蒙特卡罗方法 (Monte Carlo simulation)

蒙特卡罗方法的应用【文献综述】

文献综述 信息与计算科学 蒙特卡罗方法的应用 在解决实际问题的时候, 为了模拟某一过程, 产生各种概率分布的随机变量和对于那些由于计算过于复杂而难以得到解析解或者根本没有解析解的问题, 我们应该怎么办? 蒙特·卡罗是一种十分有效的求出数值解的方法. 蒙特卡罗法( monte-carlo method )简称M -C 法 通过构造概率模型并对它进行随机试验来解算数学问题的方法. 以计算函数的定积分()()1 0I f x d x =?, ()01f x ≤≤为例, 首先构造一个概率模型: 取一个边长分别为和-的矩形, 并在矩形内随机投点M , 假设随机点均匀地落在整个矩形之内, 当点的掷点数N 充分大时, 则落在图中阴影区内的随机点数与投点总数N 之比M N 就近似等于积分值I . 蒙特卡罗法历史悠久. 1773年法国G.-L.L.von 布丰曾通过随机投针试验来确定圆周率π的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年 J.von 诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 蒙特卡罗法的步骤是: 构造实际问题的概率模型; ②根据概率模型的特点, 设计和使用降低方差的各类方法, 加速试验的收敛; ③给出概率模型中各种不同分布随机变量的抽样方法; ④统计试验结果, 给出问题的解和精度估计. 概率模型用概率统计的方法对实际问题或系统作出的一种数学描述. 例如对离散事件系统中临时实体的到达时间、永久实体的服务时间的描述(见离散事件系统仿真方法)就是采用概率模型. 虽然由这些模型所确定的到达时间、服务时间可能与具体某一段时间内实际到达时间、服务时间有出入, 但它是通过多次统计获得的结果, 所以从概率分布的规律来说还是相符的. 概率模型不仅可用来描述本身就具有随机特性的问题或系统, 也可用来描述一个确定型问题. 例如参数寻优中的随机搜索法(见动力学系统参数寻优)就是将参数最优化问题构造为一个概率模型, 然后用随机投点、统计分析的方法来进行搜索.

浅析蒙特卡洛方法原理及应用

浅析蒙特卡洛方法原理及应用 于希明 (英才学院1236103班测控技术与仪器专业6120110304) 摘要:本文概述了蒙特卡洛方法产生的历史及基本原理,介绍了蒙特卡洛方法的最初应用——蒲丰投针问题求圆周率,并介绍了蒙特卡洛方法在数学及生活中的一些简单应用,最后总结了蒙特卡洛方法的特点。 关键词:蒙特卡洛方法蒲丰投针生活应用 蒙特卡洛方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。它是以概率统计理论为基础, 依据大数定律( 样本均值代替总体均值) , 利用电子计算机数字模拟技术, 解决一些很难直接用数学运算求解或用其他方法不能解决的复杂问题的一种近似计算法。蒙特卡洛方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 一、蒙特卡洛方法的产生及原理 蒙特卡洛方法于20世纪40年代美国在第二次世界大战中研制原子弹的“曼哈顿计划”计划的成员S.M.乌拉姆和J.冯·诺伊曼首先提出。数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。在这之前,蒙特卡洛方法就已经存在。1777年,法国数学家蒲丰(Georges Louis Leclere de Buffon,1707—1788)提出用投针实验的方法求圆周率π。这被认为是蒙特卡洛方法的起源。 其基本原理如下:由概率定义知,某事件的概率可以用大量试验中该事件发生的频率来估算,当样本容量足够大时,可以认为该事件的发生频率即为其概率。因此,可以先对影响其可靠度的随机变量进行大量的随机抽样,然后把这些抽样值一组一组地代入功能函数式,确定结构是否失效,最后从中求得结构的失效概率。蒙特卡洛法正是基于此思路进行分析的。 设有统计独立的随机变量Xi(i=1,2,3,…,k),其对应的概率密度函数分别为fx1,fx2,…,fxk,功能函数式为Z=g(x1,x2,…,xk)。首先根据各随机变量的相应分布,产生N组随机数x1,x2,…,xk值,计算功能函数值Zi=g(x1,x2,…,xk)(i=1,2,…,N),若其中有L组随机数对应的功能函数值Zi≤0,则当N→∞时,根据伯努利大数定理及正态随机变量的特性有:结构失效概率,可靠指标。 二、蒲丰投针问题 作为蒙特卡洛方法的最初应用, 是解决蒲丰投针问题。1777 年, 法国数学家蒲丰提出利用投针实验求解圆周率的问题。设平面上等距离( 如为2a) 画有一些平行线, 将一根长度为2l( l< a) 的针任意投掷到平面上, 针与任一平行线相交的频率为p 。针的位置可以用针的中心坐标x 和针与平行线的夹角θ来决定。任意方向投针, 便意味着x与θ可以任意取一值, 只是0≤x ≤a, 0≤θ≤π。那么, 投针与任意平行线相交的条件为x ≤ l sinθ。相交频率p 便可用下式求

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

基于汉密尔顿蒙特卡洛方法的随机波动模型

基于汉密尔顿蒙特卡洛方法的随机波动模型经济金融系统中潜在风险的防范和控制十分必要,而我国股票市场的波动特征在一定程度上能体现和折射出我国经济及金融系统的稳定性。因此,用以描述股市波动的模型和方法一直是学者关注的焦点。 更为重要的是,运用新的模型和方法更为准确深入地研究我国股市波动,对于投资者入市选股和制定投资决策、相关人员制定应对措施有效控制股市风险有一定的指导作用。波动模型是分析刻画经济金融系统潜在风险的重要工具。 不少国内外实证研究表明,传统的波动模型不能客观描述具有时变性和异方差特点的金融时序特征。目前研究收益率波动的主流模型有随机波动模型(SV)和ARCH族模型两大类。 SV模型在其方差方程中引进潜在的随机变量,较ARCH族模型更适合描述股市收益率的波动情况。SV模型下参数的似然函数是难解的高维积分,常用求解模型的算法是马尔科夫链蒙特卡洛(MCMC)方法。 但传统的MCMC方法具有不可避免的随机游走行为,容易使马尔可夫链在更新迭代过程中陷入局部最优,收敛效果不太理想。汉密尔顿蒙特卡洛(HMC)方法是将汉密尔顿动力学系统和Metropolis准则相结合的算法。 它通过将虚拟的动量变量引入汉密尔顿系统,利用汉密尔顿系统的内在物理特性和蛙跳技术完成状态更新。动力系统的能量守恒特性使得状态转移的概率较高,可逆性和保体积性也有助于潜在状态更新,在某种程度上减少了传统MCMC方法的随机游走行为,改进了马尔科夫链的有效性,确保算法能迅速收敛。 HMC算法充分考虑了状态空间的各敏感因素,能够遍历探索目标分布轨迹,尤其适用于目标分布处于高维状态空间或变量之间存在强相关性的情形。因其是

基于蒙特卡罗方法的气象问题应用研究

基于蒙特卡罗方法的气象问题应用研究 冯圆1,龚晓燕2 (1. 空军雷达学院 ,武汉 430019; 2. 二炮指挥学院,武汉 430012) Email:fy_science@https://www.360docs.net/doc/d710904274.html, 摘要:基于蒙特卡罗方法在气象研究中的应用,本文分析了蒙特卡罗方法的主要计算步骤,列举了该方法在气象中应用的实例,讨论了蒙特卡罗方法在气象领域应用的局限性,展望了该方法在未来气象研究中的应用。 关键词:蒙特卡罗,气象,反演,概率 1.引言 由于气象问题研究的复杂性,人们很早就认识到在实验的计划和分析中引用统计的方法是必要的。的确,许多知名的统计专家、学者投身于将统计的方法应用于气象问题。在过去的几十年里统计科学取得了巨大进步,统计方法和计算技术的革命为气象的进一步发展开阔了前所未有的许多新境界。例如,对一切不可控制的误差源有效地进行随机化处理、考虑用复杂的统计模式解释显著的效应、用随机化方法减轻空间相关的效应等等。很多的统计学、概率的方法被广泛应用,如线性最小二乘回归的自适应方法、分对数(logit)回归模型的自适应算法、卡尔曼滤波方法等。[1] 近十年统计学在气象领域的应用得到了更“革命性”的发展,尤其是一些传统的统计方法得到了新的发展。比如,马尔科夫链蒙特卡罗法(Markov Chain Monte Carlo,MCMC)用于Bayes统计模式、柯克帕特里克(Kirkpatrick)模拟退火方法、罗斯曼(Rothman)模拟退火方法、约翰·霍兰(John Holland)提出和发展的遗传算法等等。此类算法的基本特征是,对所求问题的同一实例,用同一概率算法求解多次,得到的结果可能完全不同,甚至效果差别相当大。但通过多次执行反复求解,会使正确性和精确性达到满意的程度,而失败或误差的概率接近任意小。 本文以蒙特卡罗方法在气象研究中的应用为研究对象,探索该方法在气象应用中的发展情况,探求蒙特卡罗方法在气象领域的进一步发展和应用。 2. 蒙特卡罗方法的基本原理 2.1蒙特卡罗方法的定义 蒙特卡罗方法(Monte Carlo)是用来解决数学和物理问题的非确定性的(概率统计的或随机的)数值方法,也称为统计试验方法,是理论物理学两大主要学科的合并:即随机过程的概率统计理论(用于处理布朗运动或随机游动实验)和位势理论,主要是研究均匀介质的稳定状态。它是用一系列随机数来近似解决问题的一种方法,是通过寻找一个概率统计的相似体并用实验取样过程来获得该相似体的近似解的处理数学问题的一种手段,也就是说:当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验的方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。运用该近似方法所获得的问题的解更接近于物理实验结果,而不是经典数值计算结果[2]。 2.2蒙特卡罗方法的主要计算步骤 蒙特卡罗方法的计算过程需要有可得的、服从特定概率分布的、随机选取的数值序列。该方法既能求解确定性的问题,也能求解随机性问题以及科学研究中的理论问题,比如计算

蒙特卡罗方法(MC)

蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。 传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并 用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 建立各种估计量: 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 例如:检验产品的正品率问题,我们可以用1表示正品,0表示次品,于是对每个产品检验可以定义如下的随机变数Ti,作为正品率的估计量: 于是,在N次实验后,正品个数为:

融合马尔科夫链_蒙特卡洛算法的改进通用似然不确定性估计方法在流域水文模型中的应用

2009年4月 水 利 学 报 SHUILI XUEBAO 第40卷 第4期 收稿日期:2008-04-23 基金项目:国家自然科学基金重点项目(40730632);教育部新世纪优秀人才支持计划(NCET-05-0624);霍英东青年教师基金资助 项目(101077) 作者简介:卫晓婧(1984-),女,山西阳泉人,硕士生,主要从事水文水资源方面的研究。E -mail:hellomuki@to https://www.360docs.net/doc/d710904274.html, 文章编号:0559-9350(2009)04-0464-10融合马尔科夫链-蒙特卡洛算法的改进通用 似然不确定性估计方法在流域水文模型中的应用 卫晓婧,熊立华,万 民,刘 攀 (武汉大学水资源与水电工程科学国家重点实验室,湖北武汉 430072) 摘要:本文在Blasone 研究工作的基础上,进一步提出了基于马尔科夫链-蒙特卡洛算法的改进通用似然不确定性估计方法(Markov Chain -Monte Carlo based Modified Generalized Likelihood Uncertainty Esti mation,MMGLUE)。该方法结合近年来被广泛用于推求参数后验分布的MC MC 方法,对基于Mon te Carlo 随机取样方法的传统GLUE 方法进行改进,并以预测区间性质最优为标准,对可行参数组阈值进行判断与选择,提出了衡量预测区间对称性的标准,并就预测区间性质与可行参数组个数的相关关系进行了探索。在汉江玉带河流域的实例研究证明,MMGLUE 方法较传统的GLUE 方法能够推求出性质更为优良的预测区间,从而更真实合理地反映水文模型的不确定性。 关键词:MC MC;GLUE;MMGLUE;预测区间;覆盖率;区间宽度;区间对称性 中图分类号:P333文献标识码:A 1 研究背景 近10年来,流域水文模型的不确定性研究逐渐成为当今水文界广泛研究的热点之一,各国的水文学家就此做了大量的工作[1]。Beven [2-3]于1992年率先提出了流域水文模型/异参同效性0的观点,并针对流域水文模型的不确定性研究问题提出了通用似然不确定性估计(Generalized Likelihood Uncertainty Estimation,GLUE)方法。该方法结合Monte Carlo 随机取样技术与Bayesian 框架,对由模型结构、参数冗余及相关性、输入输出误差等因素造成的不确定性进行综合分析。GLUE 方法原理简单,易于操作,但由于其自身理论结构的缺陷,越来越多的研究者就GLUE 方法提出了质疑[4-5],即并非经典的Bayesian 方法、主观判断参数可行域阈值和推求的参数后验概率分布不具有显著的统计特征。因此,基于不同假设的其他不确定性研究方法,如:基于经典Bayesian 理论的Ba RE(Bayesian Recursive Estimation)方法 [6],基于全局卡尔曼滤波理论的EnKF(Ense mble Kalman Filter )方法[7] ,多目标方法如MOSCE M (Mult-i objective Shuffled Complex Evolution Metropolis)方法[8]等被用于估计模型的不确定性工作中。然而,上述方法尽管 理论结构相对复杂,应用效果与GLUE 方法相比却并没有明显的提高。 同时期另一种基于经典Bayesian 理论的马尔科夫链-蒙特卡洛(Markov Chain Monte Carlo,MC MC)方法也被广泛应用于推求参数后验分布的研究中。特别是SCE M -UA (The Shuffled Complex E volution Metropolis Algorithm)方法[9]能够有效地探索参数空间,使Markov Chain 能够朝着高概率密度区进化,从而 推导出具有显著统计特征的水文模型参数的后验分布。 因此,Blasone [10]提出将两种方法结合起来,采用SCE M -UA 采样方法替代传统的GLUE 方法中的) 464)

蒙特卡罗方法及应用实验讲义2016资料

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

蒙特卡罗方法学习总结

图1-1 蒙特卡罗方法学习总结 核工程与核技术2014级3班张振华20144530317 一、蒙特卡罗方法概述 1.1蒙特卡罗方法的基本思想 1.1.1基本思想 蒙特卡罗方的基本思想就是,当所求问题的解是某个事件的概率,或者是某个随机变量的数学期望,或者是与概率、数学期望有关的量时,通过某种试验方法,得出该事件发生的频率,或者该随机变量若干个具体观察值的算术平均值,通过它得到问题的解。 1.1.2计算机模拟打靶游戏 为了能更为深刻地理解蒙特卡罗方法的基本思想,我们学习了蒲丰氏问题和打靶游戏两大经典例子。下面主要对打靶游戏进行剖析、计算机模拟(MATLAB 程序)。 设某射击运动员的弹着点分布如表1-1 所示, 首先用一维数轴刻画出已知该运动员的弹 着点的分布如图1-1所示。研究打靶游戏,我 们不用考察子弹的运动轨迹,只需研究每次“扣动扳机”后的子弹弹着点。每一环数对应唯一确定的概率,且注意到概率分布函数有单调不减和归一化的性质。首先我们产生一个在(0,1)上均匀分布的随机数(模拟扣动扳机),然后将该随机数代表的点投到P 轴上(模拟子弹射向靶上的一个确定点),得到对应的环数(即子弹的弹着点),模拟打靶完成。反复进行N 次试验,统计出试验结果的样本均值。样本均值应当等于数学期望值,但允许存在一定的偏差,即理论计算值应该约等于模拟试验结果。 clear all;clc; N=100000;s=0; for n=1:N %step 4.重复N 次打靶游戏试验

x=rand(); %step 1.产生在(0,1)上均匀分布的随机数if(x<=0.1) %step 2.若随机数落在(0.0,0.1)上,则代表弹着点在7环g=7; s=s+g; %step 3.统计总环数elseif(x<=0.2) %step 2.若随机数落在(0.1,0.2)上,则代表弹着点在8环g=8;s=s+g; elseif(x<=0.5) %step 2.若随机数落在(0.2,0.5)上,则代表弹着点在9环g=9;s=s+g; else %step 2.若随机数落在(0.5,1.0)上,则代表弹着点在10环 g=10;s=s+g; end end gn_th=7*0.1+8*0.1+9*0.3+10*0.5; %step 5.计算、输出理论值fprintf('理论值:%f\n',gn_th); gn=s/N; %step 6.计算、输出试验结果 fprintf('试验结果:%f\n',gn);1.2蒙特卡罗方法的收敛性与误差 1.2.1收敛性 由大数定律可知,应用蒙特卡罗方法求近似解,当随机变量Z 的简单子样数N 趋向于无穷大(N 充分大)时,其均值依概率收敛于它的数学期望。 1.2.2误差 由中心极限定理可知,近似值与真值的误差为N Z E Z N αλ<-)(?。式中的αλ的值可以根据给出的置信水平,查阅标准正态分布表来确定。 1.2.3收敛性与误差的关系 在一般情况下,求具有有限r 阶原点矩()∞

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

蒙特卡罗方法并行计算

Monte Carlo Methods in Parallel Computing Chuanyi Ding ding@https://www.360docs.net/doc/d710904274.html, Eric Haskin haskin@https://www.360docs.net/doc/d710904274.html, Copyright by UNM/ARC November 1995 Outline What Is Monte Carlo? Example 1 - Monte Carlo Integration To Estimate Pi Example 2 - Monte Carlo solutions of Poisson's Equation Example 3 - Monte Carlo Estimates of Thermodynamic Properties General Remarks on Parallel Monte Carlo What is Monte Carlo? ? A powerful method that can be applied to otherwise intractable problems ? A game of chance devised so that the outcome from a large number of plays is the value of the quantity sought ?On computers random number generators let us play the game ?The game of chance can be a direct analog of the process being studied or artificial ?Different games can often be devised to solve the same problem ?The art of Monte Carlo is in devising a suitably efficient game.

蒙特卡罗马尔科夫链模拟方法MCMC

Monte Carlo Simulation Methods (蒙特卡罗模拟方法) 主要内容: 1.各种随机数的生成方法. 2.MCMC方法. 1

2 从Buffon 投针问题谈起 Buffon 投针问题:平面上画很多平行线,间距为a .向此平面投掷长 为l (l < a) 的针, 求此针与任一平行线相交的概率p 。 22[0,/2] [0,] sin ,{:sin }. l l a X A X 随机投针可以理解成针的中心 点与最近的平行线的距离X 是均匀 地分布在区间 上的r.v.,针 与平行线的夹角是均匀地分布 在区间 上的r.v.,且X 与相互独立, 于是针与平行线相交的充要条件为 即相交

3Buffon 投针问题 2sin 0022(sin ) 2l l l p P X dxd a a 于是有: 2l ap 若我们独立重复地作n 次投针试验,记 ()n A 为A 发生的次数。()n f A 为A 在n 次中出现的频率。假如我们取 ()n f A 作为()p P A 的估计,即?()n p f A 。 然后取2?() n l af A 作为的估计。根据大数定律,当n 时,..?().a s n p f A p 从而有2?()P n l af A 。这样可以用随机试验的方法求得的估计。历史上 有如下的试验结果。

4 3.14159292 180834080.831925Lazzarini 3.1595148910300.751884Fox 3.15665121832040.601855Smith 3.15956253250000.801850Wolf π的估计值相交次数投针次数针长时间(年)试验者

蒙特卡罗方法及其在中子输运问题中得应用

蒙特卡罗方法及其在中子输运问题中得应用 目录 蒙特卡罗方法及其在中子输运问题中得应用 (1) 1蒙特卡罗方法简介 (3) 1.1蒙特卡罗方法的基本原理 (3) 1.2 蒙特卡罗方法的误差 (4) 2 随机变量的抽样方法 (4) 2.1 直接抽样方法 (5) 2.1.1 离散型随机变量的抽样 (5) 2.1.2 连续型随机变量的抽样 (5) 2.2 挑选抽样法 (5) 2.3 复合抽样法 (6) 3 蒙特卡罗方法模拟中子输运过程 (6) 3.1 源抽样 (6) 3.2 输运距离的抽样 (7) 3.3 碰撞核素的抽样值 (7) 3.4 反应类型的抽样值 (7) 3.5 反应后中子状态的确定 (7) 3.5.1 弹性散射 (7) 3.5.2 非弹性散射 (8) 3.5.3 裂变反应 (8) 4 蒙特卡罗方法的减方差技巧 (8) 4.1 权 (8) 4.2 统计估计法 (9) 4.3 权窗 (10) 5 蒙特卡罗方法求解通量 (10) 5.1 通量的定义 (10) 5.2 点通量的计算 (11) 5.3 面通量的计算 (11) 5.3.1 统计估计法 (11) 5.3.2 加权法 (12) 5.4 体通量的计算 (12) 5.4.1 统计估计法 (12) 5.4.2 径迹长度法 (13) 5.4.3 碰撞密度法 (13) 5.4.4 几种体通量计算方法的比较 (14) 5.5 最终结果的统计 (14) 6 蒙特卡罗方法求解k eff (15) 6.1 有效增值因子k eff的定义 (15) 6.2 蒙特卡罗方法求解k eff (15)

6.2.1 吸收估计法 (15) 6.2.2 碰撞估计法 (15) 6.2.3 径迹长度估计法 (16)

蒙特卡洛方法及其在风险评估中的应用(1)

蒙特卡洛方法及其应用 1风险评估及蒙特卡洛方法概述 1.1蒙特卡洛方法。 蒙特卡洛方法,又称随机模拟方法或统计模拟方法,是在20世纪40年代随着电子计算机的发明而提出的。它是以统计抽样理论为基础,利用随机数,经过对随机变量已有数据的统计进行抽样实验或随机模拟,以求得统计量的某个数字特征并将其作为待解决问题的数值 解。 蒙特卡洛模拟方法的基本原理是:假定随机变量X1、X2、X3……X n、Y,其中X1、X2、X3……X n 的概率分布已知,且X1、X2、X3……X n、Y有函数关系:Y=F(X1、X2、X3……X n),希望求得随机变量Y的近似分布情况及数字特征。通过抽取符合其概率分布的随机数列X1、X2、X3……X n带入其函数关系式计算获得Y的值。当模拟的次数足够多的时候,我们就可以得到与实际情况相近的函数Y的概率分布和数字特征。 蒙特卡洛法的特点是预测结果给出了预测值的最大值,最小值和最可能值,给出了预测 值的区间范围及分布规律。 1.2风险评估概述。 风险表现为损损益的不确定性,说明风险产生的结果可能带来损失、获利或是无损失也无获利,属于广义风险。正是因为未来的不确定性使得每一个项目都存在风险。对于一个公司而言,各种投资项目通常会具有不同程度的风险,这些风险对于一个公司的影响不可小视,小到一个项目投资资本的按时回收,大到公司的总风险、公司正常运营。因此,对于风险的 测量以及控制是非常重要的一个环节。 风险评估就是量化测评某一事件或事物带来的影响的可能程度。根据“经济人”假设,收益最大化是投资者的主要追求目标,面对不可避免的风险时,降低风险,防止或减少损失, 以实现预期最佳是投资的目标。 当评价风险大小时,常有两种评价方式:定性分析与定量分析法。定性分析一般是根据风险度或风险大小等指标对风险因素进行优先级排序,为进一步分析或处理风险提供参考。这种方法适用于对比不同项目的风险程度,但这种方法最大的缺陷是在于,在多个项目中风险最小者也有可能亏损。而定量分析法则是将一些风险指标量化得到一系列的量化指标。通过这些简单易懂的指标,才能使公司的经营者、投资者对于项目分风险有正确的评估与判断,

蒙特卡洛抽样方法

重要抽样法(3.5.3):积分可以代表一个参数的期望值,因此,在可靠性评估中使用蒙特卡洛法去评估积分和充分性参数是等价的。重要抽样法可以用评估积分的问题来说明。 考虑以下积分: 1 ()I g x dx =? (1-1) 使用估计期望值的方法,可以将I 表示如下: 1 1(())()N i i I E g U g x N ==≈∑ (1-2) U 表示[0,1]区间上均匀分布的随机数序列,()g U 表示在均匀分布区间内产生随机数,并带入()g x ,结合上式计算积分。如果抽样的概率密度函数从均匀分布变成了()f x ,()f x 与()g x 具有相同的曲线形状,那么所产生的对于积分式结果影响较大的随机数出现概率也会更大。()f x 称为重要抽样密度函数。 如果()f x 与()g x 具有相似的形状,那么积分值的方差也越小。 分层抽样法(3.5.4):分层抽样法的思想与重要抽样法相似,为了减小方差,尽量地使更多的样本落在对模拟结果有重要影响的区间内。分层抽样法的方差比在整个区间上使用平均值估计法更小,并且当j N 满足下式时,方差取得最小值。 1j j j m j j j d N N d σσ==∑ (1-3) j N 表示第j 号区间内取点的个数,j σ表示第j 号区间内采用均匀分布抽样 的方差,j d 表示第j 号区间的长度。由上式可以看出,当j j j N d σ∝时,总体的方差取值最小。 在电力系统中,年度负荷曲线上的高负荷水平点对不可靠参数的评估比低负荷点影响更大,因此,分层抽样法适用于基于年度负荷曲线的可靠性评估。 截断抽样法(3.5.6):这种方法适用于两状态变量和小概率事件。电力系统可靠性评估中,系统元件状态可以用两个状态变量来表示(0和1),并且系统元件发生故障是小概率事件。 可靠性评估中的三种模拟方法: 状态抽样法:系统的状态取决于所有组成元件的状态,并且每个元件的状态都可以通过元件状态的概率分布来抽样决定。 每个元件的状态可以用[0,1]区间上的均匀分布来描述。假定元件具有故障和正常运行两个状态,并且元件故障是相互独立的事件。设i S 表示第i 个元件的状

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.360docs.net/doc/d710904274.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

蒙特卡洛算法简介

算法简介 蒙特·卡罗方法(Monte Carlo method),也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特·卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·卡罗方法正是以概率为基础的方法。与它对应的是确定性算法。蒙特·卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 编辑本段背景知识 [1946: John von Neumann, Stan Ulam, and Nick Metropolis, all at the Los Alamos Scientific Laboratory, cook up the Metropolis algorithm, also known as the Monte Carlo method.] 1946年,美国拉斯阿莫斯国家实验室的三位科学家John von Neumann,Stan Ulam 和Nick Metropolis共同发明,被称为蒙特卡洛方法。它的具体定义是:在广场上画一个边长一米的正方形,在正方形内部随意用粉笔画一个不规则的形状,现在要计算这个不规则图形的面积,怎么计算列?蒙特卡洛(Monte Carlo)方法告诉我们,均匀的向该正方形内撒N(N 是一个很大的自然数)个黄豆,随后数数有多少个黄豆在这个不规则几何形状内部,比如说有M个,那么,这个奇怪形状的面积便近似于M/N,N越大,算出来的值便越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。蒙特卡洛方法可用于近似计算圆周率:让计算机每次随机生成两个0到1之间的数,看这两个实数是否在单位圆内。生成一系列随机点,统计单位圆内的点数与总点数,(圆面积和正方形面积之比为PI:1,PI为圆周率),当随机点取得越多(但即使取10的9次方个随机点时,其结果也仅在前4位与圆周率吻合)时,其结果越接近于圆周率。摘自《细数二十世纪最伟大的十种算法》CSDN JUL Y译 编辑本段算法描述 以概率和统计理论方法为基础的一种计算方法。将所求解的问题同一定的概率模型相联系,用计算机实现统计模拟或抽样,以获得问题的近似解。比如,给定x=a,和x=b,你要求某一曲线f和这两竖线,及x轴围成的面积,你可以起定y轴一横线y=c 其中c>=f(x)max,很简单的,你可以求出y=c,x=a,x=b及x轴围成的矩形面积,然后利用随机产生大量在这个矩形范围之内的点,统计出现在曲线上部点数和出现在曲线下部点的数目,记为:doteUpCount,nodeDownCount,然后所要求的面积可以近似为doteDownCounts所占比例*矩形面积。 编辑本段问题描述 在数值积分法中,利用求单位圆的1/4的面积来求得Pi/4从而得到Pi。单位圆的1/4面积是一个扇形,它是边长为1单位正方形的一部分。只要能求出扇形面积S1在正方形面积S中占的比例K=S1/S就立即能得到S1,从而得到Pi的值。怎样求出扇形面积在正方形面积中占的比例K呢?一个办法是在正方形中随机投入很多点,使所投的点落在正方形中每一个位置的机会相等看其中有多少个点落在扇形内。将落在扇形内的点数m与所投点的总数n的比m/n作为k的近似值。P落在扇形内的充要条件是x^2+y^2<=1。

相关文档
最新文档