又有了升高;在接近全负荷时微粒排放急剧增加(接近冒烟界限),这时虽然总体过量空气系数尚大于1,但由于燃烧室内可燃混合气不均匀,局部会有过浓,导致烟粒大量生成。

微粒排放量与转速有如此变化关系,是由于在小负荷时温度低,以未燃油滴为主的微粒的氧化作用微弱。当转速升高时,这种氧化作用又受到时间因素的制约,故微粒排放量随转速升高而增加;在大负荷时,转速的升高有利于气流运动的加强,使燃烧速度加快,对碳烟微粒在高温条件下与空气混合氧化起了促进作用,故以碳烟为主的微粒排放量随转速的升高而减小。如仅考虑碳烟排放,对车速适应性好的柴油机而言,其峰值浓度往往出现在低速大

负荷区。

2. 燃料的影响

柴油中的芳香烃含量及柴油的馏程对柴油机的微粒排放有明显的影响。试验表明,燃油中芳香烃含量及馏程越高,在相同的试验条件下,微粒排放量越大;而烷烃含量越高,微粒排放量越少。

燃油的十六烷值对烟粒排放也有明显影响。试验表明,柴油机的排烟浓度随十六烷值的提高而增大,其原因可能是由于十六烷值较高的燃油稳定性较差,在燃烧过程中碳的生成速率较高所致。若从柴油的十六烷值对燃烧过程的影响考虑,则由于十六烃值高的燃油具有良好的发火性,其滞燃期短,参与预混燃烧的燃油较少,大部分燃油是以扩散燃烧的方式进行,故排烟浓度较大。然而,以降低十六烷来获得排烟的改善,会带来柴油机工作粗暴等严重后果。

3. 喷油参数的影响

1)喷油定时的影响

在直喷式柴油机中,当所有其它参数不变时,提前喷油或非常迟的喷油,可以降低排气烟度,如图2-17所示。

提前喷油使排烟下降的原因是:滞燃期随喷油提前角的加大而延长,因此使着火前的喷油量较多,燃烧温度较高,燃烧过程结束较早,从而使排气烟度下降。但喷油提前会使燃烧噪音和柴油机机械负荷与热负荷加大,还会引起NO X排放量增加。

喷油定时,BTDC/℃A

图2-17 喷油定时对烟度的影响

图2-18 直喷式柴油机喷油规律对排放的影响

(喷油提前角17°BTDC;n=1250r/min;涡流比3.5;喷油持续角25°)

非常迟的喷油使排烟下降的原因是:这种喷油定时发生于最小滞燃期之后,由于扩散火焰大部分发生在膨胀过程中,火焰温度较低,使碳烟的生成速率降低。

2)喷油规律的影响

在喷油定时、喷油持续角、循环供油量、涡流比和发动机转速不变的条件下,直喷式柴

油机的喷油规律对NO 和碳烟排放的影响如图2-18所示。当大部分燃油在前半时间内喷入气缸时,参与预混燃烧的油量增多,故排烟浓度低而NO 浓度高;反之,当大部分燃油在后半时间喷入气缸时,参与扩散燃烧的油量增多,故排烟浓度高而NO 浓度低。

在提高初始喷油速率的前提下,如能减小喷油持续角,可使燃烧过程较快结束,以改善碳烟排放。

3) 喷油嘴不正常喷射的影响

当喷油嘴由于针阀密封面漏油或针阀落座缓慢而造成滴漏,或针阀落座后再次升起而产生二次喷射时,燃油雾化和混合变差,对碳烟、未燃烃、CO 的排放及发动机运转均有不利影响。 4) 喷油压力的影响

提高喷油压力,改善燃油雾化(减小油雾

的平均直径),能促进燃油与空气的混合,改

善油气混合的均匀性,从而减少烟粒的生成。

试验证明,不论柴油机转速高低、负荷大小,

烟粒排放均随最大喷油压力的提高而降低。应

注意,在较高的转速和较大负荷(较大循环供

油量)下,同样的喷油装置有较高的喷油压力。

采用较高的喷油压力还可使柴油机具有较高

的EGR 耐力。如前所述,增大EGR 率可降低NO X

排放,但也往往导致烟粒和HC 排放上升。从图2-19可看出,当喷油压力p inj 从42MPa 提高到82MPa 时,烟粒(S F )排放可下降一半以上,HC 下降1/3左右。 4. 空气涡流的影响

适当增加空气涡流,可使油滴蒸发加快,空气卷入量增多,有利于改善混合气品质,以减少碳烟排放量。但是,对减少碳烟排放有利的涡流,不一定有利于减少其它微粒和有害物的排放。例如,当喷油率较低时,增大空气涡流会吹散较多的燃油,形成较宽的过稀不着火区,使未燃烃排放量增加。

5. 其它因素的影响

由于高温缺氧是造成碳烟生成量增加的重要原因,所以,凡能提高充气效率以增大进气量的措施,都可以减少碳烟排放。适当提高燃烧室内的空气温度和壁温,可以改善燃料着火条件,减少微粒排放。

图2-19 柴油机在不同喷油压力下通过EGR

得出的烟度F S 和HC 排放与NO X 排放的关系

p inj /MPa

点燃式发动机汽车排气污染物排放限值及测量方法

点燃式发动机汽车排气污染物排放限值及测量方法 GB18285-2005 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,控制汽车污染物排放,改善环境空气质量,制定本标准。 本标准是对GBl4761.5-93《汽油车怠速污染物排放标准》和GB/T3845-93《汽油车排气污染物的测量怠速法》的修订与合并。本标准规定了点燃式发动机汽车怠速和高怠速工况排气污染物排放限值及测量方法,同时规定了稳态工况法、瞬态工况法和简易瞬态工况法等三种简易工况测量方法。本次修订增加了高怠速工况排放限值和对过量空气系数(λ)的要求。 按照有关法律规定,本标准具有强制执行的效力。 本标准由国家环境保护总局科技标准司提出。 本标准起草单位:中国环境科学研究院、交通部公路科学研究所 本标准国家环境保护总局2005年5月30日批准。 本标准自2005年7月1日起实施,《汽油车怠速污染物排放标准》(GBl4761.5-93)、《汽油车排气污染物的测量怠速法》(GB/T3845-93)和《在用汽车排气污染物排放限值及测量方法》(GB18285-2000)同时废止。 本标准由国家环境保护总局解释。 1 范围 本标准规定了点燃式发动机汽车怠速和高怠速工况下排气污染物排放限值及测量方法。本标准也规定了点燃式发动机轻型汽车稳态工况法、瞬态工况法和简易瞬态工况法三种简易工况测量方法。 本标准适用于装用点燃式发动机的新生产和在用汽车。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是不注日期的引用文件,其最新版本适用于本标准。 GB l4762-2002 车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测 量方法 GB 18352.1-2001 轻型汽车污染物排放限值及测量方法(Ⅰ) GB l8352.2-2001 轻型汽车污染物排放限值及测量方法(Ⅱ) GB 17930-1999 车用无铅汽油 GB/T15089-2001 机动车辆及挂车分类 GB 5181-2001 汽车排放术语和定义 GB l8047 车用压缩天然气 GB l9159 车用液化石油气 HJ/T3-1993 汽油机动车怠速排气监测仪技术条件 3 术语和定义

分析影响发动机充气效率的因素与提高其方法

分析影响发动机充气效率的因素及提高其 方法 摘要:发动机在燃烧过程中需要充足的氧气,影响发动机充气效率的因素有进气终了压力、进气终了温度、排气终了残余废气压力和温度;提高发动机的充气效率的措施有:减小进气系统的流动损失、减少排气系统对气流的阻力、气门叠开角、合理选择配气正时,保证最好的充气效率。 1 学习本课程目的及意义及心得 通过对本课程学习,使我们了解了燃机工作循环中各个过程的各阶段包括发动机性能评价、基本工作过程,发动机特性、增压、平衡等并加强排气污染、噪音震动等知识;掌握整机工作性能评定指标及其影响因素;运转特性及调整特性;使我们能正确的合理的选择,运用燃机。为我们毕业设计打下动力基础,意义非常重大。 《汽车发动机原理》课程结束了但是它为我们带来的影响远不止是这一段时间。通过对此课程的学习使我们掌握汽车发动机工作过程各项性能指标的概念和涵及其影响因素,熟悉汽车发动机基本理 论、一般工作过程和实际工作循环的特点,学习燃机的充量更换、燃料供给与调节、混合气的形成与燃烧以及污染物的生成与排放控制等方面的工作原理及影响因素,能运用所学知识,分析提高燃机各种工作性能指标、降低排放的技术措施和适用条件,了解当今国

外燃机技术的新发展,同时进一步掌握发动机方面的英文专业词汇。初步具有利用发动机的基本原理解决实际问题的专业技术应用能力。 2 影响发动机充气效率的因素 1.进气系统的阻力越大,则进入气缸的新鲜混合气愈少,充气效率愈小 2.缸气体温度越高,充人气体密度越小,充气系数下降 3.残余废气压力高,残余废气密度大,废气量多,则新鲜充量减少,充气效率下降 3 提高发动机充气效率的措施 3.1 安装涡轮增压 涡轮增压,是一种利用燃机运作所产生的废气驱动空气压缩机的技术。与超级增压器功能相若,两者都可以增加进入燃机的空气流量,从而令机器效率提高。 涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。一台发动机装上涡轮增压器后,其最大功率与未装增压器的时候相比可以增加40%甚至更高。这样也就意味着同样一台的发动机在经过增压之后能够产生更大的功率。就拿我们最常见的1.8T涡轮增压发动机来说,经过增压之后,动力可以达到2.4L 发动机的水平,但是耗油量却比1.8发动机并不高多少,在另外一个层面上来说就是提高燃油经济性和降低尾气排放。不过在经过了增压

柴油机功率不足的原因

柴油机功率不足的原因 1、空气滤清器不清洁 空气滤清器不清洁会造成阻力增加,空气流量减少,充气效率下降,致使发动机动力不足。应根据要求清洗柴油空气滤清器芯子或清除纸质滤芯上的灰尘,必要时更换滤芯。 2、排气管阻塞 排气管阻塞会造成排气不畅通,燃油效率下降。动力下降。应检查是否由于排气管内积炭太多而造成排气导阻力增加。一般排气背压不宜超过 3.3Kpa,平时应经常清降排气管内的积炭。 3、供油提前角过大或过小 供油提前角过大或过小会造成油泵喷油时间过早或过晚(喷油时间过早则燃油燃烧不充分,过晚则会冒白烟,燃油也会燃烧不充分),使燃烧过程不是处于最佳状态。此时应检查喷油传动轴接合器螺钉是否松动,如果松动,则应重新按照要求调整供油提前角,并拧紧螺钉。 4、活塞与缸套拉伤 由于活塞与缸套拉伤严重或磨损过,以及活塞环结胶造成摩擦损失增大,造成发动机自身的机械损失增大,压缩比减小,着火困难或燃烧不充分,下充气增大,漏气严重。此时,应更换缸套、活塞和活塞环。 5、燃油系统有故障 (1)燃油滤清器或管路内进入空气或阻塞,造成油路不畅通,动力不足,甚至着火困难。应清除进入管路的空气,清洗柴油滤芯,必要时更换。 (2)喷油偶件损坏造成漏油、咬死或雾化不良,此时容易导致缺缸,发动机动力不足。应及时清洗、研磨或换新。 (3)喷油泵供油不足也会造成动力不足,应及时检查、修理或更换偶件,并重新调整喷油泵供油量。 6、冷却和润滑系统有故障 柴油机过热,是由于冷却或润滑系统有故障所致,此种情况下会导致水温和油温过高,易出现拉缸或活塞环卡死现象。当柴油机排气温度增加时,应检查冷却器和散热器,清除水垢。 7、缸盖组有故障 (1)由于排气漏气引起进气量不足或进气中混有废气,继而导致燃油燃烧不充分,功率下降。应修磨气门与气门座的配合面,以提高其密封性,必要时换新。 (2)气缸盖与机体的接合面漏气会使缸体内的气进入水道或油道,造成冷却液进入发动机体内,若发现不及时会导致“滑瓦”或冒黑烟,从而使发动机动力不足。由于气缸垫损坏,变速时会有一股气流从缸垫冲出,发动机运转时垫片处会有水泡

航空发动机发展的瓶颈

中国航空发动机发展的瓶颈 发表日期:2012-11-3 16:32:03 航空发动机一直就是中国的软肋。 从周恩来总理在世时评论中国飞机的“心脏病”开始,到现在50多年了。中国的发动机依然是兵器工业最大的软肋。 不仅仅是你提到的歼击机和大运的涡扇发动机,就是直升飞机的涡轴发动机,中型运输机的涡浆发动机,大型舰船的燃气轮机,中小型舰船和坦克的柴油发动机……无一例外,都是中国的软肋。航空发动机,更是软肋中的软肋。 与美国至少差距30年,什么意思,差一代到一代半吧。这个是事实,没有争议的。 但是另外两个问题就有争议了。一个是这样落后的原因是什么。另一个是,我们究竟什么时候能赶上去。其实这两个问题有内在关系的,搞清楚原因是什么,就更好判断什么时候赶上去。简要提供一些个人的看法,不一定正确。 落后的原因 一:底子太差 新中国建国时,工业基础太差。别说航空发动机,像样的工具钢都没有。要不是朝鲜战争,中国人用大量年轻士兵的无价鲜血去消耗美国的廉价钢铁,换来苏联人把涡轮喷射发动机的制造技术给我们,中国是不可能在1957年就能生产涡喷-5发动机的。 二:航空发动机工业的涉及面太广 虽然同样底子差,同样有文革的挫折,同样有改革开放的机遇,为什么航空发动机就是赶不上来? 对比之下,中国造电冰箱、电视,甚至造手机、雷达、火箭、飞船都慢慢赶上来了:洛阳光电展上曝光的歼击机最新航电系统直追F22,美国人看了也吃一惊;中国空空导弹专家悠然的说,我们距离美国人,也就10年吧,一脸的骄傲自满;美国官方认为,中国的空警2000,在技术体制先进性上超过了美国现有装备一代。真的,兵器上,我们很多东西距离美国的差距就是10年。什么意思,就是至少没有代差。 而航空发动机呢,差一代到一代半。原因在于,航空发动机工业涉及的面太

发动机排放污染物的影响因素

发动机排放污染物的影响因素 要紧内容:介绍了汽车尾气中的要紧污染物CO、HC、NO X和微粒的生成机理及其阻碍因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 阻碍一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不平均,在排气中还含有少量CO。即使混合气混合的专门平均,由于燃烧后的温度专门高,差不多生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,因此,排气中总会有少量CO存在。可见,凡是阻碍空燃比的因素,即为阻碍CO生成的因素。 1. 进气温度的阻碍 一样情形下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情形有专门大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的阻碍

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的阻碍 大气压力P 随海拔高度而变化,由体会公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 能够认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,因此进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的阻碍 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的阻碍 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,然而,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。假如这些问题得到解决,一样从净化的观点,期望怠速转速规定高一点较好。 5. 发动机工况的阻碍 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 专门快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

影响汽车发动机充气效率的因素和解决措施

分析影响发动机充气效率的因素及提高其方法 摘要:发动机在燃烧过程中需要充足的氧气,影响发动机充气效率的因素有进气终了压力、进气终了温度、排气终了残余废气压力和温度;提高发动机的充气效率的措施有:减小进气系统的流动损失、减少排气系统对气流的阻力、气门叠开角、合理选择配气正时,保证最好的充气效率。 1 学习本课程目的及意义及心得 通过对本课程学习,使我们了解了内燃机工作循环中各个过程的各阶段包括发动机性能评价、基本工作过程,发动机特性、增压、平衡等并加强排气污染、噪音震动等知识;掌握整机工作性能评定指标及其影响因素;运转特性及调整特性;使我们能正确的合理的选择,运用内燃机。为我们毕业设计打下动力基础,意义非常重大。 《汽车发动机原理》课程结束了但是它为我们带来的影响远不止是这一段时间。通过对此课程的学习使我们掌握汽车发动机工作过程各项性能指标的概念和内涵及其影响因素,熟悉汽车发动机基本理 论、一般工作过程和实际工作循环的特点,学习内燃机的充量更换、燃料供给与调节、混合气的形成与燃烧以及污染物的生成与排放控制等方面的工作原理及影响因素,能运用所学知识,分析提高内燃机各种工作性能指标、降低排放的技术措施和适用条件,了解当今国内

外内燃机技术的新发展,同时进一步掌握发动机方面的英文专业词汇。初步具有利用发动机的基本原理解决实际问题的专业技术应用能力。 2 影响发动机充气效率的因素 1.进气系统的阻力越大,则进入气缸的新鲜混合气愈少,充气效率愈小 2.缸内气体温度越高,充人气体密度越小,充气系数下降 3.残余废气压力高,残余废气密度大,废气量多,则新鲜充量减少,充气效率下降 3 提高发动机充气效率的措施 3.1 安装涡轮增压 涡轮增压,是一种利用内燃机运作所产生的废气驱动空气压缩机的技术。与超级增压器功能相若,两者都可以增加进入内燃机的空气流量,从而令机器效率提高。 涡轮增压的主要作用就是提高发动机进气量,从而提高发动机的功率和扭矩,让车子更有劲。一台发动机装上涡轮增压器后,其最大功率与未装增压器的时候相比可以增加40%甚至更高。这样也就意味着同样一台的发动机在经过增压之后能够产生更大的功率。就拿我们最常见的1.8T涡轮增压发动机来说,经过增压之后,动力可以达到2.4L 发动机的水平,但是耗油量却比1.8发动机并不高多少,在另外一个

节能减排气体发动机现状及前景分析

节能减排气体发动机现状及前景分析 好莱坞年度科幻灾难大片《2012》日前在全球上映,影片讲述了全球生态环境日渐恶化最终迎来了世界末日的到来。环境恶化是21世纪人类面临的最主要问题。传统能源对于环境的破坏,传统能源的日渐短缺,将直接影响人类社会的持续发展,威胁着人类的健康和生存环境。于是寻找和发展新能源、替代能源对整个人类社会有着极其重要的意义。 作为能耗大户,汽车行业的节能减排一直是各国政府高度关注的焦点问题之一。当前全球资源充足、利用技术成熟的汽车替代能源当属气体燃料。但是气体燃料在汽车上的利用,有时也会因为技术的缺陷而引发污染环境的问题。2009年10月,中国广州市人大代表对广州市LPG公交车的环保性提出了质疑,并由此引发了一系列的论证与反论证。在这一事件中有一件引发争议的核心零部件与节能减排有着密切和直接的联系,便是气体燃料向动力能量的转化地——气体发动机。 气体发动机环保优势明显 当前使用单气体燃料作为能力源的发动机,主要有LNG(液化天然气)发动机、CNG(压缩天然气)发动机和LPG(液化石油气)发动机三种。气体发动机与同排量的柴油机相比,动力性相当,环保优势明显,更容易达到国IV、国V排放。且当前生产技术趋于成熟,生产工艺设备与柴油机可通用。在油气价差保持的前提下,燃料经济性显著。不过气体发动机也有一定的缺陷,比如续驶里程短、燃料加注时间长、加气站的建设投资太大等。 既然环保优势明显,为何广州市会出现LPG公交车污染事件的争议呢?其实2009年10月事件发生时很多专家已经给出了解答,称问题在于引发争议的“不对等测试”没有可比性,就好像“快报废的名车肯定比不过新出厂的低档车”,而对比香港LPG巴士的良好运营情况可以发现,原装LPG公交车和改装LPG公交车的排放量差别明显,这或许才是广州LPG公交污染事件的真正原因。 而目前我国公交行业应用气体燃料清洁动力已取得显著成效,北京、上海、广东、四川、重庆、海南、甘肃等许多城市公交公司在发展环保节能型气体城市客车上已经迈出了坚实的基础。随着我国“西气东输”管网的建成与投入使用,国外气源供应日渐稳定增大,气体燃料客车也迎来了发展高峰期。近年来国内各大盛事的举办,都离不开气体燃料清洁能源客车的身影,从2008年奥运会,到2010年广州亚运和上海世博,都已经或者即将出现气体清洁能源燃料大客车的参与。 国内外主流的发动机厂家正是看到这一形势,纷纷推出环保节能技术的客车气体发动机,如玉柴近年研发上市的YC6M、YC6L、YC6G和YC4F等九大系列环保发动机、上柴2009年主推的天然气发动机,国际知名的发动机厂商如康明斯、依维柯和戴姆勒-克莱斯勒等也在不遗余力地大力研发和推广气体发动机等。可以说,配载气体发动机的大客车已经成为各大城市必不可少的一份子,并越来越有成为城市公交客车主流的趋势。 气体发动机发展现状 我国20世纪50年代开始发展低压天然气汽车,80年代中后期改革开放之后,气体燃料汽车开发应用的步伐加快。国内大型发动机厂和汽车厂如玉柴、上柴、潍柴、东风和解放等厂家相继推出了各自的气体发动机产品在市场上推广应用。1988年我国从澳大利亚、新西兰、加拿大等国引进CNG加气站的全套设施、改装汽车部件及高压气瓶,分别建站于南充、大庆等地,开启了CNG汽车发展的新时代。

1.5T发动机功率低原因分析

1.5T发动机功率低的原因分析 摘要:主要从气、油、电控系统三方面对1.5T发动机功率低的原因进行分析,并对容易产生的原因总结。 第一章气:进气和排气 1.1 进气 进气量不足,由进气流量计测量。(1.5T增压发动机有空气流量计。)进气流量过小的原因: (1)进气系统有泄漏; (2)发动机控制单元收到的空气流量信号低于实际进气流量。 HFM(Heat Flow Meter)热膜式空气流量热膜式空气流量管理系统,热膜脏后散热不良,要维持热膜正常温度所需的电流强度下降,导致输入发动机控制单元的信号电压过低,ECU认为进气量小而减少供油量。 2.进气空调不运行,THO温度41.7℃,功率77kW。进气温度过高,空气稀薄,密度小。(1.6 VIS具有进气温度压力传感器,可以计算出空气流量。) 例:37.3℃时,功率82kw;35.5℃时,功率83kw。 电子式汽油喷射装置是20世纪70年代问世的一种先进装置。它可根据发动机运转时的参数变化来调节喷油量,以保证发动机最佳性能。喷油器是电磁式的,由电子控制器控制。电子控制器实际上是一台微型计算器,它储存一套根据试验所得最佳工况时的供油规律而编成的程序。当发动机运转时,电子控制器根据从各传感器和监测组件测得的进气温度﹑冷却水温﹑节气门开度﹑进气管内压力和发动机转速等参数进行计算﹐再与最佳工况进行比较和判断,然后输出符合最佳工况的指令脉冲,以控制喷油器的励磁线圈,从而得到理想的喷油效果。一、进气量少的故障原因 (1)空气滤清器脏和进气软管吸瘪是导致进气量少的主要原因。 (2)空气滤清器和软管不匹配。 (3)初始相位不对,气门重叠角太大。 (4)进气温度太高,密度下降。 (5)中冷器管路布置不合理,存在气阻、漏气等。 1.1.1进气歧管压力过低 诊断方法: 检查空滤是否过脏,HFM是否过脏,节气门体是否可以全开,增压机进气系统是否漏气,增压器废气放气阀是否开启过大。

中国全部国产航空发动机的型号及参数

涡喷-5 涡喷-5是沈阳航空发动机厂根据苏联BK-1φ发动机的技术资料仿制的第一种国产涡喷发动机。 涡喷-5是一种离心式?单转子?带加力式航空发动机,属于第一代喷气发动机。首批涡喷-5发动机在1956年6月通过鉴定,开始投入批量生产。截至1985年涡喷-5系列发动机停产,沈阳航空发动机厂和西安航空发动机厂共生产9658台,主要用于米格-15系列和国产歼-5系列战斗机。 涡喷-5发动机的研制成功,标志着中国航空发动机工业已从制造活塞式发动机时代发展到了喷气式发动机的时代,成为了当时世界上为数不多的几个可以批量生产喷气式发动机的国家之一。 涡喷-5发动机净重989公斤,最大推力状态26千牛(2650公斤),加力状态推力37千牛(3800公斤)涡喷-5系列主要有以下改型: 涡喷-5甲:沈阳黎明发动机公司于1957年仿制的ВК-1А发动机,命名为涡喷-5甲。1963年开始转到西安航空发动机公司生产,1965年6月首批涡喷-5甲通过考核验收试车,8月投入批生产,用于轰-5、轰教-5及轰侦-5飞机。 涡喷-5乙:西安航空发动机公司于1966年试制成功,用于米格-15比斯飞机。 涡喷-5丙:西安航空发动机公司于1976年试制成功,用于米格-17飞机。 涡喷-5丁:西安航空发动机公司于1965年试制成功,用于歼教-5飞机。

涡喷-6是沈阳发动机厂在苏制PA-9B喷气发动机基础上仿制并发展而形成的一个发动机系列型号。涡喷-6于1959年7月定型,是中国首型超音速航空发动机,属于轴流式单转子带加力燃烧室的涡轮喷气发动机。1984年沈航首次将中国独创的沙丘驻涡火焰稳定器(北航高歌发明)成功应用于涡喷-6的改进型,彻底解决了PA-9B所固有的振荡燃烧现象。涡喷-6系列发动机是产量最大国产航空发动机,总产量高达29316台,主要用于歼-6系列和强-5系列国产战机,目前仍有相当数量在役。 最主要的是沈阳航空发动机厂研制的涡喷6甲和成都航空发动机厂研制的涡喷6A/B性能: 直径:0.6686 米、长度:2.91 米、净重:708.1公斤 空气流量:43.3 公斤/秒 转速:11150 转/分 增压比:7.14 涡轮前温度:870摄氏度 耗油率:1.63公斤/公斤/小时 推力:3187公斤 推重比:4.59 WP-6为我国首型超音速航空发动机。其压气机由离心式发展至轴流式,技术上是一次重大进步。1984年沈航首次将我国独创的沙丘驻涡稳定性理论(北航高歌发明)成功应用于WP-6甲改进型,彻底解决了PⅡ-9B所固有的振荡燃烧现象。

汽车排放主要的污染物

汽车排放治理技术指导>>培训班教学课件 北京市交通局汽车维修管理处 北京市交通学校

汽车排放污染物的生成机理 北京理工大学 车辆工程学院 郝利君

第二章汽车排放污染物的生成机理 第1节汽车排气污染物的主要成分与危害 第2节汽油车排放污染物的生成机理 第3节柴油车排放污染物的生成机理 第4节汽车排气污染物净化措施

第1节汽车排气污染物的主要成分与危害 1. 排气污染物主要来源 2. 污染物的主要成分 3. 排气污染物的危害

第1节汽车排气污染物的主要成分与危害 1. 排气污染物的主要来源 2. 污染物的主要成分 3. 排气污染物的危害(1)一氧化碳(CO):不完全燃烧产物。汽油机排放量为1;则LPG发动机为1/2;而柴油机为1/100。 (2)碳氢化合物(HC):未燃和未完全燃烧的燃油、润滑油及其裂解产物。 (3)氮氧化合物(NOx):在燃烧过程中和排入大气后造成的氮的各种氧化物(NO、NO2为主)的总称。 (4)颗粒排放物(PM):主要是碳烟、未燃燃油和润滑油液态颗粒,以及其他碳氢化合物、硫化物、含金属的灰分等。 (5)二氧化碳(CO2):完全燃烧产物。

第1节汽车排气污染物的主要成分与危害 1.排气污染物的主要来源 2.污染物的主要成分 CO、HC、NOx、PM、CO2 3. 排气污染物的危害 一氧化碳(CO) 是一种无色、无味的有毒气体,吸入人体后,能以比氧强300倍的亲和力同血液中的血红蛋白结合,形成碳氧血红蛋白,阻碍血液向心脏、脑等器官输送氧气,从而引起头痛、头晕等各种中毒症状,直至使人窒息死亡。 碳氢化合物(HC) 对眼和呼吸道粘膜有刺激作用,可引起结膜炎、鼻炎、支气管 炎等症状。 还是光化学烟雾形成的重要物质。

一文读懂发动机的节能减排技术

一文读懂发动机的节能减排技术 随着石油资源紧缺及环境污染的日益加重,各国开始不断收紧汽车燃油消耗及排放标准,于是,更为节能环保的车辆开始受到人们的青睐。对于已有百年多历史的内燃机而言,想要继续保持其旺盛的生命力,就必须在节能减排技术上有所突破。 从整车厂和零部件供应商在发动机领域的技术创新来看,小型化发动机早已成为各家追逐的焦点。相对而言,更小的、功率密度更大的发动机能够降低摩擦损失,从而提升整车燃油经济性。此外,在中国1.6L及以下小排量发动机还能享受购置税减半的优惠政策。 何为发动机小型化? 发动机小型化即通过减小发动机排量或减少气缸数量,在提高燃油效率的同时减少尾气和温室气体排放。全球排放法规和不断提高的燃油经济性标准同时推动着传统发动机向着小型化的路线发展。目前,这项技术被整车厂广泛应用于轻型汽油发动机中。有测试数据显示,发动机小型化可以提升20%到30%的燃油效率。 然而在降低油耗和排放量的情形下,小型化发动机如何在实际行驶过程中保证其动力性能不被削弱?此前,盖世汽车针对发动机小型化问题做过一期业界调查《发动机小型化趋势明显动力性能表现成市场痛点》。结果表明,业界对发动机小型化最大的疑问在于其动力性能是否足够强劲,这也是影响小型化发动机在终端市场表现的根本原因。关于制约发动机小型化市场表现的因素,盖世汽车将在后期的专家访谈中深入讲解,本篇不做过多赘述。发动机小型化相关技术 更少气缸数的更小型的发动机之所以成为可能,离不开涡轮增压技术、汽油直喷技术、可变气门正时等关键零部件技术作保障。下面将简要解析这些技术的工作原理,并分析各项技术的存在的优势和劣势。 涡轮增压技术 涡轮增压(Turbocharger)是利用发动机排放出的废气冲击涡轮来压缩进气,从而提高发动机的动力和燃油效率。

整车乏力及发动机扭矩和功率不足

整车乏力及发动机扭矩和功率不足 的原因分析及查找排除 摘要本文详细论述了整车乏力及发动机功率和扭矩不足的主要原因,并以实例进行了分析说明,提出了解决问题的具体措施。 关键字整车乏力功率不足 前言 针对整车乏力及发动机扭矩和功率不足,通过实例分析其原因并找出排除方法。 1 以整车为例 1 整车乏力、油耗高的原因及解决方法 1.四轮刹车间隙小,可通过重调各刹车间隙排除 2.变速箱一轴与发动机轴向间隙小,甚至无间隙,可通过调整或者更换变速 箱解决 3.摩擦片打滑,使得发动机空转 a)压盘三爪高度不一致,导致压力不均匀 b)摩擦片或飞轮使用太久,磨损严重,间隙大,摩擦力不够 2 供油管路不顺畅对发动机的影响及解决方法 a)燃油箱较脏,滤网(喷油泵上滤网、柴油滤清器滤网)被堵死,燃油不能顺利进入泵 b)从油箱至发动机的输油管路较长且内径较细,有的油管使用得不正确,不耐油,经柴油腐蚀后,油管变形,内径变细。 98年我做售后服务工作时曾遇到过这样一件事。有一用户同时购买了5台装4100QB-1A发动机的新车跑运输(跑成都到重庆300多公里路),每次保养都到服务站来,其中有一辆车的驾驶员反应,他的车空车从重庆返回时,油门踩到底后,仍然追不上其他几辆车,但差距不是很大。我当时检查了整车的底盘、刹车系统以及发动机确认无问题后,再查看空车高转速,较其他几辆车,空车高转速偏低,初步判断可能是空高的问题,因此在说明书允许的范围内,适当的增加空高转速,并跟驾驶员做了说明。但一周后,驾驶员反馈发动机明显乏力并且有时会熄火。根据驾驶员反应已经清洗过油箱以及油泵上的滤网并更换了柴油滤清器,所以排除滤网堵塞这种可能。当我再次检查油路时,发现该车的进回油管与原车不同,已换做胶管(氧气管),并在检查各接头时发现各接头均密封完好,但在排空气时,手油泵起初很正常,在按压一定时间后,油压感消失,此时感觉油管材质有问题。在我建议下,把进回油管更换会普通塑料管之后手油泵排空气时的压力感一直正常,试车后故障排除,并且不再出现类似的问题。所以我认为是柴油管路使用不当,经柴油腐蚀后,油管孔径变小,燃油不能顺利通过油管进入油泵,导致油泵供油不足,整车乏力以及不间断的熄火。 2 以发动机说明

我国涡扇10航空发动机内幕

我国涡扇10航空发动机内幕 八十年代初期,中国航空研究院606所(中国航空工业第一集团公司沈阳发动机设计研究所)因七十年代上马的歼九、歼十三、强六、大型运输机等项目的纷纷下马,与之配套的研发长达二十年的涡扇六系列发动机也因无装配对象被迫下马,令人扼腕,而此时中国在航空动力方面与世界发达国家的差距拉到二十年之上。面对中国航空界的严峻局面,国家于八十年代中期决定发展新一代大推力涡扇发动机,这就是涡扇10系列发动机。依据装配对象的不同,涡扇10系列有涡扇10、涡扇10A、涡扇10B、涡扇10C、涡扇10D等型号,其中涡扇10A是专门为中国为赶超世界先进水平而上马的新歼配套的。中国为加快发展涡扇10系列发动机,采取两条腿走路方针。一是引进国外成熟的核心机技术。中美关系改善的八十年代,中国从美国进口了与F100同级的航改陆用燃汽轮机,这是涡扇10A核心机的重要技术来源之一;二是自研改进。中国充分运用当时正在进行的高推预研部分成果(如92年试车成功的624所中推核心机技术,性能要求全面超过F404),对引进的核心机加以改进,使核心机技术与美国原型机发生了较大变化,性能大为增强。这里说句题外话,网上有人说涡扇10是在F404 基础上放大而成,性能直逼F414,似乎也不无道理,因为核心机技术来源较多,不能单纯说由那一家发展而来

结构: 涡扇10/10A是一种采用三级风扇,九级整流,一级高压,一级低压共十二级,单级高效高功高低压涡轮,即所谓的3+9+1+1结构结构的大推力高推重比低涵道比先进发动机。黎明在研制该发动机机时成功地采用了跨音速风扇;气冷高温叶片,电子束焊整体风扇转子,钛合金精铸中介机匣;,挤压油膜轴承,刷式密封,高能点火电嘴,气芯式加力燃油泵,带

(环境管理)发动机排放污染物的影响因素

发动机排放污染物的生成机理和影响因素 主要内容:介绍了汽车尾气中的主要污染物CO、HC、NO X和微粒的生成机理及其影响因素。 1 一氧化碳 1.1 汽车尾气中CO的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的 中间产物。 影响一氧化碳生成的因素 理论上当α在14.7以上时,排气中不存在CO,而只生成CO2。实际上由于燃油和空气混合不均匀,在排气中还含有少量CO。即使混合气混合的很均匀,由于燃烧后的温度很高,已经生成的CO2也会由于一小部分分解成CO和O2,H2O也会部分分解成O2和H2,生成的H2也会使CO2还原成CO,所以,排气中总会有少量CO存在。可见,凡是影响空燃比的因素,即为影响CO生成的因素。 1. 进气温度的影响 一般情况下,冬天气温可达零下20℃以下,夏天在30℃以上,爬坡时发动机罩内进气温度超过80℃。随着环境温度的上升,空气密度变小,而汽油的密度几乎不变,化油器供给的混合气的空燃比α随吸入空气温度的上升而变浓,排出的CO将增加。因此,冬天和夏天发动机排放情况有很大的不同。图2-3为一定运转条件下,进气温度与空燃比的关系,大致和绝对温度的方根成反比的理论相一致。 进气温度/℃海拔高度/m 怠速 转速/(r/min) 图2-3 进气温度与空燃比的关系图2-4 海拔高度与大气压力的关系图2-5 怠速转速对CO和HC排放的影响

V/(km/h) 图2-6 某汽油机等速工况排气成分实测结果 2. 大气压力的影响 大气压力P 随海拔高度而变化,由经验公式 () 5.256010.02257 kPa P P h =- (2-4) 式中:h 一海拔高度,km 。 当海平面0P =100kPa 时,可作出海拔高度和大气压力变化关系的曲线,如图2-4所示。 当忽略空气中饱和水蒸气压时,空气密度ρ可用下式表示: ()32731.293 kg/m 273760 P T ρ=+ (2-5) 式中:T -温度,℃。 可以认为空气密度ρ和大气压力P 成正比,从简单化油器理论可知,空燃比和空气密 度的平方根成正比,所以进气管压力降低时,空气密度下降,则空燃比下降,CO 排放量将增大。 3. 进气管真空度的影响 当汽车急剧减速时,发动机真空度在68kPa 以上时,停留在进气系统中的燃料,在高真 空度下急剧蒸发而进入燃烧室,造成混和气瞬时过浓,致使燃烧状况恶化。CO 浓度将显著增加到怠速时的浓度。 4. 怠速转速的影响 图2-5表示了怠速转速和排气中CO 、HC 浓度的关系。怠速转速为600r/min 时,CO 浓 度为1.4%,700r/min 时,降为1%左右,这说明提高怠速转速,可有效地降低排气中CO 浓度,但是,怠速过高会加大挺杆响声,对液力变扭汽车,还可能发生溜车的危险。如果这些问题得到解决,一般从净化的观点,希望怠速转速规定高一点较好。 5. 发动机工况的影响 发动机负荷一定时,CO 的排放量随转速增加而降低,到一定的车速后,变化不大。图 2-6为某汽油机负荷一定、匀速工况下的CO 浓度的变化。当车速增加时,CO 很快降低,至中速后变化不大,这是由于化油器供给发动机的空燃比,随流量增加接近于理论空燃比的结果。

发动机排放污染物地生成机理

发动机排放污染物的生成机理 主要内容:介绍了汽车尾气中的主要污染物CO 、HC 、NO X 和微粒的生成机理。 1、 一氧化碳 1.1 一氧化碳的生成机理 汽车尾气中CO 的产生是由于燃油在气缸中燃烧不充分所致,是氧气不足而生成的中间产物。 一般烃燃料的燃烧反应可经以下过程: 22n m H 2 n mCO O 2m H C +→+ (2-1) 燃气中的氧足够时有 O 2H O 2H 222→+ (2-2) 222CO O 2CO →+ (2-3) 同时CO 还与生成的水蒸气作用,生成氢和二氧化碳。 可见,如果燃气中的氧气量充足时,理论上燃料燃烧后不会存在CO 。但当氧气量不足时,就会有部分燃料不能完全燃烧,而生成CO 。 在非分层燃烧的汽油机中,可燃混合气基本上是均匀的,其CO 排放量几乎完全取决于可燃混合气的空燃比α或过量空气系数a φ。图2-1所示为11种H/C 比值不同的燃料在汽油机中燃烧后,排气中CO 的摩尔分数x CO 与α或a φ的关系。 空燃比α 过量空气系数a φ a ) b)

图2-1汽油机CO 排放量x CO 与空燃比α及过量空气系数a φ的关系 由图2-1可以看出,在浓混合气中(a φ<1),CO 的排放量随a φ的减小而增加,这是因缺氧引起不完全燃烧所致。在稀混合气中(a φ>1),CO 的排放量都很小,只有在a φ=1.0~ 1.1时,CO 的排放量才随a φ有较复杂的变化。 在膨胀和排气过程中,气缸内压力和温度下降,CO 氧化成CO 2的过程不能用相应的平衡方程精确计算。受化学反应动力学影响,大约在1100K 时,CO 浓度冻结。汽油机起动暖机和急加速、急减速时,CO 排放比较严重。 在柴油机的大部分运转工况下,其过量空气系数a φ都在1.5~3之间,故其CO 排放量要比汽油机低得多,只有在大负荷接近冒烟界限(a φ=1.2~1.3)时,CO 的排放量才大量增加。由于柴油机燃料与空气混合不均匀,其燃烧空间总有局部缺氧和低温的地方,以及反应物在燃烧区停留时间较短,不足以彻底完成燃烧过程而生成CO 排放,这就可以解释图2-2在小负荷时尽管a φ很大,CO 排放量反而上升。类似的情况也发生在柴油机起动后的暖机阶段和怠速工况中。 过量空气系数a φ 图2-2典型的车用直喷式柴油机排放污染物量与过量空气系数a φ的关系 2、 碳氢化合物 车用柴油机中的未燃HC 都是在缸内的燃烧过程中产生并随排气排放。汽油发动机中未燃HC 的生成与排放主要有以下三种途径。 (1)在气缸内的燃烧过程中产生并随废气排出,此部分HC 主要是燃烧过程中未燃烧或燃烧不完全的碳氢燃料。 (2)从燃烧室通过活塞组与气缸之间的间隙漏入曲轴箱的窜气中含有大量未燃燃料,如果排入大气中也构成HC 排放物。 (3)从汽油机的燃油系统蒸发的燃油蒸汽。 2.1 碳氢化合物的生成机理 1. 车用汽油机未燃HC 的生成机理 车用发动机的碳氢排放物中有完全未燃烧的燃料,但更多的是燃料的不完全燃烧产物,还有小部分由润滑油不完全燃烧而生成。排气中未燃碳氢物的成份十分复杂,其中有些是原来燃料中不含有的成份,这是部分氧化反应所致。表2-1列出了车用汽油机中未燃碳氢化合

分析影响柴油发动机功率不足的因素及解决方法

分析影响柴油发动机功率不足的因素及解决方法 摘要:机械设备在我国经济社会发展中占据着重要地位。目前,随着经济社会的发展,我国对机械设备的利用程度越来越高。在机械设备中,柴油发动机是其中必不可少的一个组成部分,它为机械设备的运行提供动力,保证了机械设备的正常运行。由此可见,柴油发动机对机械设备具有重大作用。但是,在柴油法发动机工作的过程中,由于多种原因会导致功率不足,影响柴油发动机的性能。本文结合机械设备实际情况,对影响柴油发动机功率不足的因素进行了介绍,并针对这些原因提出了一些解决方法,希望对于提高柴油发动机功率能够有所帮助。 关键词:柴油发动机;功率不足;因素;解决方法 机械设备在我国经济社会发展和人们生产生活中发挥着重要作用。近年来,随着经济社会的发展和科学技术的进步,我国对机械设备的应用越来越多,比如,农业机械设备拖拉机,施工机械设备叉车等。在这些机械设备中,柴油发动机是其主要的动力源,在机械设备运行过程中发挥着重要作用。但是,在柴油发动机运作的过程中,由于柴油机供给系统故障原因、离合器出现打滑原因以及轮胎的尺寸不正确原因等,导致柴油发动机的功率不足,严重影响了柴油发动机的正常运行,进而影响机械设备的工作。为了顺应时代发展潮流和满足现实发展需要,我们需要对影响柴油发动机功率的因素进行分析,并采取解决措施,确保柴油发动机功率的正常,使机械设备更好地为我国经济社会发展服务。 1.柴油发动机概述 顾名思义,柴油发动机就是通过燃烧柴油而产生一定能量的一种机械设备,主要由机体、燃油系统、润滑系统、冷却系统以及配气机构等部分组成。在工作原理方面,柴油发动机要经过进气、压缩、做工以及排气等四个环节。在分类上,依照不同的用途,柴油发动机可以分为农业机械柴油发动机、工程机械柴油发动机、车辆柴油发动机以及井下机械柴油发动机等多种类型。在现实中,柴油发动机由于具有功率大和经济性能好而在农业机械设备中得到广泛应用。但是,在柴油机发动机运行过程中,由于受到多种因素的影响,功率不足成为制约柴油发动机的一个重要问题,为了提高柴油发动机的利用效率,针对不同的原因,我们必须采取一些解决措施,使柴油发动机更好地为机械提供动力。 2.影响柴油发动机功率不足的因素及解决方法 2.1空气滤清器堵塞问题 空气滤清器堵塞是造成柴油发动机功率降低的一个常见因素。在柴油发动机运行过程中,需要进入足够的新鲜空气,从而确保柴油发动机气缸中的柴油得到充分燃烧。反之,如果柴油发动机中的进气量不够,就会影响柴油发动机的功率。但是,一般来说,很多机械设备的工作环境比较恶劣,很容易使空气滤清器出现

节能减排车辆有哪些标准

节能减排车辆有哪些标准 节能减排车辆的尾气排放标准 轻型汽车的排放标准 轻型汽车的排放标准在1999年7月发布,2001年修订。 第一阶段:GB18352.1-2001《轻型汽车污染物排放限值及测量方法(I)》,等效采用欧盟93/59/EC指令,参照采用98/77/EC指令部分技术内容,等同于欧I,从2001年4月16日发布并实施; 第二阶段:GB18352.2—2001《轻型汽车污染物排放限值及测量方法(Ⅱ)》,等效采用欧盟96⑽69/EC指令,参照采用98⑽77⑽EC 指令部分技术内容,等同于欧Ⅱ,从2004年7月1日起实施; 第三阶段:GB18352.3Ⅻ2005《轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)》,部分等同于欧Ⅲ,将于2007年实施;

第四阶段:GB18352.3Ⅻ2005《轻型汽车污染物排放限值及测量方法(中国Ⅲ、Ⅳ阶段)》,部分等同于欧Ⅳ,将于2010年实施。 中国轻型汽车Ⅲ、Ⅳ号排放标准在污染物排放限值卜与欧Ⅲ、欧Ⅳ标准完全相同,但在实验方法上作了一些改进,在法规格式上也与欧Ⅲ、欧Ⅳ标准有很大差别。 重型汽车的排放标准 重型汽车的排放标准,包括重型压燃式发动机标准和重型点燃式发动机标准。 1.重型压燃式发动机标准 (1)GBl7691-200l《车用压燃式发动机排气污染物排放限值及测

量方法》,于2001年4月16日发布,参照欧盟91/542/EEC指令。 第一阶段:相当于欧I水平,型式核准试验自2000年9月1日起执行,生产一致性检查自2001年9月1日起执行; 第二阶段:相当于欧Ⅱ水平,型式核准试验自2003年9月1日起执行,生产一致性检查自2004年9月1日起执行。 (2)GB17691-2005《车用压燃式、气体燃料点燃式发动机与汽车排气污染物排放限值及测量方法(中国Ⅲ、Ⅳ、Ⅴ阶段)》,修改采用了欧盟指令2001/27/EC的有关技术内容,于2005年5月发布,分别于2007年、2010年、2012年1月1日实施。 2.重型点燃式发动机标准 GB14762-2002《车用点燃式发动机及装用点燃式发动机汽车排气污染物排放限值及测量方法》,于2002年11月发布。

重卡发动机功率不足的原因解决

重卡发动机功率不足的原因解决重卡在行驶中,如出现无力、爬坡能力低、加速不良等情况,表明发动机已出现了故障。其原因有以下几个方面: (1)低压油路供油不足,油路中有部分堵塞; (2)柴油中有空气; (3)空气滤清器、进气管道或中冷器堵塞,进气阻力增大; (4)增压器失效; (5)供油时间不当; (6)个别缸喷油器喷射不良; (7)柴油中有水,柴油吐蜡; (8)高压油泵柱塞磨损,柱塞卡住; (9)调速器调整不当; (10)气门关闭不严; (11)气缸磨损严重; (12)排气制动蝶阀故障,堵塞排气管,排气不畅。

排除办法: (1)清洗低压油路,解除油路中的堵塞故障。低压油路中容易堵塞的部位是柴油粗滤器。由于柴油不干净,或是在清洗油箱、粗滤器时用棉纱头、毛巾,易造成粗滤器堵塞。如车辆急于执行任务,可将粗滤器滤芯去掉。待完成任务返回驻地,再彻底清洗柴油粗、细滤清器,更换粗滤器滤芯及细滤器滤芯。堵塞的粗滤器滤芯应用干净柴油浸泡,浸泡一定时间后,用压缩空气吹扫。注意!清扫时,压缩空气应从里向外吹。 (2)消除燃料系统中的不密封处。油路中有空气多半是低压油管穿孔所致。斯太尔重型车低压油管采用尼龙一11管线,强度虽然可以,但怕火烤。如果管线磨出孔,或在电气焊施工中烤坏管线,应及时修复。修复方法如下:将穿孔处管线断开,插入60mm左右和油管线内径一致的紫铜管,将尼龙管线连接起来,两端用卡子固定。 (3)清洗或更换空气滤清器滤芯。应用干燥的压缩空气吹扫空滤器外滤芯,如果有油痕等污染,则予以更换。 (4)检修增压器及进气管道。由于在平时运行中不太注意,如起动汽车和停车前猛轰油门等,易造成增压器转子在润滑不良的情况下高速运转,转子的轴向、径向间隙增大,个别严重的会使增压器轴承烧坏。应检查转子的轴向和径向间隙。K28、GJ80最大轴向间隙为0.16mm,最大径向间隙为0.46mm;TA45、K29S3A最大轴向间隙为0.025~0.1mm,最大径向间隙为0,075~0.18mm。如轴向间隙过大,应采用加垫方法调整;径向间隙过大则应更换增压器涡壳或叶轮。更换叶轮后应进行动平衡校验。

相关文档
最新文档