函数极限存在的条件

函数极限存在的条件
函数极限存在的条件

§3 函数极限存在的条件

教学目的:通过本次课的学习,使学生掌握函数极限的归结原则和柯西准则并能加以应用解

决函数极限的相关问题。

教学方式:讲授。

教学过程:

我们首先介绍0x x →这种函数极限的归结原则(也称Heine 定理)。

定理3.8(归结原则)。A x f x x =→)(lim 0

存在的充要条件是:对任何含于);('0δx U o 且以0x 为极限的数列}{n x ,极限)(lim n n x f ∞

→都存在且等于A 。 证:[必要性] 由于A x f x x =→)(lim 0

,则对任给的0>ε,存在正数)('δδ≤,使得当δ<-<||00x x 时,有。

另一方面,设数列}{n x ?);('0δx U o 且以0x 为极限,则对上述的0>δ,存在0>N ,当N n >时有δ<-<||00x x n ,从而有ε<-|)(|A x f 。这就证明了A x f n n =∞

→)(lim 。 [充分性] 设对任何数列}{n x ?);('0δx U o 且以0x 为极限,有A x f n n =∞

→)(lim 。现用反证法推出A x f x x =→)(lim 0

。事实上,倘若当0x x →时f 不以A 为极限,则存在某00>ε,对任何0>δ(无论多么小),总存在一点x ,尽管δ<-<||00x x ,但有0|)(|ε≥-A x f 。现依次取 ,,,,'

'2'n δδ

δδ=,则存在相应的点 ,,,,21n x x x ,使得

n n x x '||00δ

<-<,而 ,2,1,|)(|0=≥-n A x f n ε

显然数列}{n x ?);('0δx U o 且以0x 为极限,但当∞→n 时)(n x f 不趋于A 。这与假设相矛盾,故必有A x f x x =→)(lim 0。 注:(1)归结原则可简述为:

A x f x x =→)(lim 0

?对任何)(0∞→→n x x n 且0x x n ≠都有A x f n n =∞→)(lim 。 (2)归结原则也是证明函数极限不存在的有用工具之一:若可找到一个以0x 为极限

的数列}{n x ,使)(lim n n x f ∞

→不存在,或找到两个都以0x 为极限的数列}{'n x ,}{"n x ,使得)(lim 'n n x f ∞→,)(lim "n n x f ∞→都存在而不相等,则)(lim 0

x f x x →不存在。 (3)对于-∞→+∞→∞→→→-+x x x x x x x ,,,,00这几种类型的函数极限的归

结原则,有类似的结论。(让学生课堂练习,教师加以评正。)

例1设x x f 1sin )(=,0≠x ,证明极限)(lim 0

x f x →不存在。 证:设n x 1

'=,21"π

π+=n n x ),2,1 =n (,则显然有)(0,0"'∞→→→n x x n n ,但 )(11)(,00)("'∞→→=→=n x f x f n n 。故由归结原则即得结论。

对于-∞→+∞→→→-+x x x x x x ,,,00这几种类型的函数极限,除有类似于定理3.8

的归结原则外,还可以表述为更强的形式。

定理 3.9 设函数f 在);('00δx U +内有定义。A x f x x =+→)(lim 0

的充要条件是:对任何含于);('00δx U +且以0x 为极限的递减数列}{n x ,极限)(lim n n x f ∞

→都存在且等于A 。 证:仿照定理3.8的证明,但在运用反证法证明充分性时,对δ的取法要适当的修改。

相应于数列极限的单调有界定理,关于函数的单侧极限也有相应的定理。现以+→0

x x 这种类型为例阐述如下:

定理 3.10 设函数f 是定义在);('00δx U +上的单调有界函数,则右极限)(lim 0

x f x x +→存在。

证:具体证明见教材。主要应用确界原理,确界的定义和单侧极限的定义加以证明。

最后,我们叙述并证明关于函数极限的柯西准则。

定理3.11 设函数f 是定义在);('0δx U o 内有定义,A x f x x =→)(lim 0

存在的充要条件是:任给0>ε,存在正数)('δδ<,使得对任何),(",'0δx U x x o ∈有ε<-|)"()'(|x f x f 。

证明:[必要性] 设A x f x x =→)(lim 0

,则对任给0>ε,存在正数)('δδ<,使得对任何),(0δx U x o ∈有2

|)(|ε

<-A x f 。于是对任何),(",'0δx U x x o ∈有 ε<-+-≤-|)"(||)'(||)"()'(|A x f A x f x f x f 。

[充分性] 设数列}{n x ?且以0x 为极限。按假设,对任给的0>ε,存在正数)('δδ<,

使得对任何),(",'0δx U x x o ∈有ε<-|)"()'(|x f x f 。由于,对上述的0>δ,存在0>N ,当N m n >,时有);(,0δx U x x o m n ∈,从而有

ε<-|)()(|m n x f x f 。

于是,按数列的柯西收敛准则,)}({n x f 数列的极限存在,记为 A ,即A x f n n =∞

→)(lim 。

设另一数列}{n y ?);(0δx U o 且0lim x y n n =∞→,则如上所证,)(lim n n y f ∞

→存在,记为B 。现证明A B =,为此,考虑数列

,,,,,:}{11n n n y x y x z

易见?}{n z );(0δx U o 且0lim x z n n =∞

→。故如上所证,)}({n z f 也收敛。于是,作为)}({n z f 的两个子列,)}({n x f ,)}({n y f 必有相同的极限,故由归结原则推得A x f x x =→)(lim 0

注:(1)对于-∞→+∞→∞→→→-+x x x x x x x ,,,,00这几种类型的函数极限的柯

西准则,有类似的结论。(让学生课堂练习,教师加以评正。)

(2)对于-∞→+∞→∞→→→→-+x x x x x x x x x ,,,,,000这几种类型的函数

极限的柯西准则的否命题,学生也必须掌握。比如例1就可以应用柯西准则的否命题解决。

高等数学函数极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴()12 ++=x x x f 与()11 3--=x x x g 函数关系相同,但定义域不同,所以()x f 与 ()x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1)1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

迫敛准则在极限求解中的应用

迫敛准则在极限求解中的应用 中文摘要:在高等数学中,有很多重要的概念和方法都和极限有关,并且在实际问题中,极限也占有很很要的地位.同样在数学分析中,极限对我们来说也很重要,它是我们解决问题的一个工具.在这篇文章中,我主要介绍迫敛准则在极限求解中的应用,迫敛准则,我们有时也称它为夹挤定理或两边夹法则,它是微积分极限理论部分中一个非常重要的性质,对我们求解极限和证明极限是一个很好的工具.本文给出迫敛准则的一些直接应用,并进行了一些推广. 关键词:迫敛准则;极限求解;应用 Abstract:In advanced mathematics, there are a lot of important concepts and methods and to the limit,and in the actual problem, the limit also plays the position.Also in mathematical analysis, limit is also important for us, it is a tool for us to solve the problem, in this article, I'll focus on the of approximate convergence criteria limit solving.The approximate convergence criteria, we sometimes call it the squeeze theorem or folder on both sides of the law, it is the calculus limit the theoretical part of a very important nature, solving strength and proof limit is a good tool for us.In this paper, squeeze criteria applied directly,and some promotion. Keywords: forced convergence criteria; ultimate solving;application 1. 引言 迫敛性是微积分极限理论部分中一个非常重要的性质,它在许多极限问题的计算和证明中有很重要的应用.然而,在实际应用中,要寻找到满足条件的{}n x和{}n y经常是困难的,这给迫敛性的应用也带来了一定的不便.

求函数极限的方法

一、求函数极限的方法 1、运用极限的定义 例: 用极限定义证明: 12 23lim 22=-+-→x x x x 证: 由 2 4 4122322-+-= --+-x x x x x x ()2 2 22 -=--= x x x 0>?ε 取εδ= 则当δ <-<20x 时,就有 ε<--+-12 2 32x x x 由函数极限δε -定义有: 12 23lim 22=-+-→x x x x 2、利用极限的四则运算性质 若 A x f x x =→)(lim 0 B x g x x =→)(lim 0 (I)[]=±→)()(lim 0 x g x f x x )(lim x f x x →±B A x g x x ±=→)(lim 0 (II) []B A x g x f x g x f x x x x x x ?=?=?→→→)(lim )(lim )()(lim 0 (III)若 B ≠0 则: B A x g x f x g x f x x x x x x ==→→→)(lim ) (lim )()(lim 0 00 (IV )cA x f c x f c x x x x =?=?→→)(lim )(lim (c 为常数) 上述性质对于时也同样成立 -∞→+∞→∞→x x x ,,

例:求 4 5 3lim 22+++→x x x x 解: 4 53lim 22+++→x x x x = 25 4252322=++?+ 3、约去零因式(此法适用于型时0 ,0x x →) 例: 求12 16720 16lim 23232+++----→x x x x x x x 解:原式=() () ) 12102(65) 2062(103lim 2 23223 2 +++++--+---→x x x x x x x x x x x =) 65)(2() 103)(2(lim 222+++--+-→x x x x x x x =) 65() 103(lim 222++---→x x x x x =)3)(2()2)(5(lim 2+++--→x x x x x =2 lim -→x 73 5 -=+-x x 4、通分法(适用于∞-∞型) 例: 求 )21 44( lim 2 2 x x x ---→ 解: 原式=) 2()2() 2(4lim 2x x x x -?++-→ =) 2)(2() 2(lim 2x x x x -+-→ =4 1 21lim 2=+→x x 5、利用无穷小量性质法(特别是利用无穷小量与有界量之乘积仍为无穷小量的性质) 设函数f(x)、g(x) 满足:

函数极限的定义的多种表达

函数极限的定义 林芳 20101101903 数学科学学院 2010级(1)班 指导教师 韩刚 摘要 极限是数分中的重要内容,用定义证明极限类型题都要用到它。本文就给出二十四个函数极限的定义。 关键词 极限 1函数在一点的极限的定义 1.1函数在0x 点的极限的定义 设函数f(x)在0x 点的附近(但可能除掉点本身)有定义,又设A 是一个定数。如果对任意给定的ε>0,一定存在δ>0,使得当0<0x x -<δ时,总有A x f -)(<ε,我们就称A 是函数在点0x 的极限,记为 A x f x x =→0 )(lim , 或者记为 f(x)→A(x 0x →). 这时也称函数f(x)在0x 点极限存在,其极限值是A. 1.2函数在点0x 右侧的极限的定义 设函数f(x)在(0x ,η+0x )内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0

我们就称A 是函数f(x)在点x 0的右极限,记为 0)(lim +→x x x f =A 或f(x 0+0)=A 或 f(x)→A (x 0x →+0) 这时也称函数f(x)在点0x 右极限存在。 1.3函数在0x 点左侧的极限的定义 设函数f(x)在(00,x x η-)内有定义,η是一个确定的正数,又设A 是一个定数。如果对任意给定的ε>0,总存在δ>0,当0<δ<-x x 0时,有A x f -)(<ε,我们就称A 是函数f(x)在点的左极限,记为 0)(lim -→x x x f =A 或 f(00-x )=A 或 f(x))0(0-→→x x A 这时也称函数f(x)在0x 点左极限存在. 2函数在无限远处的极限 2.1函数在无限远处极限的定义 若对任意给定的ε>0,存在X>0,当X x >时,总有ε<-A x f )(,我们说A 是f(x)在无限远处的极限,或者说A 是当x 的极限时)(x f ∞→,记为 ) ()()()(lim ∞→→=∞=∞→x A x f A f A x f x 或 这时也称函数f(x)在无限远处极限存在 2.2函数在正无限远处的极限的定义

极限存在准则两个重要极限

极限存在准则两个重要极限 【教学目的】 1、了解函数和数列的极限存在准则; 2、掌握两个常用的不等式; 3、会用两个重要极限求极限。 【教学内容】 1、夹逼准则; 2、单调有界准则; 3、两个重要极限。 【重点难点】 重点是应用两个重要极限求极限。难点是应用函数和数列的极限存在准则证明极限存在,并求极限。 【教学设计】 从有限到无穷,从已知到未知,引入新知识(5分钟)。首先给出极限存在准则(20分钟),并举例说明如何应用准则求极限(20分钟);然后重点讲解两个重要的极限类型,并要求学生能利用这两个重要极限求极限(40分钟);课堂练习(15分钟)。 【授课内容】 引入:考虑下面几个数列的极限 1、1000个0相加,极限等于0。 2、无穷多个“0”相加,极限不能确定。

3、,其中,,极限不能确定。对于 2、3就需要用新知识来解决,下面我们来介绍极限存在的两个准则: 一、极限存在准则1、夹逼准则准则Ⅰ 如果数列及满足下列条件:那么数列的极限存在, 且、证: 取上两式同时成立, 当时,恒有上述数列极限存在的准则可以推广到函数的极限准则Ⅰ′ 如果当 (或)时,有那么存在, 且等于、准则 I和准则 I称为夹逼准则。 【注意】 利用夹逼准则求极限的关键是构造出与,并且与的极限是容易求的。例1 求解: 由夹逼定理得: 【说明】 夹逼准则应恰当结合“放缩法”使用2、单调有界准则准则Ⅱ 单调有界数列必有极限、如果数列满足条件,就称数列是单调增加的;如果数列满足条件,就称数列是单调减少的。单调增加和单调减少的数列统称为单调数列。几何解释:例2 证明数列(重根式)的极限存在 【分析】 已知,,求。首先证明是有界的,然后证明是单调的,从而得出结论证: 1、证明极限存在a)

大一高数第一章--函数、极限与连续

第一章 函数、极限与连续 由于社会和科学发展的需要,到了17世纪,对物体运动的研究成为自然科学的中心问题.与之相适应,数学在经历了两千多年的发展之后进入了一个被称为“高等数学时期”的新时代,这一时代集中的特点是超越了希腊数学传统的观点,认识到“数”的研究比“形”更重要,以积极的态度开展对“无限”的研究,由常量数学发展为变量数学,微积分的创立更是这一时期最突出的成就之一.微积分研究的基本对象是定义在实数集上的函数. 极限是研究函数的一种基本方法,而连续性则是函数的一种重要属性.因此,本章内容是整个微积分学的基础.本章将简要地介绍高等数学的一些基本概念,其中重点介绍极限的概念、性质和运算性质,以及与极限概念密切相关的,并且在微积分运算中起重要作用的无穷小量的概念和性质.此外,还给出了两个极其重要的极限.随后,运用极限的概念引入函数的连续性概念,它是客观世界中广泛存在的连续变化这一现象的数学描述. 第一节 变量与函数 一、变量及其变化范围的常用表示法 在自然现象或工程技术中,常常会遇到各种各样的量.有一种量,在考察过程中是不断变化的,可以取得各种不同的数值,我们把这一类量叫做变量;另一类量在考察过程中保持不变,它取同样的数值,我们把这一类量叫做常量.变量的变化有跳跃性的,如自然数由小到大变化、数列的变化等,而更多的则是在某个范围内变化,即该变量的取值可以是某个范围内的任何一个数.变量取值范围常用区间来表示.满足不等式a x b ≤≤的实数的全体组成的集合叫做闭区间,记为,a b ????,即 ,{|}a b x a x b =≤≤????; 满足不等式a x b <<的实数的全体组成的集合叫做开区间,记为(,)a b ,即 (,){|}a b x a x b =<<; 满足不等式a x b <≤(或a x b ≤<)的实数的全体组成的集合叫做左(右)开右(左)闭区间,记为 (,a b ?? (或),a b ??),即 (,{|}a b x a x b =<≤?? (或),{|}a b x a x b =≤

函数极限概念

引言 在数学分析中,极限的概念占有主要的低位并以各种形式出现而贯穿全部内容,同时极限概念与方法是近代微积分的基础. 因此掌握好极限的求解方法是学习数学分析和微积分的关键一环.本文主要对一元函数极限定义和它的求解方法进行了归纳总结,并在具体求解方法中就其中要注意的细节和技巧做了说明, 以便于我们了解函数的各种极限以及对各种极限进行计算.求函数极限的方法较多,但每种方法都有其局限性, 都不是万能的, 对某个具体求极限的问题,我们应该选择合适的方法. 一、函数极限概念 定义1[]1 设f 为定义在[)+∞,a 上的函数,A 为定数.若对任给的ε>0,存在 正数M (a ≥),使得当M x >时有 ()f x A ε-<, 则称函数f 当x 趋于+∞时以A 为极限,记作 lim ()x f x A →+∞ = 或()().f x A x →→+∞ 定义2[]1 (函数极限的ε-δ定义)设函数f 在点 0x 的某个空心邻域0 U (0x ;'δ)内有定义,A 为定数。若对任给的ε>0,存在正数δ(<'δ),使得当0<0x x δ-<时有 ()f x A ε-<, 则称函数f 当x 趋于0x 时以A 为极限,记作 lim ()x f x A →∞ =或0()()f x A x x →→. 定理1[]1 设函数f 在0'0(,)U x δ+(或00(;')U x δ-)内有定义,A 为实数。若 对任给的0ε>,存在正数'()δδ<,使得当00x x x δ<<+(或00x x x δ-<<)时有 ()f x A ε-<, 则称数A 为函数f 当x 趋于0x +(或0x -)时的右(左)极限,记作

第一章 函数、极限与连续

第一章 函数、极限与连续 (一) 1.区间[)+∞,a 表示不等式( ) A .+∞<

复合函数极限条件

书中这样定义: 设函数y = f[g(x)]是由函数u = g(x)与函数y = f(u)复合而成,f[g(x)]在点x0的某去心邻域内有定义,若lim(x->x0)g(x) = u0, lim(u->u0)f(u) = A,且存在δ > 0,当x属于x0的去心δ邻域时,有g(x)不等于u0,则lim(x->x0)f[g(x)] = A u 与u0的接近程度是用0 < |u - u0| < δ描述的,u -> u0的过程中不等于u0 函数在某点的极限值是自变量逼近这一点时函数值无限接近的一个值,这个值与函数在这一点的函数值无关 如果能进一步针对这条举出反例就更好了, g(x)=xsin(1/x) 若u≠0,f(u)=0 若u=0,f(u)=1 在0的去心邻域中,f(g(x))有定义 (*) 对任意的正数δ,在0的去心δ邻域中,都有无数个点使得g(x)=0, 而f(g(x))=f(0)=1 lim{x→0}g(x)=0 lim{u→0}f(u)=0 而根据(*),lim{x→0}f(g(x))不存在。 可见这个条件确实不能去掉。如果f(u)在u0处连续,那么这个复合函数的极限运算法则仍然是成立的,g(x)是否在其他点取值u0并无影响,因而很多时候在实际应用这条法则时并不去验证这条,因为我们通常面对的是连续函数。确实是这样的,因为g(x)在0的任意去心邻域内总是存在使得g(x)为0的点,而f(0) = 1 =/= lim(u->0)f(u)。所以就不存在0的某个去心邻域使得|f(g(x))-0|能够小于任意ε>0,自然极限也就不存在了。 另一种情况:设lim(u->u0)f(u) = A,且f(u)在u0的某个去心邻域是连续函数,那么就有f(u0) = lim(u->u0)f(u) = A,再设lim(x->x0)g(x) = u0,那这时候就不用考虑在x0的某个去心邻域中,g(x) =/= u0这个条件了,因为g(x) =u0时,|f(g(x)) - A| = 0 < 任意ε>0 。

函数极限的运算法则

教学目标:掌握函数极限的运算法则,并会求简单的函数的极限 教学重点:运用函数极限的运算法则求极限 教学难点:函数极限法则的运用 教学过程: 一、引入: 一些简单函数可从变化趋势找出它们的极限,如o x x x x x x o ==→∞ →lim ,01lim .若求极限的函 数比较复杂,就要分析已知函数是由哪些简单函数经过怎样的运算结合而成的,已知函数 二 0). 说明:当三 例1 求)3(lim 2 2 x x x +→ 例2 求1 1 2lim 2 31 ++-→x x x x 例3 求4 16lim 2 4 --→x x x

分析:当4→x 时,分母的极限是0,不能直接运用上面的极限运用法则.注意函数4 16 2 --= x x y 在定义域4≠x 内,可以将分子、分母约去公因式4-x 后变成4+x ,由此即 可求出函数的极限. 例4 求1 33lim 22 ++-∞ →x x x x 分析:当∞→x 时,分子、分母都没有极限,不能直接运用上面的商的极限运算法则.如果分子、2 总结:lim x x o →lim x ∞ →例5 求lim ∞ →x 分析:同例计算了。 四 (1)lim 2 1 → x (3)lim 4 →x 1 432 1 -+→x x x (5)1 1lim 2 1 +--→x x x (6)9 65lim 2 2 3 -+-→x x x x (7)1 3322lim 2 3 2 +--+∞ →x x x x x (8)5 2lim 3 2 --∞ →y y y y

五 小结 1 有限个函数的和(或积)的极限等于这些函数的和(或积); 2 函数的运算法则成立的前提条件是函数 )(),(x g x f 的极限存在,在进行极限运算时, 要特别注意这一点. 3 两个(或几个)函数的极限至少有一个不存在时,他们的和、差、积、商的极限不一定不存在. 4 在求几个函数的和(或积)的极限时,一般要化简,再求极限. 六 作业(求下列极限) (1) lim -→x 2 (4)lim 0 →x (7)lim 2 →x (10)x → (13)1 3lim 2 4 3 +++∞ →x x x x x (14)2 3 3 2 )2 312( lim -+→x x x (15)3 526113lim 2 2 1 --+-→x x x x x (16) 3 526113lim 22 --+-∞ →x x x x x (17) 3 2 320 3526lim x x x x x x x ----→ (18) 3 2 323526lim x x x x x x x ----∞ →

函数、极限与连续复习题参考答案Word版

函数、极限与连续 复习题 一.填空题: 1. 函数1 1ln +-=x x y 的奇偶性是奇函数. 2. 设1 2)11(-=-x x x f ,则=)(x f 1 1x -. 3. 函数x e y -=1的复合过程是,1u y e u x ==-. 4. 函数y =sin ,12y u u v x ===+. 5. 设)(x f 的定义域是[0,1] , 则函数y=)(ln x f 的定义域[1,]e 6. =∞→x x x sin lim 0 . 7. =-∞→n n n )1 1(lim 1e - 8. 5 432lim 42-+-∞→n n n n =0 9. 设43 2lim 23=-+-→x k x x x ,则k =___-3_. 10. 设b ax x x x f ++-+= 1 3 4)(2,0)(lim =∞→x f x ,则=a __-4_,=b __-4. 11. 设0→x 时,b ax 与x x sin tan -为等价无穷小,则=a __1 2 __,=b __3__. 12. 函数3 21 2 --=x x y 的间断点有x=-1,x=3 连续区间是(,1),(1,3),(3,)-∞--+∞. 二、选择题 1、ln(1) y x =+ A ) A 、(—1,+∞) B 、]1,1(- C 、(—1,1) D 、(1,+∞) 2、当0→x 时,下列变量为无穷小量的是( D ) A 、x 1sin B 、x 1 cos C 、x e 1 D 、) 1ln(2x +

3、A x f x x =→)(lim 0 (A 为常数),则)(x f 在0x 处( D ) A 、一定有定义 B 、一定无定义 C 、有定义且A x f =)(0 D 、不一定有定义 4、设???≥+<=0,20,)(2x a x x e x f x 当时;当在点0=x 连续,则a 的值等于(D ) A 、0 B 、1 C 、—1 D 、2 1 5、函数)(x f = 3 2 -x ,则x=3是函数)(x f 的(D ) A 、连续点 B 、可去间断点 C 、跳跃间断点 D 、无穷间断点 6、)(x f 在0x 处左、右极限存在是)(x f 在0x 处连续的( B ) A 、充分条件 B 、必要条件 C 、充要条件 D 、以上都不是 三.求下列极限: 1. )1(lim 2x x x x -++∞ → 解:)1(lim 2 x x x x -++∞ → =lim x lim x = lim x =1 2 2. 3 tan sin lim x x x x →- 解:30tan sin lim x x x x →-=32 00 sin (1cos )sin 11cos lim lim()cos cos x x x x x x x x x x x →→--= =20 1cos lim x x x →-=2 202lim x x x →=12 3. x x x x ?? ? ??+-∞→11lim 解:x x x x ??? ??+-∞→11lim =11lim 11x x x x →∞??- ? ? ? +? ?=1e e -=2e - 4. x x x x x 3sin 2sin lim 0-+→

二元函数极限不存在性研究

二元函数极限不存在性研究 1 引言 二元函数极限是数学分析中非常重要的内容,也是比较难以理解和掌握的知识.二元函数极限 虽然从定义形式上与一元函数极限差异不大,但由于二元函数的自变量有两个,其变量变化过程要 比一元函数的变量变化过程复杂的多,这就使得极限问题发生了质的变化,存在性的判定和极限的计算方法也变得非常困难.二元函数极限在多元函数微分学中具有举足轻重的作用,探讨其不存在性及计算方法是进一步学习多元函数微分学有关概念和方法的基础.本文就二元函数极限问题进行了讨论. 2 二元函数极限的定义 2.1 重极限 定义1 ) 92](1[P 设f 是定义在D ?2 R 上的二元函数, 0P 为D 内一个聚点,A 是一个确定的实数,若对任给的ε,总存在某正数δ,使得当0 0(;)P U P D δ∈?时,都有()f P A -<ε,则称f 在D 上当0P P →时,以A 为极限,记作0 lim P P →()f P A =. 当0,P P 分别用坐标00(,),(,)x y x y 表示时,常记作0,0(,)() lim x y x y →(,)f x y A =,这种极限也称重极 限. 例1 ) 93](1[P 依定义验证 22(,)(2,1) lim ()7x y x xy y →++=. 证 因为 227x xy y ++-=22(4)2(1)x xy y -+-+- =(2)(2)(2)2(1)(1)(1)x x x y y y y +-+-+-++- 2213x x y y y ≤-+++-+ 先限制在点(2,1)的δ=1的方邻域{} (,)21,11x y x y -<-<内讨论.于是有 314145y y y +=-+≤++< 2(2)(1)52157x y x y x y ++=-+-+≤-+-+< 所以 2 2 772517(21)x xy y x y x y ++-≤-+-<-+-.

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

二元函数极限不存在的判别

二元函数极限不存在的判别 ① 桂 咏 新 (数学系) 摘 要 本文根据二元函数的结构特征,给出了判定二元函数极限不存在的几种路径选取 方法. 关键词 二重极限;λ次齐次函数;广义零次齐次函数 本文只讨论点(x 0,y 0)=(0,0)的情形,若(x 0,y 0)≠(0,0)而x 0,y 0均为有限数时,可令x =x 0+s y =y 0+t =,便有lim x →x 0y →y 0 f (x ,y )=lim s →0t →0 f (x 0+s ,y 0+t ).二元函数极限的归结原则是判定二元函数极限不存在的主要依据,然而,关于路径的选取,却没有详细论述,本文给出了一些结果. 命题:设f (x ,y )在区域D 上有定义,(0,0)是D 的一个聚点,y =y 1(x ),y =y 2(x )是D 中两条不同的连续曲线,满足lim x →0y i (x )=0(i =1,2)如果lim x →0f (x ,y i (x ))=A i ,而A 1≠A 2;或者对其一个i (i =1或2),lim x →0f (x ,y i (x ))不存在,则lim x →0y →0 f (x ,y )不存在.这个命题给出了判定二元函数极限不存在的基本方法,显然曲线路径y =y (x )的选取完全取决于函数f (x ,y )本身的结构.下面结合某些函数类型说明路径的选取方法. 1 零次齐次函数选取直线路径y =kx 设f (x ,y )是不恒为常数的零次齐次函数,即f (tx ,ty )≡t 0f (x ,y ),且f (x ,y ) C.令t =1x ,则有f (x ,y )=f (1, y x ) C ∴lim x →0y →kx f (x ,y )=lim x →0y =kx →0f (1,y x )=f (1,k ) C 所以,对于不恒为常数的零次齐次函数的极限问题,直线路径y =kx 是适用的. 例1:f (x ,y )=xy/(x 2+y 2)为零次齐次函数. lim x →0y =kx →0 xy x 2+y 2=lim x →0x ?kx/(x 2+k 2x 2)=k/(k 2+1)此结果因k 而异 ∴lim x →0y =→0xy/(x 2+y 2)不存在. 2 广义零次齐次函数选取曲线路径y =l x β α如果函数f (x ,y )满足f (t αx ,t βy )≡t 0f (x ,y )(α,β>0)称f (x ,y )为广义零次齐次函数.当t =x -1α时有f (x ,y )≡f (1,yx -βα)当(x ,y )沿曲线路径y =l x βα(x >0)超于(0,0)时 lim x →0y =lx βα→0f (x ,y )=lim x →0y =lx β α→0f (1,yx -βα )=f (1,l ) 其结果是l 的函数.故对于不恒为常数的广义零次齐次函数可以选取曲线路径y =l x βα.例2:f (x ,y )=x 4y 4/(x 4+x 2)3 第17卷第3期 咸宁师专学报(自然科学版) 1997年8月 ①收稿日期:1997—04—11

大学高等数学函数极限和连续

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=21)()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1(y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1(x), D(f -1)=Y, Z(f -1)=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2),

则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x 6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数 1.复合函数: y=f(u) , u=φ(x) y=f[φ(x)] , x ∈X 2.初等函数:

数列与函数的极限公式概念

极限与连续 一、数列的极限定义: 1、给定数列{},如果当n 无限增大时,其通项无限趋过于某个常数A ,则称数列{}以A 为极限,记作: =A 或者 (n ) 2、当数列{}以实数A 为极限时,称数列{}收敛于A ,否则称数列{}发散。 二、数列极限的性质: 1)极限的惟一性:若数列收敛,则其极限惟一,若 =a ,则 =a 2)有界性:收敛数列必有界. (数列有界是数列收敛的必要非充分条件) 3)数列的极限:如数列:ΛΛ,1 2,,432,322,212++n n 则它的极限为3 即:3121 lim 2lim )12(lim =+=++=++∞→∞→∞→n n n n n n n 三、几个需要记忆的常用数列的极限 01lim =∞→n n 11lim =+∞→n n n 0lim =∞→n n q )1(

?极限运算法则: 设limf(x)=A,limg(x)=B,则 1)lim[f(x)]=A B 2)lim[f(x)g(x)]=AB 3)当B时,lim= 4)lim[cf(x)]=climf(x) (c为常数) 5)lim[f(x)= [limf(x)(k为常数) ?小结 ..:.当,时,有= ?复合函数运算法则:= ?数列的夹逼准则:设有3个数列{}{}{},满足条件: 1)(n=1,2,…); 2)==a,则数列{}收敛,且=a ?函数夹逼准则:设函数f(x),g(x),h(x)在点的某去心邻域内有定义,且满足条件: 1)g(x)f(x)h(x); 2)=A,. 则极限存在且等于A. ?单调有界准则:单调有界数列必有极限.即单调增加有上界的数列必有极限;即单调减少有下界的数列必有极限. ?两个重要的极限: ?重要极限Ⅰ:=1

函数极限与连续知识梳理

知识梳理? ? ? ? 函数极限内容网络图 内容提要与释疑解难内容提要与释疑解难 一、函数极限的概念

1. 。 2. 把1中“”换成“”。 3.把1中“”换成“”。 定理且 4.设在的某空心邻域内有定义,若存在一个常数A, ,都有。 5.设在的某左半邻域内有定义,若存在一个常数A, 时,都有。 此时也可用记号或表示左极限值A,因此可写成 6. 设在的某右半邻域内有定义,若存在一个常数 ,当时,都有。此时也可用或 表示右极限。因此可写成。 定理且 该定理是求分界点两侧表达式不同的分段函数在该分界点极限是否存在的方法,而如果在的左右极限存在且相等,则在该点的极限存在,否则不存在。 7.时,都有。此时称 时,是无穷大量。 而,只要把公式中“”改成“”,,只要把上式中“”改成“”。 8.。当时,都有。

读者同理可给出定义。 注:(常数)与的区别,前者是表明函数极限存在,后者指函数极限不存在,但还是有个趋于无穷大的趋势。因此,给它一个记号,但还是属于极限不存在之列,以后,我们说函数极限存在,指的是函数极限值是个常数。 9.。称当是无穷小量。这里的可以是常数,也可以是。 定理。 其中。 10.若时,都有,称时是有界量。 二、无穷小量阶的比较,无穷小量与无穷大量关系 设, (这里可以是常数,也可以是,以后我们不指出都是指的这个意思) (1)若,称当时是的高阶无穷小量,记作 。 (2)若,称时是的同价无穷小量。 (3)若,称时是的等价无穷小量,记作,此时(2)式也可记作。 (4)若,称时是的k阶无穷小量。 由等价无穷量在求极限过程中起到非常重要的作用,因此,引入 若。记作, 如果均是无穷小量,称为等价无穷小量;如果均是无穷大量,称为等价无穷大量;如

函数极限的求法和极限不存在的判断

万方数据

万方数据

二元函数极限的求法和极限不存在的判断 作者:唐新华 作者单位:山东政法学院 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2009,""(18) 被引用次数:0次 参考文献(2条) 1.吴赣昌高等数学 2006 2.马顺业数学分析研究 1996 相似文献(10条) 1.期刊论文郭俊杰.GUO Jun-jie二元函数求极限的方法-衡水学院学报2006,8(1) 二元函数求极限是高数中的难点,现归纳了6种求二元函数极限的方法,分别为:直接证明、先估值后证明、利用二元函数的连续性、用无穷小量与有界变量的乘积仍为无穷小量的结论、用重要极限limx>0sinx/x=1、用两边夹定理. 2.期刊论文王润桃关于二元函数的极限-株洲工学院学报2001,15(5) 讨论了二次极限与二重极限之间的区别与联系,二重极限不存在的判定方法以及齐次有理分式函数的极限存在的判别法. 3.期刊论文闫彦宗关于二元函数分析性质的讨论-宜宾学院学报2003,6(6) 讨论了二元函数的重极限与累次极限、可微性与偏导数的存在性及函数的连续性、重积分与累次积分之间的关系. 4.期刊论文王海燕二元函数求极限的方法-考试周刊2007,""(37) 二元函数的极限是在一元函数的基础上发展起来的,二者既有联系也有区别.本文通过部分例题的解析,以详细介绍二元函数极限的求法. 5.期刊论文王旭琴二重极限与累次极限的关系-南昌高专学报2010,25(2) 本文分析了二元函数的二重极限及累次极限的定义,并且讨论和总结了这两种极限之间的区别和内在联系. 6.期刊论文樊红云.张宏民.FAN Hong-yun.ZHANG Hong-min视一元函数为二元函数时的极限与连续-长春师范学院学报(自然科学版)2006,25(3) 本文讨论了视一元函数u=φ(x)为二元函数u=f(x,y)=φ(x)时的极限与连续. 7.期刊论文何鹏.俞文辉.雷敏剑二元函数连续、可偏导、可微等诸条件间关系的研究-南昌高专学报2005,20(6) 本文指出二元函数诸性质间的关系源于二元函数对极限的两种不同推广:二重极限和累次极限,并详细阐明了连续、偏导数存在、可微、偏导连续四者间的关系.在文章的最后,作者对偏导连续推出可微这一命题的条件作了减弱并予以证明. 8.期刊论文郭安学二元函数的极限-科学决策2008,""(11) 本文给出了二元函数的三种不同极限的概念,并讨论了三种极限的关系与差异. 9.期刊论文邹泽民.Zhou Zemin二元函数未定型极限问题的研究-广西梧州师范高等专科学校学报2002,18(1) 给出二元函数基本未定型极限的洛泌达法则及三种具体的求极限的运算定理. 10.期刊论文齐小忠关于二元函数二阶混合偏导数的注记-许昌学院学报2004,23(2) 大多数数学分析教科书讨论二元函数的二阶混合偏导数f'xy(x,y)、f"(x,y)与求导次序有无关系时,都是在其连续的情况下得出与次序无关的结论的.本文给出了较弱的与求导次序无关的几个结论. 本文链接:https://www.360docs.net/doc/cd8999619.html,/Periodical_kjxx200918384.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:6303e070-b0c9-4d3e-83e0-9dca0148959f 下载时间:2010年8月6日

相关文档
最新文档