单极性SPWM逆变电路仿真分析 (1)教学教材

单极性SPWM逆变电路仿真分析 (1)教学教材
单极性SPWM逆变电路仿真分析 (1)教学教材

单极性S P W M逆变电路仿真分析(1)

单极性SPWM逆变电路仿真分析一.电路原理图

图7-4

工作原理

二.控制信号设置

1.V1和V2 互补

V1正半周导通 V2负半周导通

2. V3和V4 互补 SPWM波

调制波:正弦波 50Hz

载波:三角波频率1000Hz

单相单极性SPWM逆变电路matlab仿真

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。

输出电压波形 四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

pwm逆变电路仿真

题目如下: 使用IGBT完成逆变电路仿真,直流电压300V。阻感负载,电阻值1Ω,电感值3mH。调制深度m=0.5。输出基波频率50Hz,载波频率为基频15倍,即750Hz。分别按下列要求仿真输入输出波形,进行谐波傅里叶分析。绘制主要器件的工作波形。 1,单极性SPWM方式下的单相全桥逆变电路仿真,及双极性SPWM方式下的单相全桥逆变电路仿真。对比两种调制方式的不同。 题目中需要做单极性与双极型SPWM的单相全桥逆变电路仿真,那么首先了解一下SPWM的原理。 SPWM控制的基本原理 PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要的波形。PWM控制技术在逆变电路中的应用最为广泛,对逆变电路的影响也最为深刻,PWM控制技术在逆变电路中的应用也最具代表性。面积等效原理是PWM控制技术的重要理论基础,即在采样控制中,冲量相等而形状不同的窄脉冲加在具有惯性的同一环节上时,其效果基本相同。其中,冲量指的是窄脉冲的面积;效果基本相同是指环节的输出响应波形基本相同。如图1.1所示,三个窄脉冲形状不同,但是它们的面积都等于1, 图1.1 SPWM控制如下:

如图1-2是单相PWM逆变电路VT1~VT4是四个IGBT管,VD1~ VD4是四个二极管,调制电路作为控制电路控制IGBT导通与关断来得到所需要的波形。 图1-2 计算法和调制法: SPWM逆变电路主要有两种控制方法:计算法和调制法。计算法是将PWM脉冲宽度的波形计算出来,显然这种方法是很繁琐的,不采用。调制法是用一个三角波作为载波,将一正弦波作为调制信号进行调制。我们采用调制法。因为等腰三角波上下宽度与高度呈线性关系且左右对称,当它与一个平缓变化的正弦调制信号波相交时,在交点时刻就可以得到宽度正比于正弦信号波幅度的脉冲 单极性与双极型的控制方法如下: 1单极性PWM控制方式: 如图1-3所示,在u r和u c的交点时刻控制IGBT的通断 u r正半周,VT1保持通,VT2保持断 . 当u r>u c时使VT4通,VT3断,u o=u d当u r

单相单极性SPWM逆变电路matlab仿真

单相单极性SPWM逆变电路matlab仿真

————————————————————————————————作者:————————————————————————————————日期:

计算机仿真实验报告 专业:电气工程及其自动化班级:11电牵4班 姓名:江流 在班编号:26 指导老师:叶满园 实验日期:2014年5月15日

一、实验名称: 单相单极性SPWM逆变电路MATLAB仿真 二、目的及要求 了解并掌握单相单极性SPWM逆变电路的工作原理; 2.进一步熟悉MA TLAB中对Simulink 的使用及构建模块; 3.进一步熟悉掌握用MA TLAB绘图的技巧。 三、实验原理 1.单相单极性SPWM逆变的电路原理图 2、单相单极性SPWM逆变电路工作方式 单极性PWM控制方式(单相桥逆变):在Ur和U c的交点时刻控制IGBT的通断,Ur正半周,V1保持通,V2保持断,当Ur>cu时使V4通,V3断,U0=Ud,当UrUc时使V3断,V4通,U0=0。 输出电压波形

四、实验步骤及电路图 1、建立MATLAB仿真模型。以下分别是主电路和控制电路(触发电路)模型:

2、参数设置 本实验设置三角载波的周期为t,通过改变t的值改变输出SPWM矩形波的稠密,从而调节负载获取电压的质量。设置正弦波周期为0.02s,幅值为1。直流电源幅值为97V,三角载波幅值为1.2V,三角载波必须正弦波正半周期输出正三角载波,而在正弦波负半周期输出负三角载波,这可以通过让三角载波与周期与正弦波相同、幅值为1和-1的矩形波相乘实现。 五、实验结果与分析 1、设置三角脉冲波形的周期t=0.02/9s时的仿真结果:

H桥逆变器SPWMMATLAB仿真

H桥逆变器 S P W M M A T L A B仿真文档编制序号:[KKIDT-LLE0828-LLETD298-POI08]

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度,基波频率50Hz。仿真时间秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容:

(1)在同一副图中,画出载波与调制波的波形 ; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*=400,实际值,相对误差% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近

(3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形; (2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC 滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1,电感15mH。

单相全桥逆变器matlab仿真

用MATLAB 仿真一个单相全桥逆变器,采用单极性SPWM 调制、双极性SPWM 调制或者单极倍频SPWM 调制的任意一种即可,请注明仿真参数,并给出相应的调制波波形,载波波形,驱动信号波形、输出电压(滤波前)波形。 本文选用双极性SPWM 调制。 1双极性单相SPWM 原理 SPWM 采用的调制波的频率为s f 的正弦波t U U s sm S ωsin =,s s f πω2=;载波c u 是幅值为cm U ,频率为c f 的三角波。载波信号的频率与调制波信号的频率之比称为载波比,正弦调制信号与三角波调制信号的幅值之比称为深度m 。通常采用调制信号与载波信号相比较的方法生成SPWM 信号.当Us>Uc 时,输出电压Uo 等于Ud,当Us

(完整版)三相SPWM逆变器仿真

三相SPWM逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制(PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM可分为等脉宽调制和正弦脉 宽调制(SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM)。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM具体实现方法。 下图就是三相电压源型PWM逆变器主电路结构图: 图—1 上图为一三相电压源型PWM逆变器,VT1~VT6为高频自关断器件,VD1~VD6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容C串 联接地,中点O’可以认为与三相Y接负载中点O等电位。逆变器输出A、B、C三 相PWM电压波形取决于开关器件VT1~VT6上的驱动信号波行,即PWM的调制方式。 假设逆变电路采用双极性SPWM控制,三相公用一个三角形载波u T,三相正弦调制信号u RA、u RB、u RC互差120o,可用A相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给A相上桥臂元件VT1导通信号、下桥臂元件VT4关断信号,则A相与电源中点O’间的电压u AO’=E/2。当u RA

SPWM波控制单相逆变器双闭环PID调节器的Simulink建模与仿真

SPWM波控制单相逆变器双闭环PID调节器的Simulink 建模与仿真 随着电力行业的快速发展,逆变器的应用越来越广泛,逆变器的好坏 会直接影响整个系统的逆变性能和带载能力。逆变器的控制目标是提高逆变器 输出电压的稳态和动态性能,稳态性能主要是指输出电压的稳态精度和提高带 不平衡负载的能力;动态性能主要是指输出电压的THD(Total Hannonic Distortion)和负载突变时的动态响应水平。在这些指标中对输出电压的THD 要 求比较高,对于三相逆变器,一般要求阻性负载满载时THD 小于2%,非线性满载(整流性负载)的THD 小于5%.这些指标与逆变器的控制策略息息相关。文中主要介绍如何建立电压双环SPWM 逆变器的数学模型,并采用电压有效值外 环和电压瞬时值内环进行控制。针对UPS 单模块10 kVA 单相电压型SPWM 逆变器进行建模仿真。通过仿真,验证了控制思路的正确性以及存该控制策略 下的逆变器所具有的鲁棒性强,动态响应快,THD 低等优点。并以仿真为先导,将其思想移植到具体开发中,达到预期效果。 1 三电平逆变器单相控制模型的建立 带LC 滤波器的单相逆变器的主电路结构如图1 所示。图1 中L 为输出 滤波电感,C 为滤波电容,T1,T2,T3,T4 分别是用来驱动IGBT 的三电平的SPWM 波,U0 为输出负载两端的电压。在建立控制系统的仿真模型时,需要 采集负载两端的电压与实际要求的电乐值做比较,然后通过调节器可以得到所 需要调节的值。在此仿真模型中,驱动波形采用的是三电平的SPWM 波形, 具体的产生原理在这不做详细描述。在Matlah 的Simlink 库中SPWM 波的产 生如图2 所示,这里调制比设为0.8.

H桥逆变器SPWMMATLAB仿真

MATLAB仿真技术大作业 题目:H桥逆变器SPWM仿真 单相逆变器(H桥)。直流电压500V,使用直流电压源模块;逆变器用Universal Bridge模块,器件选IGBT。负载用阻感串联负载,电阻1 ,电感15mH。 使用三角波作为载波,载波频率750Hz,调制度0.8,基波频率50Hz。仿真时间0.2秒,使用ode23tb求解器。 本次仿真关注稳态时的情况。分析谐波成分时,取0.1秒之后的2个工频周期的波形进行分析,基波频率50Hz,最大频率3500Hz。 1、双极性SPWM仿真 采用双极性SPWM,完成以下内容: (1)在同一副图中,画出载波与调制波的波形

; (2)记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui 模块中FFT Analysis子模块进行谐波分析, (3) (a)分析基波电压是否与理论公式相符; 基本相符,理论值为500*0.8=400,实际值400.3,相对误差0.75% (b) 分析电压谐波成分,并给出结论; 谐波集中在载波频率(750hz)及其整数倍附近 (3)记录负载电流的波形,并进行谐波分析。 谐波分析 负载电流谐波成分与电压基本一致。 2、单极性SPWM仿真 采用单极性SPWM,重复上述仿真,即,完成以下内容: (1)在同一副图中,画出载波与调制波的波形;

(2) 记录逆变器的输出电压(即负载两端的电压)波形,采用Powergui 模块中FFT Analysis子模块进行谐波分析, 谐波分析 (a) 分析基波电压是否与理论公式相符; 基本相符 (b) 分析电压谐波成分,并给出结论; 谐波分别很散,与理论不符 (3)记录负载电流的波形,并进行谐波分析。 (4)对比分析单极性SPWM,双极性SPWM输出电压谐波成分的特点,在相同LC滤波器参数时,其负载电流THD的情况。 单极性谐波应该少,实际仿真结果反而多? 3、级联H桥逆变器仿真 两个H桥级联,每个桥的逆变器参数都与前面的相同。负载为阻感串联负载,电阻1 ,电感15mH。 两个H桥采用如下图所示调制方法,其中Vcr1,Vcr1-为上部H桥的载波,Vcr2,Vcr2-为下部H桥的载波,载波频率为750Hz;Vm为调制波,调制度0.8,基波频率为50Hz。 上部H桥脉冲产生条件为: Vm>Vcr1时,Vg1=1,Vg2=0;VmVcr2时,Vg1=1,Vg2=0;Vm

PWM逆变器Matlab仿真

课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: PWM逆变器Matlab仿真 初始条件: 输入110V直流电压; 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求) 1、得到输出为220V、50Hz单相交流电; 2、采用PWM斩波控制技术; 3、建立Matlab仿真模型; 4、得到实验结果。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 摘要 (1) 1设计方案的选择与论证 (2) 2逆变主电路设计 (2) 2.1逆变电路原理及相关概念 (2) 2.2逆变电路的方案论证及选择 (3) 2.3建立单相桥式逆变电路的S IMULINK的仿真模型 (4) 2.3.1模型假设 (5) 2.3.2利用MATLAB/Simulink进行电路仿真 (5) 3正弦脉宽调制(SPWM)原理及控制方法的SIMULINK仿真 (6) 3.1正弦脉冲宽度调制(SPWM)原理 (6) 3.2SPWM波的控制方法 (7) 3.2.1双极性SPWM控制原理及Simulink仿真 (7) 3.2.2单极性SPWM控制原理及Simulink仿真 (9) 4升压电路的分析论证及仿真 (11) 4.1B OOST电路工作原理 (11) 4.2B OOST电路的S IMULINK仿真 (12) 5滤波器设计 (13) 6 PWM逆变器总体模型 (15) 7心得体会 (18) 参考文献 (19)

三相桥式spwm逆变电路的设计及仿真课程设计

院(系):电气工程学院

摘要 根据三相桥式SPWM逆变电路的工作原理以及特点,采用Simulink中的相关模块建立仿真模型,仿真分析其典型电流、电压波形和工作过程,得到了三相桥式SPWM控制波、负载线电压、负载相电压、负载相电流、负载中性点电压、电源电流波形,解决了三相桥式SPWM逆变电路教学中的难点问题。利用该模型辅助三相桥式SPWM逆变电路教学,直观生动,交互性强,动态显示传真波形。论述了单项正弦波逆变器的工作原理,介绍了SG3524的功能及产生SPWM波的方法,对逆变器的控制及保护电路做了详细介绍,给出了输出电压波形的实验结果。 关键词:三相桥式SPWM逆变;Simulink;仿真;波形;

目录 第1章绪论 (1) 第2章课程设计的方案 (2) 2.1三相桥式SPWM逆变电路的设计内容及要求....... 错误!未定义书签。 2.2SPWM逆变器的工作原理 ....................... 错误!未定义书签。第3章 SPWM逆变器的工作原理. (4) 3.1工作原理 (4) 3.2 控制方式 (5) 3.2.1单极性正弦脉宽调制 (5) 3.2.2双极性正弦脉宽调制 (6) 3.3 正弦脉宽调制的调制算法 (7) 3.3.1 自然采样法 (7) 3.3.2规则采样法 (7) 3.3.3 双极性正弦波等面积法 (7) 第四章MATLAB仿真设计 (8) 4.1 主电路 (8) 4.2 控制电路设计 (9) 4.3仿真结果与分析 (10) 第五章课程设计总结 (15) 参考文献 (16)

第1章绪论 电力电子技术是跨越电力技术、电子技术和控制技术理论三个领域的一门新兴交叉学科,它主要研究应用了电路领域的各种电力半导体器件及其装置,以实现对电能的变换和控制。它可以看成是弱电控制强电的技术,是弱电和强电之间的接口。电力电子技术广泛应用于一般工业、交通运输、电力系统、通信系统、计算机系统、新能源系统等。该课程已成为电气工程与自动化、自动化、电力系统自动化等电类专业的重要专业基础课。 正弦逆变电源作为一种可将直流电能有效地转换为交流电能的电能变换装置被广泛地应用于国民经济生产生活中,其中有:针对计算机等重要负载进行断电保护的交流不间断电源UPS (Uninterruptle Power Supply);针对交流异步电动机变频调速控制的变频调速器;针对智能楼宇消防与安防的应急电源EPS ( Emergence Power Supply);针对船舶工业用电的岸电电源 SPS(Shore Power Supply);还有针对风力发电、太阳能发电等而开发的特种逆变电源等等.随着控制理论的发展与电力电子器件的不断革新,特别是以绝缘栅极双极型晶体管IGBT( Insulated Gate Bipolar Transistor)为代表的自关断可控型功率半导体器件出现,大大简化了正弦逆变电源的换相问题,为各种 PWM 型逆变控制技术的实现提供了新的实现方法,从而进一步简化了正弦逆变系统的结构与控制。 IGBT最大的优点是无论在导通状态还是短路状态都可以承受电流冲击。它的并联不成问题,由于本身的关断延迟很短,其串联也容易。尽管IGBT模块在大功率应用中非常广泛,但其有限的负载循环次数使其可靠性成了问题,其主要失效机理是阴极引线焊点开路和焊点较低的疲劳强度,另外,绝缘材料的缺陷也是一个问题。 在现有的正弦波输出变压变频电源产品中,为了得到SPWM波,一般都采用双极性调制技术。该调制方法的最大缺点是它的6个功率管都工作在较高频率,从而产生了较大的开关损耗,开关频率越高,损耗越大。本文针对正弦波输出变压变频电源 SPWM调制方式及数字化控制策略进行了研究,以SG3524为主控制芯片,以期得到一种较理想的调制方法,实现逆变电源变压、变频输出。

(完整版)三相SPWM逆变器仿真.docx

三相 SPWM 逆变器仿真 一、原理分析 1、基本原理 按照输出交流电压半周期内的脉冲数,脉宽调制( PWM)可分为单脉冲调制和多脉冲调制;按照输出电压脉冲宽度变化规律,PWM 可分为等脉宽调制和正弦脉 宽调制( SPWM)。 等脉宽调制产生的电压波形中谐波含量仍然很高,为了使输出电压波形中基波含量增大,应选用正弦波作为调制信号u R。这是因为等腰三角形的载波u T上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数值的矩形脉冲。而且在三角载波u T不变条件下,改变正弦调制波u R的周期 就可以改变输出脉冲宽度变化的周期;改变正弦调制波u R的幅值,就可改变输出脉 冲的宽度,进而改变u D中基波 u D1的大小。这就是正弦脉宽调制(sine pulse width modulated,SPWM )。 2、正弦脉宽调制方法(此处仅介绍了采样法) SPWM 是以获得正弦电压输出为目标的一种脉宽调制方式。这里就以应用最普遍的三相电压源型逆变电路来讨论SPWM 具体实现方法。 下图就是三相电压源型PWM 逆变器主电路结构图: 图— 1 上图为一三相电压源型PWM 逆变器, VT1~VT6为高频自关断器件,VD1~VD6为与之反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容 C 串联接地,中点 O’可以认为与三相Y 接负载中点 O 等电位。逆变器输出A、 B、 C 三相 PWM 电压波形取决于开关器件VT1~VT6上的驱动信号波行,即 PWM 的调制方式。 假设逆变电路采用双极性SPWM 控制,三相公用一个三角形载波u T,三相正弦调制信号 u RA、 u RB、u RC互差120o,可用 A 相来说明功率开关器件的控制规律,正如 下图中所示。当u RA>u T时,在两电压的交点处,给 A 相上桥臂元件VT1导通信号、下桥臂元件 VT 关断信号,则A相与电源中点 O’间的电压’。当 u RA

三相SPWM逆变电路仿真

三相SPWM逆变电路仿真 摘要:利用MATLAB软件中的电力系统模块库,为三相电压型逆变器建立了仿真模型,对其输出特性进行了仿真分析,并利用快速傅里叶变换(FFT)分析工具对逆变器的输出电压进行了谐波分析。仿真实例表明了此模型和仿真方法的正确性。 关键词:逆变电路;脉宽调制(PWM);快速傅里叶变换(FFT) ;谐波;MATLAB 0 引言 随着大功率全控型电力电子器件(如GTO、IG2BT、MOSFET、IGCT 等)的开发成功和应用技术的不断成熟,近年来电能变换技术出现了突破性进展,各种新型逆变器已开始在各类直流电源、UPS、交流电机变频调速、高压直流输电系统等领域中得到应用,由于大功率电力电子装置的结构非常复杂,若直接对装置进行试验,代价高且费时费力,故在研制过程中需要借助计算机仿真技术,对装置的运行机理与特性、控制方法的有效性进行验证,以预测并解决问题,缩短研制时间。MATLAB软件具有强大的数值计算功能,方便直观的Simulink建模环境,使复杂电力电子装置的建模与仿真成为可能。本文利用MATLAB/Simulink为SPWM(脉宽调制)逆变电路建立系统仿真模型,并对其输出特性进行仿真分析。 1 SPWM电压型逆变电路的基本原理 SPWM控制是通过对每周期内输出脉冲个数和每个脉冲宽度的控制来改善逆变器的输出电压、电流波形。它是现代交流变频调速的一种重要的控制方式。三相逆变器主回路原理图如下所示,图中V1-V6为6个开关元件,由SPWM调制器控制其开通与关断。逆变器产生的SPWM 波形,施加给三相负载。 图1 三相逆变器主电路 2 通过matlab/simulink建立仿真电路如下图所示: 通过matlab/simulink建立仿真图形,主要参数为:直流电压为530V。脉冲频率为1650Hz,调制比为1,电压频率为50Hz。

(完整版)三相逆变器SPWM的仿真

目录 一摘要 (2) 二三项逆变器SPWM调制原理 (2) 三SPWM逆变电路及其控制方法 (2) 3.1SPWM包括单极性和双极性两种调制方法 (2) 3.2调制法 (3) 3.3特定谐波消去法 (4) 四三相桥式逆变器SPWM调制的仿真型 (5) 4.1SUBSYSTEM封装模块 (6) 4.2SUBSYSTEM1封装模块 (7) 五三相桥式逆变器SPWM调制的仿真波形 (7) 六频谱分析 (14) 6.1对相电压UN’、VN’、WN’输出电压进行谐波分析 (14) 6.2对负载的线电压U UV、U VW、U WU的输出波形进行谐波分析 (16) 6.3负载VN的相电压UN、VN、WN输出波形进行谐波分析 (17) 七结语 (19) 八参考文献 (19)

三相逆变器双极性SPWM调制技术的仿真 一摘要:在电力电子技术中,PWM(Pulse Width Modulation)控制就是对脉冲的宽度进行调制的技术。即通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。本论文以三相逆变器双极性SPWM调制技术的仿真为例,通过运用了 Matlab/Simulink和Power System Block(PSB)电力系统模块集工具箱仿真环境,对电路进行建模、计算和仿真分析。通过调节载波比N,用示波器观看输出波形的改变。另外,采用subplot作出相电压、相电流、线电压、不同器件所承受的电压波形以及频谱图,并加以分析。 关键词:PWM 三相逆变器载波比N 示波器仿真波形 二三相逆变器SPWM调制原理 在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。图1中各个形状的窄脉冲在作用到逆变器中电力电子器件时,其效果是相同的,是指环节的输出响应波形基本相同。 重要理论基础——面积等效原理 a)矩形脉冲b)三角脉冲c)正弦半波脉冲d)单位脉冲函 图1 形状不同而冲量相同的各种窄脉冲 三SPWM逆变电路及其控制方法 3.1 SPWM包括单极性和双极性两种调制方法 (1)如果在正弦调制波的半个周期内,三角载波只在正或负的一种极性范围内变化,所得到的SPWM波也只处于一个极性的范围内,叫做单极性控制方式。

完整版三相SPWM逆变器仿真

三相SPWM 逆变器仿真 、 原理分析 1、 基本原理 按照输出交流电压半周期内的脉冲数, 脉宽调制(PWM )可分为单脉冲调制和 多脉冲调制;按照输出电压脉冲宽度变化规律, PWM 可分为等脉宽调制和正弦脉 宽调制(SPWM )。 等脉宽调制产生的电压波形中谐波含量仍然很高, 为了使输出电压波形中基波 含量增大,应选用正弦波作为调制信号 U R 。这是因为等腰三角形的载波 U T 上、下 宽度线性变化,任何一条光滑曲线与三角波相交时,都会得到一组脉冲宽度正比于 该函数 值的矩形脉冲。而且在三角载波 U T 不变条件下,改变正弦调制波 U R 的周期 就可以改变输出脉冲宽度变化的周期; 改变正弦调制波U R 的幅值,就可改变输出脉 冲的宽度,进而改变 U D 中基波U DI 的大小。这就是正弦脉宽调制( sine pulse width modulated,SPWM )。 2、 正弦脉宽调制方法(此处仅介绍了采样法) SPWM 是以获得正弦电压输出为目标的一种脉宽调制方式。 这里就以应用最普 遍的三相电压源型逆变电路来讨论 SPWM 具体实现方法。 下图就是三相电压源型 PWM 逆变器主电路结构图: 图一1 上图为一三相电压源型 PWM 逆变器,VT 1~VT 6为高频自关断器件, VD 1~VD 6为与之 反并联的快速恢复二极管,为负载感性无功电流提供通路。两个直流滤波电容 C 串 联接地,中点 0可以认为与三相 Y 接负载中点0等电位。逆变器输出 A 、B C 三 相PWM 电压波形取决于开关器件 VT 1~VT 6上的驱动信号波行,即PWM 的调制方式。 假设逆变电路采用双极性 SPWM 控制,三相公用一个三角形载波 U T ,三相正弦 调制信号U RA 、U RB 、U RC 互差120°,可用A 相来说明功率开关器件的控制规律,正如 下图中所示。当 U RA >U T 时,在两电压的交点处,给 A 相上桥臂元件 VT 1导通信号、 下桥臂元件 VT 4关断信号,则 A 相与电源中点 0'间的电压U AO 'E/2。当U RA

基于Simulink的三相SPWM逆变器的建模与仿真

基于Matlab/Simulink 的三相SPWM 逆变器的建模与仿真 姓 名:** (班级:**) 【摘要】随着电力电子技术,计算机技术,自动控制技术的迅速发展,PWM 技术得到了迅速发展,SPWM 正弦脉宽调制法这项技术的特点是原理简单,通用性强,具有开关频率固定,控制和调节性能好,能消除谐波使输出电压只含有固定频率的高次谐波分量,设计简单等一系列有点,是一种比较好的波形改善法。它的出现为中小型逆变器的发展起了重要的推动作用。SPWM 技术成为目前应用最为广泛的逆变用PWM 技术。因此,研究SPWM 逆变器的基本工作原理和作用特性意义十分重大。 本文主要通过对三相SPWM 逆变器的Matlab/Simulink 建模与仿真,研究逆变电路的输入输出及其特性,以及一些参数的选择设置方法。Simulink 是MATLAB 中的一种可视化仿真工具,是一种基于MATLAB 的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。 关键词:SPWM 三相逆变器 Mmatlab/Simulink 建模与仿真 1.三相电压型桥式逆变电路 该电路采用双极性控制方式,U 、V 和W 三相的PWM 控制通常公用一个三角载波c u ,三相的调制信号rU u 、rV u 和rW u 一次相差120°。U 、V 和W 各相功率开关器件的控制规律相同,现以U 相为例来说明。当rU u >c u 时,给上桥臂1V 以导通信号,给下桥臂4V 以关断信号,则U 相相对于直流电源假想中点'N 的输出电压2/'d UN U u =。当rU u

基于Matlab的单相双极性spwm逆变电路仿真报告

单相双极性SPWM桥式逆变电路实验报告 学院:电气与电子工程班级:xxxxx 姓名:xx 一、理论介绍 SPWM控制技术是逆变电路中应用最为广泛的PWM型逆变电路技术。对SPWM型逆变电路进行分析,首先建立了逆变器控制所需的电路模型,采用IGBT作为开关器件,并对单相桥式电压型逆变电路和SPWM控制电路的工作原理进行了分析,运用MATLAB中的SIMULINK 模块对电路进行了仿真,给出了最终仿真波形。SPWM(Sinusoidal PWM)法是一种比较成熟的,目前使用较广泛的PWM法. 前面提到的采样控制理论中的一个重要结论: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同. (此处采用等面积法) SPWM法就是以该结论为理论基础,用脉冲宽度按正弦规律变化而和正弦波等效的PWM波形即SPWM波形控制逆变电路中开关器件的通断,使其输出的脉冲电压的面积与所希望输出的正弦波在相应区间内的面积相等,通过改变调制波的频率和幅值则可调节逆变电路输出电压的频率和幅值. 二、主电路设计分析 根据设计要求,采用单相全桥PWM逆变电路,工作方式为单极性PWM方式,开关器件选用IGBT,直流电源电压为200V,电阻电感负载。设计主电路图如图一所示。 图一单相桥式PWM逆变电路 分析: a、主电路 采用IGBT作为开关器件的单相桥式电压型逆变电路。采用负载

为阻感负载,工作时V1和V2的通断状态互补,V3和V4的通断状 态也互补。在输出电压u0的正半周,让V1保持通态,V2保持断态, V3和V4交替通断。 当uco>utri,且-ucoutri,且-ucoutri,使VTB-断开,触发VTB+,由于是感性负载,电 流不能突变,因此负载电流经VTA+和VDB+续流,使VTB+不能导通,uo=0,同时电流下降;直至下一个周期触发VTA+和VTB-导通。由此循环往复周期性的工作。 b、调制电路的产生控制原理 根据面积等效原理,可产生双极性PWM波 图二双极性PWM控制方式波形 双极性PWM控制方式:在ur的半个周期内,三角波载波有正有负,所得PWM波也有正有负,其幅值只有±Ud两种电平。同样在调 制信号ur和载波信号uc的交点时刻控制器件的通断。ur正负半周,对各开关器件的控制规律相同。当ur >uc时,给V1和V4导通信号,给V2和V3关断信号。如io>0,V1和V4通,如io<0,VD1和VD4通, uo=Ud 。当ur0,VD2和VD3通,uo=-Ud 。这 样就得到图二所示的双极性的SPWM波形。 三、仿真模型的建立及各模块参数设置 t 3.1、双极性PWM控制发生电路模型图如图a所示。

相关主题
相关文档
最新文档