钛锆矿选矿

钛锆矿选矿

世上无难事,只要肯攀登

钛锆矿选矿

。钛、锆砂矿除少数矿体上部有覆盖层需经剥离外,一般不需剥离即可采用千采或船采机械进行开采。干采机械有:推土机、铲运机、装载机及斗轮挖掘机等;船采所用采船有链斗式、搅吸式及斗轮式三种。采出矿石经皮带运输机或砂泵管道输送至粗选厂。钛、锆砂矿选厂分粗选及精选两个阶段进行。(1)粗选送至粗选厂的矿石,首先经过除渣、筛分、分级、脱泥及浓缩等必要的准备作业,然后给入粗选流程进行选别。粗选的目的是将入选矿石按矿物密度不同进行分离,丢弃低密度脉石矿物尾矿,获得重矿物含量达90%左右的重矿物混合精矿,作为精选厂给料。粗选厂一般与采矿作业纳为一体,组成采选厂。为适应砂矿床特征,一般粗选厂均建为移动式,移动方式有水上浮船及陆地轨道、履带、托板及定期拆迁等方式。钛、锆砂矿粗选一般选用处理量大,回收率高又便于移动式选厂应用的设备,较普遍的是圆锥选矿机及螺旋选矿机,少量采用摇床。上述设备有单一使用的,也有配合使用的:单一圆锥选矿机主要用于规模大或原矿中重矿物含量高的粗选厂;多数厂采用以圆锥选矿机粗选,螺旋选矿机再精选;一些规模较小的选矿厂,往往采用单一的螺旋选矿机粗选。[next] (2)精选钛、锆砂矿多系含有几种有价矿物的综合性矿床,精选的目的是将粗精矿中有回收价值的矿物进行有效的分离及提纯,达到各自的精矿质量要求,使之成为商品精矿。精选厂一般建成固定式。粗精矿采用汽车、火车或管道输送等方式运输到精选厂处理。精选作业分为湿式及干式两个阶段, 以干法作业为主。根据粗精矿的性质,在精选工艺的前段通常采用部分湿法作业。有时在精选过程中还存在干法、湿法交替的过程,不过从能源消耗及简化工艺流程角度考虑,在可能条件下力争减少这一过程。精选厂的湿法作业种类有:采用摇床或螺旋选矿机重选,进一步丢弃残存在粗精矿中的密度小的脉石矿

钛铁矿选矿方法

郑州山川重工有限公司 刘国华 钛铁矿和金红石精矿 钛铁矿、金红石砂矿:这是我国目前生产钛铁矿和金红石精矿的主要矿石类型。根据海南中兴精细陶瓷微粉总厂和海南省冶金工业总公司所属沙老、南港、清澜(铺前)、乌场(保定)4个国有钛(砂)矿的生产实践,其钛铁矿、金红石、锆石、独居石砂矿的采矿、选矿工艺流程和各种精矿的技术指标如图3.5.10。采矿的回采率>95%,贫化率<5%,选矿的总回收率达80%~85%。 为了提高资源的利用率和经济效益,减少中矿、尾矿的积压和对环境的污染,广州有色金属研究院曾专题研究了“海南岛海滨砂矿难选中矿钛元素赋存状态及综合回收途径”(第三届全国矿产资源综合利用学术会议论文集,1990年)。该研究、试验表明:①钛元素主要赋存在以Ti4+与Fe2+呈类质同象置换而形成的钛-铁矿系列中;其中钛铁矿(含TiO252%~54%)和富铁钛铁矿(含TiO246%)所占的比例达66.2%,其次是富钛钛铁矿(含TiO256%~58%)占19.2%,钛赤铁矿(含TiO210.7%~19.5%)占14.6%。此外,钛元素还少量地赋存在金红石、锐钛矿、白钛石和榍石中。②难选中矿属钛铁矿、锆石、独居石、金红石、锐钛矿等的混合矿物,矿物粒度0.2~0.08mm(属可选粒度);采用二碘甲烷介质作“沉浮”选矿,比重<3.3的非有用矿物的上浮排除率达19.76%,比重>3.3的有用重矿物下沉产率达73.5%。③在下沉的重矿物中,除主收钛铁矿外,可综合回收锆石、独居石、富钛钛铁矿和金红石;其一是有用重矿物经电磁选场强6000Oe分选出占钛铁矿矿物比例88.1%的磁性产品(TiO243%),再经800℃、10min的氧化焙烧,最后经场强650 Oe弱磁选,在磁选产品中可获得TiO250%~51%的钛铁矿精矿产品;其二是有用重矿物(钛铁矿粗精矿,含TiO243%~46%)经电选(2.1kV,120r/min),在导体产品中可获得TiO2 51%~53%的钛铁矿精矿产品。④在经场强8000—12000 Oe磁选的尾矿中,再采用浮选,可获得合格的独居石精矿;再对其经场强>20000 Oe磁选的非电磁性重矿物尾矿中,采用电选,可在非导体性产品中获得合格的锆石精矿,在导体性产品中获得合格的金红石精矿。

萤石的选矿方法

萤石的选矿方法 1、萤石的选矿方法 我国萤石矿山的选矿方法有手选、重力(跳汰机)选矿和浮游选矿等。 (1)手选、重选 手选主要用于萤石与脉石界限十分清楚、废石容易剔除、各种不同品级的矿石易于肉眼鉴别的萤石矿,是一种最简便、最经济的选矿方法。 重力(跳汰机)选矿主要选别矿石品位较高、粒径在6~20mm的粒子矿。重力选矿具有结构简单、操作方便、效率显著等优点。 (2)萤石浮选 萤石浮选主要的问题是与石英,方解石和重晶石等脉石矿物的分离。 1) 含硫化矿的萤石矿 一般先用黄药类捕收剂将硫化矿浮出,必要时用硫化钠活化,然后再加脂肪酸得萤石,有时在萤石浮选作业中,加少量的氰化物抑制残余的硫化矿,以保证萤石精矿的质量。 2) 含重晶石方解石的萤石矿 一般先用油酸作捕收剂,浮出萤石,加少量的铝盐可以活化萤石。加糊精可以抑制重晶石和方解石,而活化萤石。在用量少的时候,水玻璃也有类似作用。 用烤胶来抑制方解石和重晶石的研究证明,对于含有较多的方解石、石灰岩、白云岩等比较复杂的萤石,抑制脉石矿物用烤胶,木质素磺酸盐,效果也很好。 3) 萤石与石英的分选 用脂肪酸做捕收剂,用水玻璃做脉石抑制剂、浮选萤石、用碳酸钠调整矿浆pH为8~9。 水玻璃的用量要控制好,少量时对萤石有活化作用,过量萤石也会被抑制。为了少用水玻璃,又能增强对石英类脉石的抑制,常常添加多价重金属阳离子(Al3+,Fe2+)及明矾、硫酸铝等; 加入Cr3+,Zn2+离子也有效果,这些离子不仅对石英,而且对方解石也有抑制作用。 此外,为了获得优质低硅的萤石精矿,还必须控制磨矿细度及浮选矿浆浓度(精选作业的矿浆浓度应低)、温度、药剂组合与用量。 4) 萤石和重晶石的分选 一般常用将萤石和重晶石混浮,然后进行分离,混浮用油酸做捕收剂,水玻璃做抑制剂。混合精矿的分离,可以采用下列两种方法: 1) 用糊精或丹宁同铁盐抑制重晶石,而用油酸浮萤石。 2) 用烃基硫酸脂浮选重晶石,而将萤石精矿留在槽中。 研究结果表明,萤石和重晶石的分离,先浮萤石或先浮重晶石都可以得到较好的效果。 2.选矿工艺 1)粒级控制的工艺研究: 磨矿粒度选择 干法和湿法磨矿 阶段磨浮工艺流程 2)矿浆pH值: “全碱工艺”:全碱性(pH=9.0)浮选 “碱—酸工艺”:碱性(pH=9.0)粗选,弱酸性(pH=6.0)精选 “全酸工艺”:全弱酸性(pH=6.0)浮选 3)中矿处理 中矿循序返回和集中返回

萤石矿选矿厂实例(五)

立志当早,存高远 萤石矿选矿厂实例(五) 3 江西德安萤石矿选矿厂该厂于1978 年由南昌有色冶金设计研究院设计的,设计规模为250t/d. (1)矿石特性:该厂处理的原矿属热液交代和热液充填碳酸盐-硅酸盐类型萤石矿床。热液交代型萤石中萤石晶粒较细,呈紫色、浅紫色、无色的八面体和菱形十二面体的聚形晶,与脉石矿物或围岩组成以条带 状为主,浸染状为辅的构造,这种矿石的CaF2 含量一般在65%以下;热液充 填型萤石主要产于破碎带及破碎的硅化围岩中,呈纯萤石脉、石英萤石脉和方 解石等碳酸盐岩石萤石脉等几种形式产出。其萤石颗粒粗大,颜色以浅绿色、 浅黄绿色、桃红色、无色和上述颜色的混杂,色泽极为鲜丽,八面形聚晶,半自形晶。晶体最大可达十数厘米,以紫色八面体聚晶多见。矿石由萤石、石英、方解石组成,局部有少量的金属硫化物。其构造为条带状、浸染状、块状、皮壳状、角砾状、网脉状等。萤石单矿物含CaF2 达98.44~99.98%,矿石平均品位CaF2 的含量为38.3%。在重液(密度为2.9)的条件下分离,5~1mm 粒级单晶达92.65~97.89%,精矿品位CaF2 含量为97.02~97.12%。原矿多元素分析和粒度分析见表14 和表15。 (2)选矿工艺:原矿(或废石堆原矿)用圆筒洗矿分级筛进行洗矿分级, 分为50~25mm、25~10mm、10~3mm、3~0mm 等四个级别。50~25mm 粒级经人工手选得粗粒精矿,25~10mm、10~3mm 两级分别经跳汰机分选,得粗精矿与手选粗粒精矿合并,直接出售;3~0mm 粒级经沉淀脱泥后与手选、跳汰机分选,得粗精矿与手选粗粒精矿合并,直接出售;3~0mm 粒级经沉淀脱泥后与手选、跳汰尾矿合并,进入磨矿分级,分级溢流经过一次粗选,一次扫选,六次 精选后得到最后终精矿,扫选尾矿送尾矿坝堆存。其选矿特点是原矿经一次磨

铁矿石常用的选矿方法

第一章铁矿石常用的选矿方法 第一节磁铁矿选矿流程 磁铁矿石主要包括单一磁铁矿矿石、钒钛磁铁矿 矿石、含磁铁矿混合矿石和含磁铁矿多金属共生矿石, 磁铁矿属强磁性产物,在磁铁矿选矿中普遍采用以弱 磁选工艺为主的选别流程: 1、单一弱磁选流程:选别作业采用单一弱磁选工艺,适合于矿物组成简单的易 选单一磁铁 矿矿石;可进一步划分为两类:连续磨矿-弱磁选流程、阶段磨矿-阶段选别流程。 1)连续磨矿-弱磁选流程:适用于嵌布粒度较粗或含铁品位较高的矿石。根据 铁矿无的嵌布 粒度,可采用一段磨矿或两段连续磨矿,磨矿产品达到选别要求后进行弱磁选。 2)阶段磨矿-阶段选别流程:适用于嵌布粒度较细的低品位矿石。在一段磨矿 石进行磁选粗 选,抛弃部分合格尾矿,磁选粗精矿在给入二段磨矿(再磨)进行再磨再选。如果能再粗磨条件下,经过选别丢弃大量尾矿,对于减少后续磨矿和分选作业负荷、降低成本是有利的。 2、弱磁选-反浮选流程:主要针对的是某些铁矿石精矿石品位难以提高、铁精 矿中SiO2等 杂质组成偏高的问题,工艺方法包括磁选-阳离子反浮选流程和磁选-阴离子反浮选流程两种。

3、弱磁选-精选流程:这种流程方法是对某些铁矿石精矿品位难以提高、铁精 矿石中SiO2 等杂质组分偏高的问题开发出来的。 4、弱磁-强磁-浮选联合流程:主要用于处理多金属共生铁矿石和混合铁矿石, 分为三类: 1)弱磁选-浮选流程:主要用于处理伴生硫化物的磁铁矿矿石。根据矿石性质 进一步分为先 磁后浮和先浮后磁两种。 2)弱磁-强磁流程:主要用于处理磁性率较低的混合矿石。特点是采用弱磁选 首先分离弱磁 性的磁铁矿,弱磁选尾矿再采用强磁选回收赤铁矿等弱磁性矿物。 3)弱磁-强磁-浮选流程:主要用于处理多金属共生铁矿石。 第二节赤铁矿选矿流程 赤铁矿化学成分为Fe2O3、晶体属三方晶系的氧化物 矿物。与等轴晶系的磁赤铁矿成同质多象。晶体常呈板状; 集合体通常呈片状、鳞片状、肾状、鲕状、块状或土状等。 呈红褐、钢灰至铁黑等色,条痕均为樱红色。 1、焙烧磁选流程:当矿物组成比较复杂而其他选矿方法难以获得良好的选别指 标时,往往 采用磁化焙烧宣发;对于粉矿常用强磁选、重选、浮选等方法及其联合流程进行选别。 2、赤铁矿浮选流程:

萤石矿选矿废水处理的工艺研究

萤石矿选矿废水处理的工艺研究

一、氯化钙,聚合氯化铝和聚丙烯酰胺除氟工艺 随着现代工业的发展,氟及其化合物的生产、合成、应用越来越广泛。含氟矿石的开采加工、氟化物的合成、金属冶炼、铝电解、玻璃、电镀、化肥、农药、化工等行业产生的废水中常含有高浓度的氟化物,造成了环境污染。特别是近十多年来,电子产业(如彩色显象管、集成电路等)的迅猛发展,含氟废水排放量逐年增长,氟污染日益受到人们 的关注。因此,含氟废水处理方法与技术研究一直是国内外环保领域的重要课题。目前,国内外针对含氟废水处理方法以及含氟废水除氟流程的研究已经很多。尽管研究的这些废水成份比较单一,氟离子浓度也不是很高,(一般在100~300mg/L)但这些除氟工艺都存在处理流程长、投加药剂种类多、单位氟去除成本大的缺陷。本研究采用氯化钙,聚合氯化铝(PAC)和聚丙烯酰胺处理萤石选矿废水取得了很好的效果。通过实验发现:一段除氟处理中氯化钙投加量、反应时间以及沉降时间均影响一段上清液中残留F~-浓度;二段除氟处理中铝盐及聚丙烯酰胺的投加量、pH值以及搅拌时间均影响最后出水中的残留F~-浓度。其中,氯化钙投加量是一段除氟中的重要的影响因素。二段除氟中,铝盐及聚丙烯酰胺的投加量,pH值同等重要。本研究利用萤石选矿厂生产废水做除氟研究,先在探索的基础上,分段做除氟流程实验,然后利用条件实验对影响除氟效果的因子逐个分析,得出氯化钙,聚合氯化铝和聚丙烯酰铵除氟流程及最佳反应条件。最佳反应条件为:一段除氟,氯化钙投加量0.8g/L,反应30min,沉淀60min;二段除氟,聚合氯化铝与聚丙烯酰胺投加量为0.7g/L,pH值在7~8为宜,搅拌

钛铁矿和锆矿选矿技术

世上无难事,只要肯攀登 钛铁矿和锆矿选矿技术 。钛、锆砂矿除少数矿体上部有覆盖层需经剥离外,一般不需剥离即可采用千采或船采机械进行开采。干采机械有:推土机、铲运机、装载机及斗轮挖掘机等;船采所用采船有链斗式、搅吸式及斗轮式三种。采出矿石经皮带运输机或砂泵管道输送至粗选厂。钛、锆砂矿选厂分粗选及精选两个阶段进行。(1)粗选送至粗选厂的矿石,首先经过除渣、筛分、分级、脱泥及浓缩等必要的准备作业,然后给入粗选流程进行选别。粗选的目的是将入选矿石按矿物密度不同进行分离,丢弃低密度脉石矿物尾矿,获得重矿物含量达90%左右的重矿物混合精矿,作为精选厂给料。粗选厂一般与采矿作业纳为一体,组成采选厂。为适应砂矿床特征,一般粗选厂均建为移动式,移动方式有水上浮船及陆地轨道、履带、托板及定期拆迁等方式。钛、锆砂矿粗选一般选用处理量大,回收率高又便于移动式选厂应用的设备,较普遍的是圆锥选矿机及螺旋选矿机, 少量采用摇床。上述设备有单一使用的,也有配合使用的:单一圆锥选矿机主要用于规模大或原矿中重矿物含量高的粗选厂;多数厂采用以圆锥选矿机粗选,螺旋选矿机再精选;一些规模较小的选矿厂,往往采用单一的螺旋选矿机粗选。 (2)精选钛、锆砂矿多系含有几种有价矿物的综合性矿床,精选的目的是将粗精矿中有回收价值的矿物进行有效的分离及提纯,达到各自的精矿质量要求,使之成为商品精矿。精选厂一般建成固定式。粗精矿采用汽车、火车或管道输送等方式运输到精选厂处理。精选作业分为湿式及干式两个阶段,以干法作业为主。根据粗精矿的性质,在精选工艺的前段通常采用部分湿法作业。有时在精选过程中还存在干法、湿法交替的过程,不过从能源消耗及简化工艺流程角度考虑,在可能条件下力争减少这一过程。精选厂的湿法作业种类有:采用摇床或螺旋选矿机重选,进一步丢弃残存在粗精矿中的密度小的脉石矿物,对于含盐

微细粒钛铁矿选矿技术研究进展

微细粒钛铁矿选矿技术研究进展 发表时间:2019-07-25T09:29:45.113Z 来源:《防护工程》2019年8期作者:彭成1 王明明2 [导读] 强磁选机的研究应用及发展,以及浮选柱在微细粒铁矿反浮选的应用前景。 1.河钢集团矿业有限公司司家营南区分公司河北省唐山市 063701; 2.河钢集团矿业公司司家营北区分公司(司家营铁矿)河北省唐山市 063700 摘要:目前,我国是科技发展的新时期,对近年来微细粒铁矿选矿的关键装备技术进行了详细评述,并对强磁选、细磨和浮选柱等装备的发展方向进行了展望。着重介绍了塔磨机的最新进展及细磨技术在铁矿中的应用,强磁选机的研究应用及发展,以及浮选柱在微细粒铁矿反浮选的应用前景。 关键词:微细粒铁矿;塔磨机;细磨;强磁选机;浮选柱 引言 我国钛资源相当丰富,约占世界总储量的48%,其中,钛铁矿储量占我国钛资源的比例高达98%,分为原生钛铁矿和砂状钛铁矿两类,又以原生钛铁矿为主,占总储量的97%,主要分布于四川攀西地区和河北承德地区;砂状钛铁矿占3%,主要是海南、两广等地区的海滨砂矿及云南富民地区的内陆砂矿。钛及钛合金以其良好的性能广泛应用于航空航天、化工、生物等领域,充分开发和利用我国钛资源,研究钛铁矿选矿技术意义重大。原生钛铁矿多共伴生于钛磁铁矿、钒钛磁铁矿中,其特点是储量大且集中,适合规模开采,但脉石含量大,回收率低,可选性较差。 1原有微细粒铁矿选矿工艺及装备 近十年来根据这些复杂难选矿石的特点开展了大量研究工作,总结出微细粒复杂铁矿合适的选矿工艺流程是:粗磨—弱磁选—强磁选—粗精矿再磨—(脱泥)—反浮选,如图1所示。在该工艺流程中,粗磨及弱磁选均为较成熟的技术,近年装备革新较少,局部方面的改进较多。必须研制出先进的新型装备或对原装备进行重大革新,才能使微细粒铁矿选矿具有技术及经济可行性。强磁选、粗精矿再磨、反浮选、微细粒浓缩和微细粒压滤等装备是微细粒铁矿选矿的关键装备。笔者将对近年来的强磁选、细磨、浮选装备及技术进行评述,并对其发展方向进行展望。 图1 微细粒铁矿选矿工艺流程 2微细粒铁矿选矿关键装备技术现状 2.1塔磨机(立式螺旋搅拌磨机或立磨机) 国外塔磨机主要由美卓矿业公司(MetsoMineralsLtd)提供的Vertimill和日本爱立许公司(Nippon-Eirich)提供的TowerMill。美卓矿业已经在全球安装超过300套Vertimill塔磨机,总装机功率160MW,目前最大型号为VTM-3000-WB(电动机功率2250kW),已在澳大利亚卡地亚铜金矿应用。图2为美卓矿业生产的Vertimill塔磨机示意图,它有一个固定的立式磨矿室,其中装有一个螺旋搅拌器,用于搅动直径为12~25mm的钢球磨矿介质。螺旋搅拌器以梢速度3~5m/s旋转,属于低速搅拌磨。矿浆从磨机的顶部或中底部给入,利用重力进行磨矿,磨矿产品从磨机顶部溢流排出进入下道工序。塔磨机于20世纪80年代应用于金属矿山,主要用于P80=20~40μm的矿物再磨回路,处理的矿物包括铜、铅锌、镍、金和铂族金属等有色、稀贵金属矿物。第一台VTM-3000-WB的Vertimill也是应用于澳大利亚纽克雷斯特矿业公司(NewcrestMiningLtd)卡地亚瓦利运营公司(CadiaValley Operations)(澳大利亚最大的黄金生产商)金-铜矿的三段再磨作业。尽管塔磨机在有色金属矿已成功推广应用近30年,但在铁矿中的应用则刚起步。2009年,日本爱立许公司为澳大利亚金达必金属公司(GindalbieMetalsLtd)与中国鞍钢股份有限公司合资的卡拉拉矿业公司(KararaMiningLimited)提供了5套KW-1500型塔磨机(电动机安装功率为1.12MW),用来将磁铁矿细磨至P80=35μm,塔磨机及其他精选设备将于2012年1月安装完毕,并将于2012年6月前产出铁精矿。瑞典诺斯兰资源公司与美卓矿业签订协议,由美卓矿业为位于瑞典北部诺斯兰的考尼斯瓦拉铁矿的包括7台VTM-3000-WB型塔磨机在内的两条加工线提供设备和服务。在相同的进料及使用相同尺寸球磨介质的情况下,在较粗粒级(P80=75~45mm)时搅拌磨(塔磨机)能耗较球磨机(普通球磨机)高30%,而在较细粒级时(P80=45~15μm),搅拌磨能效较球磨机要高50%。加拿大Nessetech公司在对非铁金属矿塔磨机、艾萨磨机等4种细磨设备能耗比较研究中指出,当P80<50μm时,塔磨机的功耗只是其他磨机的57%,为能效最高的磨矿设备。当磨矿粒度P80=20~40μm时,塔磨机(立式螺旋搅拌磨机)为最适宜的磨矿设备。实际上,塔磨机的适宜粒度范围可以为P80=20~65μm。

钛铁矿选矿工艺简介

钛铁矿选矿工艺简介 一钛铁矿矿石概述 1、钛铁矿化学分子式为:FeTiO3,矿物中理论成份FeO47.36%,TiO2为 52.64%,如果矿物中以MgO为主称为镁钛矿,以MnO为主的称红钛 锰矿。矿石中一般还有磁铁矿、硫化物等矿物。 2、钛精矿通常都指的是钛铁矿,一般钛精矿中含TiO2为46%以上。 3、钛精矿深加工多为生产钛白粉,是现代工业广泛使用的白色颜料。它 在涂料、造纸和塑料中作浅色颜料及高级填料,约占钛总消费量的85%以上,另外钛白还作为化学纤维的消光剂,橡胶制品的填料,石油化工的催化剂,以及油墨、陶瓷、玻璃、电焊条、冶金、电工、人造宝石和新兴材料等工业部门。 另外还生产钛金属,做为钛合金的添加剂。钛和钛合金是制造现代超音速飞机、火箭、导弹和航天飞机不可缺少的材料。 4、我国钛铁矿的主要生产基地目前有四川攀枝花、河北承德等。 5、目前钛金属售价为52元/Kg,钛精矿售价为700元/吨。 6、原生矿中的钛铁矿常与磁铁矿、钒钛磁铁矿共生。砂矿中的钛铁矿常 与金红石、锆石、独居石、磷钇矿等共同产出。 7、钛铁矿的一般工业要求为边界品位10Kg/m3,工业品位15Kg/m3, 8、钛铁矿晶体为菱面体,但完整晶形极少见,常呈不规则粒状、鳞片状、 厚板状。多呈自形至它形晶粒散布于其他矿物颗粒间,或呈定向片晶存在于钛磁铁矿、钛赤铁矿、钛普通辉石、钛角闪石等矿物中,为固溶分离产物。颜色铁黑色至钢灰色。条痕钢灰色或黑色,含赤铁矿包

裹体时呈褐色或褐红色。半金属光泽至金属光泽。不透明、无解理。 性脆、贝状至来贝状断口。硬度5-6.5,相对密度4.79,具弱磁性。二钛铁矿选矿工艺 钛铁矿主要的选矿工艺有“重选—强磁选---浮选”和“重选---强磁选---电选(选别前除硫)”两种,选矿过程中要严格按照分粒级入选,采取不同工艺流程。 采用的选矿设备有:斜板浓缩分级箱(按粒度分级)、耐磨螺旋溜槽(抛弃尾矿)、弱磁选机(除强磁矿物)、强磁选机(选钛铁矿)、浮选机(浮硫化物、浮细粒级钛铁矿)、电选机(精选钛铁矿)等。 [选矿用设备简介: 1、GL和BLX耐磨螺旋溜槽:广州有色研究院和长沙矿冶研究院合作研制开发; 2、电选机:长沙矿冶研究院新一代YD31200-23型; 3、选钛厂生产应用过的强磁设备:抚顺隆基立环脉冲高梯度强磁选机、长沙矿冶院研制的SHP仿琼斯强磁机、江西赣州冶金研究所研制的Slon 立环脉动高梯度强磁机等。 4、浮硫药剂制度:以丁基黄药为捕收剂、2#油为起泡剂、硫酸为调整剂的选钛的主流程。目前选钛工艺只能有效回收+0.074 mm粒级,对-0.074 mm 粒级基本上成为尾矿抛掉。 5、细粒级物料回收流程概况:经过国家“七五”、“八五”、“九五”科技攻关,确立了回收微细粒级钛铁矿的工艺流程(强磁一浮选)。在“九五”期间,通过钛业公司与长沙矿冶研究院等单位3年多的共同努力,形成了微细粒级钛铁矿回收的成套技术,开发了具有自主知识产权的ROB、R-2、HO等高效钛铁矿浮选捕收剂,其技术处于国际先进、国内领先水平。] 三主要的选矿工艺流程以下几种:

关于萤石矿的资料

萤石(Fluorite),又称氟石,是一种矿物,其主要成分是氟化钙(CaF2),含杂质较多,Ca常被Y和Ce等稀土元素替代,此外还含有少量的Fe2O3 ,SiO2和微量的Cl,O3,He等。自然界中的萤石常显鲜艳的颜色,硬度比小刀低。它可以用于制备氟化氢:CaF2 + H2SO4 = CaSO4+ 2HF↑;在人造萤石技术尚未成熟前,是制造镜头所用光学玻璃的材料之一。 萤石又称氟石,是一种常见的卤化物矿物[1],它是一种化合物,它的成分为氟化钙,是提取氟的重要矿物。萤石有很多种颜色,也可以是透明无色的。透明无色的萤石可以用来制作特殊的光学透镜。萤石还有很多用途,如作为炼钢、铝生产用的熔剂,用来制造乳白玻璃、搪瓷制品、高辛烷值燃油生产中的催化剂等等。萤石一般呈粒状或块状,具有玻璃光泽,绿色或紫色为多。萤石在紫外线或阴极射线照射下常发出蓝绿色荧光,它的名字也就是根据这个特点而来。在人造萤石技术尚未成熟前,是制造镜头所用光学玻璃的材料之一。 化学成分: CaF2 ,Ca:51.1%,F:48.9%。 晶体结构:晶胞为面心立方结构,每个晶胞含有4个钙离子和8个氟离子。 结晶状态:晶质体 晶系:等轴晶系 晶体习性:常呈立方体、八面体、菱形十二面体及聚形,也可呈条带状致密块状集合体。常见颜色:绿、蓝、棕、黄、粉、紫、无色等。 光泽:玻璃光泽至亚玻璃光泽。 解理:四组完全解理。 摩氏硬度: 4 。 密度: 3.18( + 0.07 ,- 0.18)g/cm 3 。 光性特征:均质体。 多色性:无。 折射率:1.434( ± 0.001) 。 双折射率:无。 紫外荧光:随不同品种而异,一般具很强荧光,可具磷光。 吸收光谱:不特征,变化大,一般强吸收。 放大检查:色带,两相或三相包体,可见解理呈三角形发育。 特殊光学效应:变色效应。 【成因及产状】萤石是一种多成因的矿物。(1)内生作用中主要是由热液作用形成,·与中低温的金属硫化物和碳酸盐共生。热液的萤石矿床有两类:一是鉴于石灰岩中的萤石脉,共生矿物主要是方解石,石英很少。有时与重晶石、铅锌硫化物半生。另一种是鉴于流纹岩、花岗岩、片岩中产出的萤石脉,共生矿物中方解石很少,主要是石英。(2)沉积型,在沉积岩中成层状与石膏、硬石膏、方解石和白云石共生,或作为胶结物以及砂岩中的碎屑矿物产出。 优化处理: 热处理:常将黑色、深蓝色热处理蓝色,稳定,避免300℃以上的受热,不易检测。

钛铁矿砂矿的采矿

钛铁矿砂矿的采矿 矿业中对于振动筛的运用十分的广发,其实各种衍生型号的振动设备,如超声波振动筛等。都被广泛应用于选矿过程。 虽然采矿技术是另一个领域的技术,但砂矿的采矿技术具有其特殊性.往往砂矿的采矿与选矿紧密相连,因此在这里对砂矿的采矿技术作概括介绍。 砂矿是原生矿在海潮及其他自然力作用下,经风化、破碎、分级、富集而成。按其成因可分为海成砂矿及海陆混合成因砂矿。 海滨砂矿一般都比较松散,没有或仅有较薄的覆盖层,因此海滨砂矿的开采不需要像开采原生矿那样需要剥离、井巷工程、穿孔、爆破等昂贵的工程投资及生产费用。采用的采挖机械,如采砂船、铲运机、装载机、斗轮挖掘机等设备都能在高效率情况下进行开采。 砂矿体的开采方法主要有二种,即水力机械化开采法、机械开采法和采砂船开采法。 1水力机械化开采法 水力机械化开采是我国小型砂矿常用的开采方法,主要是用水枪进行开采,砂泵运输矿浆。使用的水枪是具有很高压力的喷水设备.直接从具有一定坡度的高处把砂矿冲洗下来,矿浆进入较低处的砂泵池,经砂泵再进人选矿厂进行选矿。这种采矿方法效率较低,采出的矿浆浓度也比较低,不适合大规模开采。 2机械开采法 机械开采法是用推土机、铲运机、装载机等设备,配套使用.直接把矿石干式开采、干式运往选矿厂。也可使用斗轮挖掘机配合。皮带运输机干采运至选矿厂。海南乌场钛矿采用了69—4型斗轮式挖掘机进行采矿。采矿方式为前端工作面法,采掘面宽度为15m,生产能力为100t/h,斗轮直径为1.6 m,9个挖斗.每个斗容积为11 L,斗轮挖掘机总装机功率为33 kW,总质量为13 t,斗轮挖掘机的排料给入移动式皮带运输机,皮带运输机再给人移动式选矿厂。 机械开采法只能回采潜水面以上的矿量,水下部分矿量大部分损失。 https://www.360docs.net/doc/cd3923563.html,/https://www.360docs.net/doc/cd3923563.html, https://www.360docs.net/doc/cd3923563.html, https://www.360docs.net/doc/cd3923563.html,

钛锆的基本知识

钛的基本性质 原子结构 钛位于元素周期表中ⅣB族,原子序数为22,原子核由22个质子和20-32个中子组成,核外电子结构排列为1S22S22P63S23D24S2。原子核半径5x10-13厘米。 物理性质 钛的密度为4.506-4.516克/立方厘米(20℃),熔点1668±4℃,熔化潜热3.7-5.0千卡/克原子,沸点3260±20℃,汽化潜热102.5-112.5千卡/克原子,临界温度4350℃,临界压力1130大气压。钛的导热性和导电性能较差,近似或略低于不锈钢,钛具有超导性,纯钛的超导临界温度为0.38-0.4K。在25℃时,钛的热容为0.126卡/克原子·度,热焓1149卡/克原子,熵为7.33卡/克原子·度,金属钛是顺磁性物质,导磁率为1.00004。钛具有可塑性,高纯钛的延伸率可达50-60%,断面收缩率可达70-80%,但强度低,不宜作结构材料。钛中杂质的存在,对其机械性能影响极大,特别是间隙杂质(氧、氮、碳)可大大提高钛的强度,显著降低其塑性。钛作为结构材料所具有的良好机械性能,就是通过严格控制其中适当的杂质含量和添加合金元素而达到的。 化学性质 钛在较高的温度下,可与许多元素和化合物发生反应。各种元素,按其与钛发生不同反应可分为四类: 第一类:卤素和氧族元素与钛生成共价键与离子键化合物; 第二类:过渡元素、氢、铍、硼族、碳族和氮族元素与钛生成金属间化物和有限固溶体; 第三类:锆、铪、钒族、铬族、钪元素与钛生成无限固溶体; 第四类:惰性气体、碱金属、碱土金属、稀土元素(除钪外),锕、钍等不与钛发生反应或基本上不发生反应。 与化合物的反应: ◇HF和氟化物 氟化氢气体在加热时与钛发生反应生成TiF4,反应式为(1);不含水的氟化氢液体可在钛表面上生成一层致密的四氟化钛膜,可防止HF浸入钛的内部。氢氟酸是钛的最强熔剂。即使是浓度为1%的氢氟酸,也能与钛发生激烈反应,见式(2);无水的氟化物及其水溶液在低温下不与钛发生反应,仅在高温下熔融的氟化物与钛发生显著反应。 Ti+4HF=TiF4+2H2+135.0千卡(1)2Ti+6HF=2TiF4+3H2 (2) ◇HCl和氯化物 氯化氢气体能腐蚀金属钛,干燥的氯化氢在>300℃时与钛反应生成TiCl4,见式(3);浓度<5%的盐酸在室温下不与钛反应,20%的盐酸在常温下与钛发生瓜在生成紫色的TiCl3,见式(4);当温度长高时,即使稀盐酸也会腐蚀钛。各种无水的氯化物,如镁、锰、铁、镍、铜、锌、汞、锡、钙、钠、钡和NH4离子及其水溶液,都不与钛发生反应,钛在这些氯化物中具有很好的稳定性。 Ti+4HCl=TiCl4+2H2+94.75千卡(3)2Ti+6HCl=TiCl3+3H2 (4) ◇硫酸和硫化氢 钛与<5%的稀硫酸反应后在钛表面上生成保护性氧化膜,可保护钛不被稀酸继续腐蚀。但>5%的硫酸与钛有明显的反应,在常温下,约40%的硫酸对钛的腐蚀速度最快,当浓度大于40%,达到60%时腐蚀速度反而变慢,80%又达到最快。加热的稀酸或50%的浓硫酸可与钛反应生成硫酸钛,见式(5),(6),加热的浓硫酸可被钛还原,生成SO2,见式(7)。常温下钛与硫化氢反应,在其表面生成一层保护膜,可阻止硫化氢与钛的进一步反应。但在高温下,硫化氢与钛反应析出氢,见式(8),粉末钛在600℃开始与硫化氢反应生成钛的硫化物,在900℃时反应产物主要为TiS,1200℃时为Ti2S3。

钛精矿浮选工艺

钛精矿浮选工艺 原创邹建新等 浮选一般包括以下几个过程: ①矿浆准备与调浆:即可以通过添加药剂,可人为改变矿物的可浮性,增加矿物的疏水性与非目的矿物的亲水性。一般通过添加目的矿物捕收剂或非目的矿物抑制剂来实现。有时还需要调节矿浆的pH值和温度等其它性质,为后续的分选提供对象和有利条件。 ②形成气泡:气泡的产生往往通过向添加有适量起泡剂的矿浆中充气来实现,形成颗粒分选所需的气液界面和分离载体。 ③气泡的矿化:矿浆中的疏水性颗粒与气泡发生碰撞、附着,形成矿化气泡。 ④形成矿化泡末层、分离:矿化气泡上升到矿浆的表面,形成矿化泡末层,并通过适当的方式刮出后即为泡沫精矿,而亲水性的颗粒则保留在矿浆中成为尾矿。见图 4.1.14和4.1.15所示。 矿石 水 破碎颗粒悬浮 药剂作用 精矿(水) 泡沫层 矿化气泡浮升 矿化气泡作用 分散成气泡 浮选药剂 搅拌槽 空气 尾矿(水) 浮选槽图4.1.14 泡沫浮选过程工艺示意图

图4.1.15 浮选机内各作用区的分布 1-刮泡区;2-浮选区;3-浆气混合区;4-充气 路线;5-矿浆循环路线 图4.1.16 某厂浮选机生产现场 浮选法是回收细粒钛铁矿的有效方法,如我国的承钢双塔山选矿厂,重钢的太和铁矿,以及攀钢选钛厂等。进行钛铁矿浮选之前,先要用浮选法分选出硫化矿物,然后再浮选钛铁矿。硫化物浮选采用常规浮选药剂制度,即用黄药为捕收剂,2号油为起泡剂,硫酸为pH 调整剂,有的选厂还采用硫酸铜作为硫化矿物浮选的活化剂。图4.1.16是攀西某厂浮选机生产现场实景图。 ——《钒钛产品生产工艺与设备》,北京:化工出版社,2014.01 【钒钛资源综合利用四川省重点实验室(攀枝花学院) 邹建新等】

萤石矿资源分布情况

萤石矿资源分布情况 一、萤石矿资源状况 萤石资源在世界各大洲分布十分普遍。从成矿地质环境来看,环太平洋成矿带的萤石储量最多,约占全球萤石储量一半以上。萤石资源主要分布在亚洲的中国、蒙古、泰国,北美洲的墨西哥、美国、加拿大等地。非洲的南非、肯尼亚和欧洲的法国、意大利和英国等地也有一定的储量。据1996年《Mineral Cammodity Summaries》报道,1995年世界萤石储量为1.9亿t、储量基础为2.8亿t。 中国是世界上萤石矿最丰富的国家之一。总保有储量CaF2 l.08亿吨,居南非、墨西哥之后,处世界第3位。已探明储量的矿区有230处,分布于全国25个省(区)。以湖南萤石最多,占全国总储量38.9%;内蒙古、浙江次之,分别占16.7%和16.6%。我国主要萤石矿区有浙江武义,湖南柿竹园、河北江安、江西德安、内蒙古苏莫查干敖包、贵州大厂等。矿床类型比较齐全,以热液充填型、沉积改造型为主,伟晶岩型等类型不具重要意义。萤石矿主要形成于古生代和中生代,以中生代燕山期为最重要。下图为中国萤石矿资源情况及分布示意图。

二、萤石矿地理分布 我国除上海、天津、西藏、宁夏等省、市、自冶区尚未发现有价值的萤石矿外,其余各省、市、自冶区均有萤石矿分布,现已发现各类萤石矿床、矿点874处(下表)。主要萤石矿床及其储量均分布在我国东部的省、市、自冶区。而大中型萤石矿床又都集中在我国东部沿海地区、华中地区和内蒙古白云鄂博—二连浩特一带。

中国萤石矿分布图 1、东部沿海地区,萤石矿主要产于北东向火山-构造活动带中,北起辽东半岛,经胶东半岛、安徽、浙江、福建,延伸至广东、广西。全长2,000km,宽200km。该范围内已知大型矿床22处,中型矿床28处和众多的小型矿床(点)。如浙江省就有萤石矿床(点)359处,占全国矿床(点)数的41.08%(下表)。 全国各大区萤石矿床、矿点统计表

萤石矿选矿工艺

萤石矿选矿工艺 学院:矿业工程学院 姓名:郭鹏 学号:21114440202 班级:11选2

萤石矿选矿工艺基本简介 基本原料

采而被综合回收利用。它只能生产化工级(酸级)萤石精矿和陶瓷级(建材)萤石粉矿。 基本特性 萤石也叫氟化钙,是一种常见的卤化物矿物,它是一种化合物,它的成分为氟化钙,是提取氟的重要矿物。萤石有很多种颜色,也可以是透明无色的。透明无色的萤 石可以用来制作特殊的光学透镜。萤石还有很多用途,如作为炼钢、铝生产用的熔剂,用来制造乳白玻璃、搪瓷制品、高辛烷值燃油生产中的催化剂等等。萤石一般呈粒状 或块状,具有玻璃光泽,绿色或紫色为多。萤石在紫外线或阴极射线照射下常发出蓝 绿色荧光,它的名字也就是根据这个特点而来。化学成分:CaF2 晶体结构:晶胞为面心立方结构,每个晶胞含有4个钙离子和8个氟离子。结晶状态:晶质体晶系:等 轴晶系晶体习性:常呈立方体、八面体、菱形十二面体及聚形,也可呈条带状致密 块状集合体。常见颜色:绿、蓝、棕、黄、粉、紫、无色等。光泽:玻璃光泽至亚玻璃光泽。解理:四组完全解理。摩氏硬度:4。密度:3.18(+0.07,-0.18)g/cm3。光性特征:均质体。多色性:无。折射率:1.434(±0.001)。双折射率:无。紫外荧光:随不同品种而异,一般具很强荧光,可具磷光。吸收光谱:不特征,变化大,一般强 吸收。放大检查:色带,两相或三相包体,可见解理呈三角形发育。特殊光学效应: 变色效应。优化处理:热处理:常将黑色、深蓝色热处理蓝色,稳定,避免300℃以上的受热,不易检测。充填处理:用塑料或树脂充填表面裂隙,以保证加工时不裂开。 辐照处理:无色的萤石辐照成紫色,但见光很快褪色,很不稳定。

钽铌矿石选矿

世上无难事,只要肯攀登 钽铌矿石选矿 钽铌矿石选矿(processing of tantalum and niobium ores) 从含钽铌矿石中分离与富集钽铌矿物的过程。选矿产品为钽铌精矿。矿物与资源自然界含钽 铌的矿物约有130 种,其中钽、铌矿物约有80 种。重要的具有工业价值的钽 铌矿物列于表中。此外,部分钽铌以杂质形式存在于钛铁矿、钙钛矿、金红 石、锡石、黑钨矿及榍石中。钽铌矿床分为岩浆矿床、伟晶岩矿床、气成热液 矿床、接触自变质矿床和外生矿床五类。钽铌矿石类型可分为钽铁矿一铌铁矿石、黄绿石矿石以及其他含钽铌矿石三大类。 钽铌矿床分布较为广泛,巴西、前苏联、中国、加拿大、美国、尼日利亚、 澳大利亚、扎伊尔、肯尼亚、坦桑尼亚、乌干达、马来西亚、泰国等均有分 布。钽、铌精矿的主要生产国有加拿大、巴西、澳大利亚、扎伊尔、前苏联、 泰国。美国和日本是钽铌主要消费国。 工艺流程 钽铌矿石的矿物组分复杂,成分不稳定,有价成分含量低,因而其选矿工艺 流程较为复杂。通常钽铌矿的选矿工艺流程由粗选及精选两部分组成。不同矿 床类型的矿石所含钽铌矿物种类不同,故其选矿工艺流程亦有所区别。 原生钽铌铁矿及细晶石选矿流程 此类矿石中的钽铁矿、铌铁矿多与绿柱石、锂辉石、锡石共生。粗选主要采 用多段磨矿的多段重选流程。对某些矿石粗选还采用重选一浮选一重选或重选 一浮选。精选多采用联合流程,根据钽铌矿物与伴生矿物种类常采用磁选、重选、浮选、浮选一重选、电选、化学选矿等方法相组合的联合工艺流程。如矿 石中含泥多,应预先脱泥。富含钽的细晶石因其嵌布粒度(见矿物粒度)细,多 用浮选工艺进行分选。

各种系列的选矿工艺流程介绍

各种系列的选矿工艺流程介绍 选矿行业分为许多分支,研究各种系列的选矿工艺流程对于区分他们的应用具有现实意义。 磁铁矿选矿工艺流程 磁铁矿是一种氧化铁的矿石,主要成份为Fe3O4,是Fe2O3和 FeO 的复合物,呈黑灰色,比重大约 5.15左右,含Fe72.4%,O 27.6%,具有磁性。 开采的矿石先由颚式破碎机进行初步破碎,在破碎至合理细度后经由提升机、振动给料机均匀送入球磨机,由球磨机对矿石进行粉碎、研磨。经过球磨机研磨的矿石细料进入下一道工序:分级。螺旋分级机借助固体颗粒的比重不同而在液体中沉淀的速度不同的原理,对矿石混合物进行洗净、分级。矿物颗粒在被送入浮选机,根据不同的矿物特性加入不同的药物,使得所要的矿物质与其他物质分离开。 赤铁矿选矿设备工艺流程: 赤铁矿的主要成分为Fe2O3,单晶体常呈菱面体和板状,集合体形态多样。有金属光泽至半金属光泽,硬度为5.5~6.0,密度为5.5~5.3 g·cm-3。呈铁黑色、金属光泽的片状赤铁矿集合体称为镜铁矿;呈灰色、金属光泽的鳞片状赤铁矿集合体称为云母赤铁矿;呈红褐色、光泽暗淡的称为赭石;呈肾状的赤铁矿称为肾状赤铁矿。赤铁矿在自然界中分布极广,是重要的炼铁原料,也可用作红色颜料。我国著名产地有辽宁鞍山、甘肃镜铁山、湖北大冶、湖南宁乡和河北宣化。针对我国赤铁矿的特点,部分可采用洗矿后用重选富集,此方法投资、

用电负荷较小,05年以来新建的中小型选场很多。对难选的矿石,一般先采用磁化焙烧、磁选、浮选。对原有选场品位较低的,我公司可代为配置精矿再磨反浮选脱硅设备,使铁精粉的品位提高达标。可提供用户选场供新用户考察,代为用户设计、配套、调试生产。铁闪锌矿的浮选流程 对于含铁闪锌矿的多金属硫化矿的浮选,一般有3种流程结构可 供选择,即混合浮选、优先浮选和等可浮流程。 混合浮选包括全混合浮选和部分混合浮选。全混合浮选是先全浮选铜、铅、锌、硫,然后再分选为单一的精矿。部分混合浮选是先铜铅锌混合浮选,再选硫;或者优先选铜铅,再锌硫混合浮选,随后再 分离浮选,其选别指标往往取决于锌与硫分选的优劣程度。 优先浮选即首先浮选铜、铅,再选锌,最后选硫的依次浮选流程。从浮选工艺的观点看,优先浮选较混合浮选更为有利。优先浮选时,磨矿后,表面新鲜的黄铁矿可得到有效的抑制。倘若是混合浮选,锌矿物和黄铁矿表面均吸附有捕收剂和活化剂,在锌硫分离浮选时,若要很好地抑制黄铁矿,就必须除去其表面的捕收剂,这比使表面新鲜的黄铁矿受到抑制更加困难。所以,优先浮选比混合浮选更有利于锌和硫化铁矿物的分选。在很多时候,铁闪锌矿浮选的实质,也就是铁 闪锌矿与黄铁矿或者磁黄铁矿的分离问题。 但在实际生产中,须根据具体的矿石性质决定采取哪种流程。分细粒级的锌矿物根本无法回收而损失到尾矿中;加大捕收剂用量强拉,又使得一部分可浮性极强的黄铁矿上浮,在锌回路中造成黄铁矿

锆英石的选矿方法

书山有路勤为径,学海无涯苦作舟 锆英石的选矿方法 锆英石选矿是指除去锆英石矿石中杂质,提高锆英石含量的过程。锆英石(又名锆石)为正硅酸锆,化学分子式为ZrSiO4,是含锆矿物中最常见的一种。锆英石矿床多为海滨砂矿。含锆英石的重砂中,通常共生有磁铁矿、钛铁矿、金红石、独居石等重矿物。一般在选别锆英石的同时,亦将这些重矿物作为目的矿物加以回收。锆英石主要用作锆酸盐耐火砖的原料,还可用于精密铸造型砂及制作陶瓷器具。世界上锆英石的主要生产国有澳大利亚、美国、巴西等。中国锆英石主要产在广东、海南等省。选矿方法:常采用重选、磁选、静电选和浮选。重选锆英石多赋存在钛铁矿中,并常伴生有赤铁矿、铬铁矿及石榴石等重矿物。因此富集锆英石在最初阶段往往采用重选法,如用摇床将重矿物与脉石(石英、长石、黑云母)等分离,然后再用其他选矿手段使之与其他重矿物分离。浮选常用的捕收剂为脂肪酸(油酸、油酸钠)等;矿浆调整剂为碳酸钠;抑制剂为硅酸钠;活化剂为硫化钠和重金属盐类(氯化锆、氯化铁)。也有用草酸调节矿浆至酸性,用胺类捕收剂浮选。电选利用矿物导电性差异将钛铁矿、赤铁矿、铬铁矿、锡石、金红石等导电性矿物与锆英石、独居石、石榴石、磷灰石等非导电矿物分离。电选前应预先脱泥分级,烘干及加药处理。磁选重矿物中磁性矿物有钛铁矿、赤铁矿、铬铁矿、石榴石、黑云母、独居石等。锆英石为非磁性矿物或弱磁性矿物(某些矿床中锆英石中含铁则为弱磁性)。磁选分干式和湿式两种。干式磁选需将入选物料加热干燥,分级等预处理后才能进行分选。湿式强磁场磁选机分选粒度较宽,粒度下限可达20um。因此当锆英石粒度细时采用湿式磁选机较为适宜。由于锆英石矿砂中伴生矿物较多,需重选、磁选、浮选、电选等方法联合使用。锆英石选矿厂常分为湿式处理和干式处理两部分。原矿先在湿式处理阶段用圆锥选矿机、螺旋选矿机、摇

萤石矿选矿

非金属矿物加工工程 结课论文 《萤石矿物及其加工利用》 学校:中国矿业大学 姓名:丘成荣 班级:矿加13-4班 学号:06132389

摘要:本篇论文主要论述了萤石的基本性质、用途及我国萤石资源现状,萤石矿选矿工艺流程以及流程中使用的药剂,最后论述了萤石矿物分选的发展趋势。 关键词:萤石,性质,工艺流程,发展趋势 1. 萤石的结构特性和表面性质 萤石又称氟石,是一种含氟量最高的重要非金属矿物原料,具有广泛的工业用途。其主要成分是氟化钙(化学式CaF2),密度为3.18g/cm3,氟和钙的质量百分数分别为48.67%和51.33%。含杂质较多,Ca常被Y和Ce等稀土元素替代,此外还含有少量的Fe2O3,SiO2和微量的Cl,Al,Me,He等。 萤石的颜色几多,一般呈绿、紫、玫瑰、白、黄、蓝,有时呈蓝黑、紫黑及棕褐等色,无色透明者少见。当加热到300℃时,其色可以消失,但在X射线照射后,又可恢复原色。萤石在紫外线或阴极射线照射下能发强烈的荧光,当含有一些稀土元素时会发出磷光。引起萤石颜色多变的原因是多方面的,A.N.苏杰尔金认为,是与含微量稀有元素和少量的铁、锰氧化物杂质或碳氢化合物的分散包裹体有关,如铕(Eu)的存在使萤石呈蓝色,钐(Sm)呈淡绿色,混入钇(Y)呈黄色,含沥青杂质的萤石呈乌灰色等。也有人认为,萤石的颜色与温度有关,紫色者形成温度高,淡蓝色者形成温度次之,两者与钨(W)、锡(Sn)、钼(Mo)矿床有关,绿色者形成温度较低,与硫化物矿床有关等等。 在自然界中能与氟组成化合物的元素约有15种,形成含氟矿物约25种,除萤石外,常见的有冰晶石(Na3AlF6)、氟磷灰石[Ca5(PO4)3(F,OH9)]、黄玉[Al2(SiO4)(F,OH)]、氟硅钾石(K2SiF6)等等。 萤石的晶体结构一般为等轴晶系,多为立方体或八面体,十二面体较为罕见,宏观形式主要为粒状或块状的集合体,有时呈土状。萤石具玻璃光泽,性脆,断口呈贝壳状,沿八面体解理完全,硬度4,条痕为白色,熔点较高,为1360℃,在水中的溶解度很小,可以溶解于硫酸、磷酸,不溶于冷的盐酸、硼酸和次氯酸,可以与氢氧化钠、氢氧化钾等强碱发生微弱的化学反应。萤石的折射率低,n=1..433—1.435,弱色散性,有透过紫外线和红外线的特殊能力。 关于萤石的表面特性,戚冬伟对萤石的表面电性、表面润湿性及吸附特性作了研究。研究表明,较低的PH值时,萤石的表面带正电,随着溶液PH值的增大纯萤石的Zeta电位不断降低,PH值为5~10时,Zeta点位的数值有所增大,当PH值大于10时,随着PH值的增大,Zeta点位的数值减小。萤石等电点电位的PH=3.1。PH<3.1时,萤石的表面带正电荷,PH>3.1时,萤石的表面带负电荷。萤石的接触角为40°左右,油酸钠作用后的接触角为80°左右,说明油酸钠作用后萤石的疏水性大大增加,表明萤石表面吸附了油酸根阴离子。油酸捕收剂可以使萤石和石英的表面润湿性形成巨大的差别,从而使二者实现很好的分选。萤石加入油酸钠溶液中搅拌后,其Zeta电位较纯矿物有所降低,并呈现出较为稳定的值。 2.萤石的用途 萤石具有广泛的用途:(1)乳白色的优质萤石,常常用于雕刻宝石弧形界面的辅助材料,光泽好的块状萤石可以用来制作高档工艺饰品;(2)冶金工业中可以用来作为助熔剂,如在炼钢或其它金属时,加入萤石之后,形成的炉渣易于流动,同时能够排出有害杂质硫等,从而提高纯度;(3)萤石是一种重要的化工原料,氟化氢是经过硫酸处理过的萤石产物,它是合成冰晶石的重要原料,同时还可用于生产多种有机、无机氟化物。防腐剂和杀虫剂的有效成分就是有机氟化物,单质氟通常是利用氟化氢而制备的;(4)萤石同样用于建筑材料工业,水泥工业中的矿化剂主要为萤石,萤石还可以作为釉料配料、助熔剂而用于陶瓷工业中。萤石还可以作为良好的熔剂用于玻璃工业,从而降低玻璃的熔化温度,加速熔化某些添加剂,还可以作为乳浊剂用于乳光玻璃的生产;(5)萤石在光学工业中也有广泛的应用,萤石作为光性均质体,且具有很小的折射率,对红外线、紫外线的透过性能很好,常常用于无球面像差的光学物镜的制备,还可用作光谱仪棱镜、辐射紫外线和红外线窗口的材料。3. 我国萤石资源的特点

相关文档
最新文档