CSM工法的设备和技术简介

CSM工法的设备和技术简介
CSM工法的设备和技术简介

CSM地下连续墙施工技术和设备

摘要:CSM是C utter S oil M ixing (铣削深层搅拌技术)的缩写,现已成为了一种工法的名称,施工设备和技术是2004年由法国地基建筑公司(Soletanche Bachy)为主发明的,它是应用原有的液压铣槽机的设备结合深层搅拌技术进行创新的地下连续墙或防渗墙施工设备,结合了液压铣槽机的设备技术特点和深层搅拌技术的应用领域,将设备应用到更为复杂的地质条件中。

关键词:CSM 地下连续墙施工设备和技术

液压铣槽机(俗称双轮铣)是由法国地基建筑公司发明,于1973年应用于法国里昂市的一个地铁车站的地下连续墙施工,是迄今为止技术最为先进的地下连续墙施工设备。国内至今也在十多个工程项目中使用液压铣槽机。国内最厚的地下连续墙就是采用液压铣槽机施工完成的,厚度达到 1.5m。但液压铣槽机施工存在的主要问题是设备的施工成本高,配套设备多,只适用于大型的工程项目。

多头深层搅拌设备由日本发明,分为三头和五头的深层搅拌设备居多,在软土地基中应用非常多,主要用于地基加固、防渗墙施工,临时基坑支护等等。在江南地区采用多头深层搅拌插入H型钢作为浅基坑的临时支护的实例非常多。但多适用于松软地基,如果地质条件比较复杂,则难以施工。同时,钻杆的旋转动力来源顶部,钻杆承受的扭矩大,钻杆损耗多。

CSM设备则是将液压铣槽机的技术加以引申,应用于更广泛的领域。将液压铣槽机的铣轮与凯式方形导杆相连接,将该设备加装在适当改造的旋挖钻机、履带式起重机或履带式深层搅拌钻机等设备上。将铣轮驱动所需的液压系统和注浆用的管路安装在凯式方形导杆内。采用履带底盘获取动力或安装独立动力站的方式形成一套完整的CSM地下连续墙或防渗墙成槽施工设备。可以以较低的价格完成设备的配置。当然,也可以采用全新的CSM成槽设备,而不是附加在其他设备上。看一看CSM设备的照片(图一),以明了该成槽设备的各个主要组成部分。

图一、安装在旋挖钻机上的CSM 地连墙成槽机

CSM 地连墙成槽设备的主要工作部分是位于下部的铣轮和与其相连方形导杆,由液压马达通过减速器驱动,可以同步旋转也可以单独旋转,转速可调整。详见图二和图三。

铣轮

液压马达

刮泥板与导杆连接体

图二、CSM 成槽机的铣轮

图三、导杆部分图示

根据CSM 成槽机的技术特点,方形的凯式导杆的尺寸是 600 mm X 300 mm ,主要具有以下功能:

传递向下的由钻机桅杆给出的推进力到底部的铣轮;

确保铣轮成槽的垂直度;

垂直轴向的方位导向; 保护内部的液压油管和电缆。

一、CSM 成槽机的主要技术性能

CSM 成槽机可以装备两种不同扭矩的液压铣轮,分别是HT 5000和 HT 8000两种铣轮,

CSM桩基坑支护施工工法

CSM桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1 前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2 工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3 适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4 工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5 施工工艺流程及操作要点 5.1施工工艺流程 CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12 成墙示意图 步骤1:将深搅铣轮对正待施工的地下墙体

的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣轮破碎土壤的同时,泵送液体材料至搅拌头底部,与掘松的土壤充分搅拌,在铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。 图5.1-13 双铣轮施工示意图 步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。搅拌轮的旋转能够充分保证已搅拌过的流塑态的水泥浆与土壤的混合体与新注入的水泥再次均匀的混合。 图5.1-14 水泥浆注入图 5.2 施工顺序 CSM工法(双轮铣深搅工法)施工的水泥土连续墙是由一系列的一期槽与二期槽所构成。套铣邻近新完成槽段的工艺称为“软铣工法”。双轮铣亦可套铣已具有一定硬度的一期槽段,称“硬铣工法”,施工顺序如右图所示:P槽段为一期槽,S槽段为二期槽。 5.3型钢下插施工 5.3.1施工组织 本工程工法桩采用H型钢,型钢间距参考图纸资料,型号为700×300×13×24。 型钢插入宜在搅拌桩施工结束后3h内进行,故与搅拌桩施工交叉进行。 5.3.2下插前期准备 (1)如投入H型钢未达到设计长度,应在搅拌桩施工前提前进场拼接。 (2)H型钢拼接后型钢表面采用涂刷减摩剂,以便下放过程顺利。 5.3.3施工工艺流程 图5.1-15 施工工艺流程图 5.3.4型钢的加工制作 型钢宜采用整材,因施工需要采用分段焊接时,采用坡口焊接,焊缝质量等级不得低于二级;单根型钢中焊接接头不宜超过2个,焊接接头位置应避开弯矩最大处,相邻的接头竖向位置宜相互错开,竖向错开距离不宜小于1m。 5.3.5涂刷减摩剂 型钢起拔宜采用液压起拔机,型钢在使用前必须涂刷减摩剂,以利下插,要求型钢表面均匀涂刷减摩剂。 (1)清除型钢表面的污垢及铁锈。 (2)减摩剂必须用电热棒加热至完全融化,用搅棒搅时感觉厚薄均匀,才能涂敷于

CSM工法水泥土地下连续墙基坑止水帷幕

CSM工法水泥土地下连续墙基坑止水帷幕 一、CSM工法来源 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。与其他深层搅拌工艺比较,CSM工法对地层的适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。 CSM工艺来源

工艺来源及原理 二、双轮铣深搅设备(CSM)特点: a、设备成桩深度大,最大深度49米,远大于常规设备; b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体; c、设备功效高,原材料(水泥等)利用率高; d、设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌; e、设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; f、施工过程中几乎无振动; g、履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。 双轮铣深搅(CSM)设备的主要组成及控制室见下图

CSM工法主机组成图解 主机操控平台 设备施工时主机及其附属设施平面布置见下图:

双轮铣深搅设备施工平面布置概化图 三、TRD工法 TRD工法(Trench-Cutting Re-mxing Deep Wall Method)是一种由主机带动插入地基中的链锯式切割箱横向移动、切割及灌注水泥浆,在槽内进行混合、搅拌、固结原来位置上的岩土,形成等厚水泥土地下连续墙的工艺。 四、TRD工法设备特点: a、适用范围广:整机高度仅10.1m,特别适宜架空高压线下方等高度受限部位施工。 b、超群的设备稳定性:通过低重心设计,与其他方法相比,机械设备的高度大大降低,施工安全性提高。 c、高精度施工:在水平方向和垂直方向可以进行高精度施工。 d、连续墙深度方向的品质均一,离散性小; e、适应地层比较广,对硬质地层(硬土、砂卵砾石、软岩等)具有良好的挖掘能力; f、止水性能优异,墙体等厚,无缝联接;

CSM水泥土地下连续墙基坑止水帷幕

CSM水泥土地下连续墙基坑止水帷幕 CSM工法就是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 一、CSM工法来源 CSM工法就是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,就是结合现有液压铣槽机与深层搅拌技术进行创新得岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。与其她深层搅拌工艺比较,CSM工法对地层得适应性更高,可以切削坚硬地层(卵砾石地层、岩层)。 CSM工艺来源

工艺来源及原理 二、双轮铣深搅设备(CSM)特点: a、设备成桩深度大,最大深度49米,远大于常规设备; b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体; c、设备功效高,原材料(水泥等)利用率高; d、设备对地层得适应性强,从软土到岩石地层均可实施切削搅拌; e、设备得自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; f、施工过程中几乎无振动; g、履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; h、成墙厚度现有0.8m、1.0m、1.2m三种规格,可以插入大型号型钢。 双轮铣深搅(CSM)设备得主要组成及控制室见下图

CSM工法主机组成图解 主机操控平台 设备施工时主机及其附属设施平面布置见下图:

双轮铣水泥土搅拌墙(CSM)施工方案

CSM工法施工方案 1.施工概况 1.1 施工范围概况 场地东侧高压线经业主协调后,可以进行搬迁,因此该段区域(下图圆框中所示)有条件进行槽壁加固。由于该区域距离围墙较近且邻近周边居民小区的通道,常规的三轴搅拌桩工艺无法施工,经我方与业主及设计单位协商后,决定使用CSM工法进行槽壁加固。 1.2施工现场布置 我方将根工程现场的施工需要,结合施工现场的实际情况,本着对现场合理利用、布局紧凑,有利于工程施工、现场管理及文明施工的原则进行布置。 1.实际施工需占用场地面积如下: 2.主机施工占地面积:沿止水帷幕墙15m宽条带(主机:10*5m); 3.泥浆搅拌站占地面积:12*12m 4.施工设备组装拆卸占地面积:40*15m 5.泥浆池占地面积:10*10m*2个 1.3施工现场管理 1)为了使施工现场按照施工进度计划的要求有条不紊的组织施工,施工现场总平面的使用必须严格执行统一管理的原则。施工现场总平面的使用根据进度计划安排的施工内容实施动态管理。 2)现场重要入口悬挂安全警示牌,教育职工维持良好的工作秩序和纪律。 3)凡进入现场的设备、材料必须遵守施工现场平面布置要求。 4)材料及时清理并摆放整齐。

4.5施工程序 根据各方讨论后决定的初步施工图来看,本工程止水帷幕的主要特点为:(1)本工程地处中心闹市区对文明施工及噪音控制要求高; (2)施工周期短且施工精度要求高; (3)现场存在多种施工工艺,施工时交叉配合施工。 结合上述工程特点:本项目计划自施工现场北侧侧为起点,由北向南进行施工。 2.施工方案 2.1施工机械的选择 根据本工程现场情况,选用适宜本工程止水帷幕特点的双轮铣深搅设备进行施工。双轮铣深搅设备主要具备以下特点: (1)设备成桩深度大,最大深度48.5米,远大于常规设备; (2)设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有“冷缝”概念,可实现无缝连接,形成无缝墙体; (3)设备功效高,施工功效能达到同类设备的3倍左右; (4)设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌; (5)设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; (6)施工过程中几乎无振动; (7)履带式主机底盘,可360度旋转施工,便于转角施工。可紧邻已有建构筑物施工,可实现零间隙施工; (8)成墙厚度现有0.8m、1.0m、1.2m三种规格,本工程暂定成墙厚度为 0.8m。 双轮铣深搅(CSM)设备的主要组成及控制室见下图,设备总重近180吨,高53.5m,单侧行走履带宽 1.0m,对地面承载力要求较高。本场地在施工csm 工法前会对顶板采取加固措施,以保证大型设备正常行走。

双轮铣水泥土搅拌墙CSM施工方案

双轮铣水泥土搅拌墙C S M 施工方案 The latest revision on November 22, 2020

CSM工法施工方案 1.施工概况 施工范围概况 场地东侧高压线经业主协调后,可以进行搬迁,因此该段区域(下图圆框中所示)有条件进行槽壁加固。由于该区域距离围墙较近且邻近周边居民小区的通道,常规的三轴搅拌桩工艺无法施工,经我方与业主及设计单位协商后,决定使用CSM工法进行槽壁加固。

施工现场布置 我方将根工程现场的施工需要,结合施工现场的实际情况,本着对现场合理利用、布局紧凑,有利于工程施工、现场管理及文明施工的原则进行布置。 1.实际施工需占用场地面积如下: 2.主机施工占地面积:沿止水帷幕墙15m宽条带(主机:10*5m); 3.泥浆搅拌站占地面积:12*12m 4.施工设备组装拆卸占地面积:40*15m 5.泥浆池占地面积:10*10m*2个 施工现场管理 1)为了使施工现场按照施工进度计划的要求有条不紊的组织施工,施工现场总平面的使用必须严格执行统一管理的原则。施工现场总平面的使用根据进度计划安排的施工内容实施动态管理。 2)现场重要入口悬挂安全警示牌,教育职工维持良好的工作秩序和纪律。 3)凡进入现场的设备、材料必须遵守施工现场平面布置要求。 4)材料及时清理并摆放整齐。 施工程序 根据各方讨论后决定的初步施工图来看,本工程止水帷幕的主要特点为:(1)本工程地处中心闹市区对文明施工及噪音控制要求高; (2)施工周期短且施工精度要求高; (3)现场存在多种施工工艺,施工时交叉配合施工。 结合上述工程特点:本项目计划自施工现场北侧侧为起点,由北向南进行施工。 2.施工方案 施工机械的选择

CSM工法等厚度水泥土搅拌墙作业指导书

CSM工法 等厚度水泥土搅拌墙工程 (监理) 作 业 指 导 书 (SK/BR- ) (试行本) 上海三凯工程咨询有限公司 2019 年08月

编制说明 随着高层建筑的发展,基坑工程也越来越多,各种基坑支护结构得到广泛应用,本作业指导书主要阐述CSM工法等厚度水泥土搅拌墙的机理和控制要点,为使监理人员能够更好地掌握 CSM工法等厚度水泥土搅拌墙各工序的质量要求,保证 CSM工法等厚度水泥土搅拌墙的施工质量,特编制此作业指导书。本指导书主要以上海市的相关规定及要求为主,其他省市的监理项目应结合当地的要求参照执行;随着当前工程建筑发展形势,本作业指导书可能会出现落后、过时等情况,公司将不断更新、改版,请及时关注,并希望给予相关的指导、提醒。 2019 年 8 月 16 日 编制人: 审核人: 审批人:

目录 第一节相关术语 (5) 第二节编制依据及使用范围 (6) 一、编制依据 (6) 二、适用范围 (7) 第三节 CSM工法桩施工组织与准备的监理工作 (7) 一、施工前的准备 (7) 二、机械配备 (14) 第四节CSM工法桩施工工艺及监理工作流程 (16) 一、施工工艺流程 (16) 二、施工步骤 (17) 三、施工参数 (18) 四、监理工作流程图 (20) 五、监理质量监控流程 (21) 第五节 CSM工法桩施工步骤及监理控制要点 (21) 一、施工前的监理准备工作 (21) 二、开挖导沟、设置定位 (21) 三、桩机就位 (21) 四、制备水泥浆 (22) 五、铣削速度 (23) 六、注浆搅拌成墙 (24) 七、特殊情况处理 (25) 八、清洗 (25) 第六节 CSM工法桩成桩允许偏差表 (26) 一、锯链式施工成墙质量检验标准 (26) 二、铣削式施工成墙质量检验标准 (26) 三、劲性芯材插入允许偏差表 (26) 四、CSM工法搅拌桩工程质量控制目标值 (26)

CSM桩基坑支护施工工法.docx

.\ CSM桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很 广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆 进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾 G02、D05地块已成功运用 CSM桩施工工艺,取得了良好的实 施效益。 2工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌, 从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自 宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术, 是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5施工工艺流程及操作要点 5.1 施工工艺流程

.\ CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12 成墙示意图 步骤 1:将深搅铣轮对正待施工的地下墙体 的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣轮 破碎土壤的同时,泵送液体材料至搅拌头底部, 与掘松的土壤充分搅拌,在铣轮向下搅拌的同时 加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员

CSM桩基坑支护施工工法

C S M桩基坑支护施工 工法 Document number【980KGB-6898YT-769T8CB-246UT-18GG08】

CSM桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1 前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2 工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3 适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4 工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5 施工工艺流程及操作要点 施工工艺流程 CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图成墙示意图

步骤1:将深搅铣轮对正待施工的地下墙 体的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣 轮破碎土壤的同时,泵送液体材料至搅拌头底 部,与掘松的土壤充分搅拌,在铣轮向下搅拌 的同时加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为~min。 图双铣轮施工示意图 步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。搅拌轮的旋转能够充分保证已搅拌过的流塑态的水泥浆与土壤的混合体与新注入的水泥再次均匀的混合。 图水泥浆注入图 施工顺序 CSM工法(双轮铣深搅工法)施工的水泥土连续墙是由一系列的一期槽与二期槽所构成。套铣邻近新完成槽段的工艺称为“软铣工法”。双轮铣亦可套铣已具有一定硬度的一期槽段,称“硬铣工法”,施工顺序如右图所示:P槽段为一期槽,S槽段为二期槽。 型钢下插施工 施工组织 本工程工法桩采用H型钢,型钢间距参考图纸资料,型号为700×300×13×24。 型钢插入宜在搅拌桩施工结束后3h内进行,故与搅拌桩施工交叉进行。 下插前期准备 (1)如投入H型钢未达到设计长度,应在搅拌桩施工前提前进场拼接。 (2)H型钢拼接后型钢表面采用涂刷减摩剂,以便下放过程顺利。 施工工艺流程 图施工工艺流程图 型钢的加工制作 型钢宜采用整材,因施工需要采用分段焊接时,采用坡口焊接,焊缝质量等级不得低于二级;单根型钢中焊接接头不宜超过2个,焊接接头位置应避开弯矩最大处,相邻的接头竖向位置宜相互错开,竖向错开距离不宜小于1m。 涂刷减摩剂

CSM工法的设备和技术简介

CSM地下连续墙施工技术和设备 摘要:CSM是C utter S oil M ixing (铣削深层搅拌技术)的缩写,现已成为了一种工法的名称,施工设备和技术是2004年由法国地基建筑公司(Soletanche Bachy)为主发明的,它是应用原有的液压铣槽机的设备结合深层搅拌技术进行创新的地下连续墙或防渗墙施工设备,结合了液压铣槽机的设备技术特点和深层搅拌技术的应用领域,将设备应用到更为复杂的地质条件中。 关键词:CSM 地下连续墙施工设备和技术 液压铣槽机(俗称双轮铣)是由法国地基建筑公司发明,于1973年应用于法国里昂市的一个地铁车站的地下连续墙施工,是迄今为止技术最为先进的地下连续墙施工设备。国内至今也在十多个工程项目中使用液压铣槽机。国内最厚的地下连续墙就是采用液压铣槽机施工完成的,厚度达到 1.5m。但液压铣槽机施工存在的主要问题是设备的施工成本高,配套设备多,只适用于大型的工程项目。 多头深层搅拌设备由日本发明,分为三头和五头的深层搅拌设备居多,在软土地基中应用非常多,主要用于地基加固、防渗墙施工,临时基坑支护等等。在江南地区采用多头深层搅拌插入H型钢作为浅基坑的临时支护的实例非常多。但多适用于松软地基,如果地质条件比较复杂,则难以施工。同时,钻杆的旋转动力来源顶部,钻杆承受的扭矩大,钻杆损耗多。 CSM设备则是将液压铣槽机的技术加以引申,应用于更广泛的领域。将液压铣槽机的铣轮与凯式方形导杆相连接,将该设备加装在适当改造的旋挖钻机、履带式起重机或履带式深层搅拌钻机等设备上。将铣轮驱动所需的液压系统和注浆用的管路安装在凯式方形导杆内。采用履带底盘获取动力或安装独立动力站的方式形成一套完整的CSM地下连续墙或防渗墙成槽施工设备。可以以较低的价格完成设备的配置。当然,也可以采用全新的CSM成槽设备,而不是附加在其他设备上。看一看CSM设备的照片(图一),以明了该成槽设备的各个主要组成部分。

CSM桩基坑支护现场施工工法

C S M桩基坑支护现场施 工工法 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

C S M桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5施工工艺流程及操作要点 5.1施工工艺流程

CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12成墙示意图 步骤1:将深搅铣轮对正待施工的地下 墙体的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下, 在铣轮破碎土壤的同时,泵送液体材料至 搅拌头底部,与掘松的土壤充分搅拌,在 铣轮向下搅拌的同时加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调整铣轮进尺速度和泵送泥(灰)浆量,以形成均匀的塑性拌合体,以便于搅拌头顺利下钻和提升,一般正常施工速度为0.5m~1.0m/min。 图5.1-13双铣轮施工示意图 步骤3:在达到设计深度后,慢速拔出搅拌轮的同时连续注入水泥浆。搅拌轮的旋转能够充分保证已搅拌过的流塑态的水泥浆与土壤的混合体与新注入的水泥再次均匀的混合。 图5.1-14水泥浆注入图 5.2施工顺序 CSM工法(双轮铣深搅工法)施工的水泥土连续墙是由一系列的一期槽与二期槽所构成。套铣邻近新完成槽段的工艺称为“软铣工法”。双轮铣亦可套铣已具有一定硬度的一期槽段,称“硬铣工法”,施工顺序如右图所示:P槽段为一期槽,S槽段为二期槽。5.3型钢下插施工 5.3.1施工组织 本工程工法桩采用H型钢,型钢间距参考图纸资料,型号为700×300×13×24。 型钢插入宜在搅拌桩施工结束后3h内进行,故与搅拌桩施工交叉进行。 5.3.2下插前期准备 (1)如投入H型钢未达到设计长度,应在搅拌桩施工前提前进场拼接。 (2)H型钢拼接后型钢表面采用涂刷减摩剂,以便下放过程顺利。 5.3.3施工工艺流程 图5.1-15施工工艺流程图 5.3.4型钢的加工制作

CSM工法水泥土地下连续墙基坑止水帷幕方案[优秀工程方案]

CS米工法水泥土地下连续墙基坑止水帷幕 一、CS米工法来源 CS米工法是一种创新性深层搅拌施工方法.此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术.通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程.与其他深层搅拌工艺比较,CS米工法对地层的适应性更高,可以切削坚硬地层(卵砾石地层、岩层). CS米工艺来源

工艺来源及原理 二、双轮铣深搅设备(CS米)特点: a、设备成桩深度大,最大深度49米,远大于常规设备; b、设备成桩尺寸、深度、注浆量、垂直度等参数控制精度高,可保证施工质量,工艺没有"冷缝"概念,可实现无缝连接,形成无缝墙体; c、设备功效高,原材料(水泥等)利用率高; d、设备对地层的适应性强,从软土到岩石地层均可实施切削搅拌; e、设备的自动化程度高,触摸屏控制系统,各功能部位设置大量传感器,信息化系统控制,施工过程中实时控制施工质量; f、施工过程中几乎无振动; g、履带式主机底盘,可360度旋转施工,便于转角施工.可紧邻已有建构筑物施工,可实现零间隙施工; h、成墙厚度现有0.8米、1.0米、1.2米三种规格,可以插入大型号型钢. 双轮铣深搅(CS米)设备的主要组成及控制室见下图

CS米工法主机组成图解 主机操控平台 设备施工时主机及其附属设施平面布置见下图:

双轮铣深搅设备施工平面布置概化图 三、TRD工法 TRD工法(Trench-Cutting Re-米xing Deep Wall 米ethod)是一种由主机带动插入地基中的链锯式切割箱横向移动、切割及灌注水泥浆,在槽内进行混合、搅拌、固结原来位置上的岩土,形成等厚水泥土地下连续墙的工艺. 四、TRD工法设备特点: a、适用范围广:整机高度仅10.1米,特别适宜架空高压线下方等高度受限部位施工. b、超群的设备稳定性:通过低重心设计,与其他方法相比,机械设备的高度大大降低,施工安全性提高. c、高精度施工:在水平方向和垂直方向可以进行高精度施工. d、连续墙深度方向的品质均一,离散性小; e、适应地层比较广,对硬质地层(硬土、砂卵砾石、软岩等)具有良好的挖掘能力; f、止水性能优异,墙体等厚,无缝联接; g、通过角度调节,可施工斜墙. h、优良的环保性能,节省材料.

(CSM)双轮铣水泥土搅拌墙施工方案

双轮铣水泥土搅拌墙施工方案同济医院内科综合楼基坑支护工程 CSM工法双轮铣水泥土搅拌墙 专项施工方案 上海强劲地基工程股份有限公司 二 0 一五年七月

目录 第1章本项目工程简介______________________________________________________ 3 1.1工程名称 _______________________________________________________________________________ 3 1.2工程地点 _______________________________________________________________________________ 3 1.3参与单位 _______________________________________________________________________________ 3 1.5止水帷幕设计参数及平面图 _______________________________________________________________ 3 第2章编制依据____________________________________________________________ 5 第3章工程地质条件________________________________________________________ 6 3.1场地工程地质条件 _______________________________________________________________________ 6 3.2水文地质条件 ___________________________________________________________________________ 6 3.3止水帷幕施工深度内地层情况 _____________________________________________________________ 7 4.1 工程重点及难点分析____________________________________________________________________ 8 4.2 采取的对策____________________________________________________________________________ 8 第4章施工部署___________________________________________________________ 10 5.1 项目管理机构图_______________________________________________________________________ 10 5.2项目部管理职责 ________________________________________________________________________ 10 第5章主要施工方案及技术措施_____________________________________________ 12 6.1测量方案 ______________________________________________________________________________ 12 6.2 CSM工法施工方案 _____________________________________________________________________ 12 第7章施工用电方案________________________________________________________ 20 7.1用电设备 ______________________________________________________________________________ 20 7.2负荷计算 ______________________________________________________________________________ 20 第8章施工进度管理目标及保证措施_________________________________________ 23 8.1施工进度管理目标 ______________________________________________________________________ 23 8.2施工进度计划表 ________________________________________________________________________ 23 8.3施工进度形象表 ________________________________________________________________________ 23 8.4施工进度报告制度 ______________________________________________________________________ 23 8.5施工进度保证措施 ______________________________________________________________________ 23 第9章施工质量管理目标及保证措施_________________________________________ 25 9.1 施工质量管理目标_____________________________________________________________________ 25 9.2 质量管理措施_________________________________________________________________________ 25 9.3 施工技术、质量保证措施_______________________________________________________________ 25 第10章施工安全管理目标及保证措施________________________________________ 26 10.1安全管理目标 _________________________________________________________________________ 26 10.2组织措施 _____________________________________________________________________________ 26 10.4消防安全措施 _________________________________________________________________________ 27 10.5施工现场防护措施 _____________________________________________________________________ 28 10.6操作措施 _____________________________________________________________________________ 28 10.7交通措施 _____________________________________________________________________________ 28 10.8夜间施工措施 _________________________________________________________________________ 29

CSM桩基坑支护施工工法[详细]

CS米桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1 前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛.CS米桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果. 我们在南昌明园九龙湾G02、D05地块已成功运用CS米桩施工工艺,取得了良好的实施效益. 2 工法特点 CS米工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术. 3 适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用.本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层. 4 工艺原理 CS米工法是一种创新性深层搅拌施工方法.此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术.通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程. 5 施工工艺流程及操作要点 5.1施工工艺流程

CS米工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12 成墙示意图 步骤1:将深搅铣轮对正待施工的地下墙体 的轴线,不需要做导墙. 步骤2:搅拌头持续性地深入地下,在铣轮 破碎土壤的同时,泵送液体材料至搅拌头底部, 与掘松的土壤充分搅拌,在铣轮向下搅拌的同时 加入压缩空气可以提高破碎和搅拌效果.铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果.操作人员

CSM桩基坑支护现场施工工法

C S M桩基坑支护施工工法 完成单位:中铁建设集团有限公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM 桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于德国宝峨公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5施工工艺流程及操作要点 5.1施工工艺流程 CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12成墙示意图 步骤1:将深搅铣轮对正待施工的地下墙体 的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣轮 破碎土壤的同时,泵送液体材料至搅拌头底部, 与掘松的土壤充分搅拌,在铣轮向下搅拌的同时 加入压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调整铣轮进尺速

[最新]CSM桩基坑支护施工工法

CSM桩基坑支护施工工法 完成单位:中铁建设XX公司中南分公司 主要完成人:可华雄汪洋陈海滨陈东熊潘剑 1 前言 长期以来,钻孔灌注桩、地下连续墙、人工挖孔桩等做法,在深基坑支护中的应用很广泛。CSM桩近年在深基坑支护中的应用逐步增多,轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,达到抗渗效果。 我们在南昌明园九龙湾G02、D05地块已成功运用CSM桩施工工艺,取得了良好的实施效益。 2 工法特点 CSM工法(双轮铣深搅工法)是通过双轮铣对施工现场原状地层和水泥浆进行搅拌,从而形成防渗墙、挡土墙或对地层进行改良,是一种高效施工的新技术。 3 适用范围 双轮铣深搅工法主要应用于稳定软弱和松散土层,砂性与粘性土均使用。本工法源自宝峨双轮铣技术,在与其他深搅工法比较下,更适用于较坚硬的地层。 4 工艺原理 CSM工法是一种创新性深层搅拌施工方法。此工艺源于XX公司双轮切铣技术,是结合现有液压铣槽机和深层搅拌技术进行创新的岩土工程施工新技术。通过对施工现场原位土体与水泥浆进行搅拌,可以用于防渗墙、挡土墙、地基加固等工程。 5 施工工艺流程及操作要点 5.1施工工艺流程

CSM工法桩单桩成桩工艺流程图 施工准备:预挖——预挖导购用于汇集多余的泥浆; 图5.1-12 成墙示意图 步骤1:将深搅铣轮对正待施工的地下墙体 的轴线,不需要做导墙。 步骤2:搅拌头持续性地深入地下,在铣轮破 碎土壤的同时,泵送液体材料至搅拌头底部,与掘 松的土壤充分搅拌,在铣轮向下搅拌的同时加入 压缩空气可以提高破碎和搅拌效果。铣轮的旋转方向可以随时变换,旋转的铣轮及铣齿将土壤推向垂直安装在铣轮架上的切割板,从而形成对土壤的强制搅拌效果。操作人员可调

CSM型钢水泥土搅拌墙施工技术交底大全二级

.
.
分部(项)工程技术交底
工程名称 施工单位 交底提要
中央商务区滨江项目配套设施工 交底日期

中建三局集团有限公司
分项工程 CSM 工法型钢水泥土
名称
搅拌墙试验段
沿江大道下穿通道(K0+400~K0+490)CSM 工法型钢水泥土搅拌墙试
验段施工工艺及注意事项
交底容:
一、工程概况
市沿江大道(江景三路~柏临河路)K-0-327~K1+030 为下穿通道部分,采用明
挖法施工,基坑支护采用 850mmCSM 工法型钢水泥土搅拌墙支护。根据本工程目
前征地拆迁、场地条件、现场交通、水电情况等情况,将试验段选定在沿江大道
K0+400~K0+490 段,单侧长 90m,沿下穿通道两侧施工。冠梁顶标高为 50.0m,
型钢高出冠梁顶面 0.5m,搅拌墙幅长 2800mm,宽 850mm,搭接 200mm,深度
均为 16m。标准横断面图如下,
. 资料.

.
.
二、地质及水文条件 场地地貌单元为长江二级阶地前缘,一级阶地后缘;场地地势较平坦,距长 江河岸边最短距离约 50m。场区主要土层为典型的长江冲、洪积地层,分别为杂 填土、粉质粘土、粉土、卵,下伏为白垩系下统紫红色粉砂岩、灰白色细砂岩, 砾岩、泥岩等。据区域资料,基岩产状:倾向南东、倾角 4°~8°左右,厚度达 数百米,埋深 40~50m。 城区位于长江之滨,洪水季节一般在每年的 5~9 月,据统计 100 年来最高洪 水位 55.73 m(1954 年 8 月,黄海高程,下同),三峡水电枢纽于 2009 年修建完工, 近年最高洪水位在 52.10m(2012 年 7 月)左右,年平均枯水位在 37.70m 左右。 三、设置试验段目的 1、积累数据,确定膨润土掺量、注浆压力、注浆流量和合理的施工组织等。 2、摸索并总结施工工艺,更好的依据合同文件中的技术、质量标准以及部颁 质量标准进行规的程序管理法和质量控制手段。 3、通过本试验段施工,为后续大面积施工提供可靠的资料及相应的参数,避 免盲目施工给工程带来的损失,找出适合本地区 CSM 型钢水泥土搅拌墙施工的最 佳施工案,指导全线施工。 四、施工法 1、CSM 搅拌墙施工 (1)工艺流程
. 资料.

相关主题
相关文档
最新文档