向量法求解空间角问题

向量法求解空间角问题
向量法求解空间角问题

(B )13-

(14)已知双曲线C :22

221x y a b

-=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双

曲线C 的离心率为 .

(15)(

)

4

2

2x x --的展开式中,3

x 的系数为 . (用数字填写答案)

(16)已知函数()211,

1,

42,

1x x f x x x x ?-+

-+≥??,

则函数()()22x

g x f x =-的零点个数为 个.

三.解答题:解答应写出文字说明,证明过程或演算步骤. (17)(本小题满分12分)

如图,在△ABC 中,点D 在边AB 上,CD BC ⊥,

53AC =,5CD =,2BD AD =.

(Ⅰ)求AD 的长; (Ⅱ)求△ABC 的面积.

A

B

C

D

(23)(本小题满分10分)选修4-4:坐标系与参数方程

在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为θ

ρsin

2

=,[)

0,2

θ∈π.

(Ⅰ)求曲线C的直角坐标方程;

(Ⅱ)在曲线C上求一点D,使它到直线l:

33,

32

x t

y t

?=+

?

?

=-+

??

(t为参数,t∈R)的距离最短,并求出点D的直角坐标.

(19)(本小题满分12分)

如图,四棱柱

1111

ABCD A B C D

-的底面ABCD是菱形,AC BD O

=,

1

A O⊥底面ABCD,2

1

=

=AA

AB.

(Ⅰ)证明:平面

1

ACO⊥平面

11

BB D D;

(Ⅱ)若60

BAD

∠=,求二面角

1

B OB C

--的余弦值.

A B

C

D

O

1. 【高考天津理数】(本小题满分13分)

如图,正方形ABCD 的中心为O ,四边形OBEF 为矩形,平面OBEF ⊥平面ABCD ,点G 为AB 的中点,AB =BE =2. (I )求证:EG ∥平面ADF ; (II )求二面角O -EF -C 的正弦值; (III )设H 为线段AF 上的点,且AH =

HF ,求直线BH 和平面CEF 所成角的正弦值.

2

3

2. 【高考山东,理17】如图,在三棱台中,分别为的中点.

(Ⅰ)求证:平面;

(Ⅱ)若平面, , ,求平面与平面 所成的角(锐角)的大小.

DEF ABC -2,,AB DE G H =,AC BC //BD FGH CF ⊥ABC ,AB BC CF DE ⊥=45BAC ∠=FGH ACFD

如图,在四棱柱中,底面是等腰梯形,,,是线段的中点.

(Ⅰ)求证:;

(Ⅱ)若垂直于平面且,求平面和平面所成的角(锐角)的余弦值.

1111ABCD A B C D -ABCD 60DAB ∠=22AB CD ==M AB 111//C M A ADD 1CD ABCD 13CD =11C D M ABCD

如图,在四棱锥中,平面平面,,,,

,,.

(1)求证:平面;

(2)求直线与平面所成角的正弦值;

(3)在棱上是否存在点,使得平面?若存在,求的值;若不存在,说明理由.

P ABCD -PAD ⊥ABCD PA PD ⊥PA PD =AB AD ⊥1AB =2AD =5AC CD ==PD ⊥PAB PB PCD PA M //BM PCD AM

AP

5. 【高考陕西,理18】(本小题满分12分)如图,在直角梯形中,

,,

,,是的中点,是与的交点.将沿折起到的位置,如图.

(I )证明:平面;

(II )若平面平面,求平面与平面夹角的余弦值.

1CD AB D//C A B D 2

π

∠BA =C 1AB =B =D 2A =E D A O C A BE ?ABE BE 1?A BE 2CD ⊥1C A O 1A BE ⊥CD B E 1C A B 1CD A

利用空间向量求空间角教案设计

利用空间向量求空间角 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . α θ O n r a

(二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. 解:如图建立空间直角坐标系,则(0,0,0)O , (2,0,0)A ,(1,1,0)B ,(0,1,0)C ,(0,0,1)S , 于是我们有(2,0,1)SA =-u u r ,(1,1,0)AB =-u u u r ,(1,1,0)OB =u u u r ,(0,0,1)OS =u u u r , (1)cos ,5SA OB SA OB SA OB ?== =u u r u u u r u u r u u u r u u r u u u r , 所以异面直线SA 和OB 所成的角的余弦值为5 . (2)设平面SAB 的法向量(,,)n x y z =r , 则0,0, n AB n SA ??=???=??r u u u r r u u r ,即0,20.x y x z -+=??-=? 取1x =,则1y =,2z =,所以(1,1,2)n =r , sin cos ,3OS n OS n OS n α?∴=== =u u u r r u u u r r u u u r r . (3)由(2)知平面SAB 的法向量1(1,1,2)n =u r , 又OC ⊥Q 平面AOS ,OC ∴u u u r 是平面AOS 的法向量, 令2(0,1,0)n OC ==u u r u u u r ,则有121212 cos ,n n n n n n ?== =u r u u r u r u u r u r u u r . ∴二面角B AS O --O A B C S

用向量法求二面角的平面角教案

第三讲:立体几何中的向量方法——利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1.使学生会求平面的法向量; 2.使学生学会求二面角的平面角的向量方法; 3.使学生能够应用向量方法解决一些简单的立体几何问题; 4.使学生的分析与推理能力和空间想象能力得到提高. 教学重点

求平面的法向量; 求解二面角的平面角的向量法. 教学难点 求解二面角的平面角的向量法. 教学过程 Ⅰ、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围:],0[πθ∈) 向量夹角的补角. 3、用空间向量解决立体几何问题的“三步曲”: (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) Ⅱ、典例分析与练习 例1、如图,ABCD 是一直角梯形,?=∠90ABC ,⊥SA 面ABCD ,1===BC AB SA ,

向量法求空间角(高二数学,立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6. (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. B

3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面角的大小. P-中,PD⊥底面ABCD,且底面4.(本小题满分12分)如图,在四棱锥ABCD ABCD为正方形,G PD =分别为CB PC, ,的中点. = PD F ,2 E AD, , AP平面EFG; (1)求证:// (2)求平面GEF和平面DEF的夹角.

H P G F E D C B 5.如图,在直三棱柱111AB C A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小. 6.如图,四边形ABCD 是正方形,EA ⊥平面ABCD ,EA PD ,2AD PD EA ==,F ,G , H 分别为PB ,EB ,PC 的中点. (1)求证:FG 平面PED ; (2)求平面FGH 与平面PBC 所成锐二面角的大小.

用空间向量解决空间中“夹角”问题

利用空间向量解决空间中的“夹角”问题 学习目标 : 1.学会求异面直线所成的角、直线与平面所成的角、二面角的向量方法; 2.能够应用向量方法解决一些简单的立体几何问题; 3.提高分析与推理能力和空间想象能力。 重点 : 利用空间向量解决空间中的“夹角” 难点 : 向量夹角与空间中的“夹角”的关系 一、复习引入 1.用空间向量解决立体几何问题的“三步曲” (1)建立立体图形与空间向量的联系,用空间向量表示问题中涉及的点、直线、平面,把立体几何问题转化为向量问题;(化为向量问题) (2)通过向量运算,研究点、直线、平面之间的位置关系以及它们之间距离和夹角等问题;(进行向量运算) (3)把向量的运算结果“翻译”成相应的几何意义。(回到图形) 2.向量的有关知识: (1)两向量数量积的定义:><=?,cos |||| (2)两向量夹角公式:| |||,cos b a >= < (3)平面的法向量:与平面垂直的向量 二、知识讲解与典例分析 知识点1:异面直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角 设两异面直线a 、b 的方向向量分别为和, 问题1: 当与的夹角不大于90 的角θ与 和 的夹角的关系?问题 2:a 与b 的夹角大于90°时,,异面直线a θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ a

例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则 )2,,0(),0,21,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC -=,)2,21 ,23(1a a a CB = 即21 323||||,cos 22 111111==>=<,与θ的关系? 例2、如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和B B AA 11面所成角的正弦值. 分析:直线与平面所成的角步骤: 1. 求出平面的法向量 2. 求出直线的方向向量 3. 求以上两个向量的夹角,(锐角)其余角为所求角 解:如图建立空间直角坐标系xyz A -,则),0,,0(),2,0,0(1a a AA ==)2,21 ,23(1a a a AC -= 设平面B B AA 11的法向量为),,(z y x n = x y

利用向量法求空间角经典教案

利用空间向量求空间角 目标:会用向量求异面直线所成的角、直线与平面所成的角、二面角的方法; 一、复习回顾向量的有关知识: (1)两向量数量积的定义:><=?,cos ||||(2)两向量夹角公式:| |||,cos b a b a >= < 二、知识讲解与典例分析 知识点1:两直线所成的角(范围:]2 , 0(π θ∈) (1)定义:过空间任意一点o 分别作异面直线a 与b 的平行线a′与b′,那么直线a′与b′ 所成的锐角或直角,叫做异面直线a 与b 所成的角. (2)用向量法求异面直线所成角,设两异面直线a 、b 的方向向量分别为a 和b , 问题1: 当与的夹角不大于90°时,异面直线 的角θ与 和 的夹角的关系? 问题 2:与的夹角大于90°时,,异面直线a 、θ与a 和b 的夹角的关系? 结论:异面直线a 、b 所成的角的余弦值为| ||||,cos |cos n m = ><=θ 例1如图,正三棱柱111C B A ABC -的底面边长为a ,侧棱长为a 2,求1AC 和1CB 所成的角. 解法步骤:1.写出异面直线的方向向量的坐标。 2.利用空间两个向量的夹角公式求出夹角。 解:如图建立空间直角坐标系xyz A -,则)2,,0(),0,2 1 ,23(),2,21,23(),0,0,0(11a a B a a C a a a C A -- ∴ )2,21,23(1a a a AC - =,)2,2 1 ,23(1a a a CB = 即21323,cos 22 111111==>= <11,cos BE DF 与>

第8讲立体几何中的向量方法求空间角 (1)

第8讲立体几何中的向量方法(二)——求空间角 一、选择题 1.(2016·长沙模拟)在正方体A1B1C1D1-ABCD中,AC与B1D所成的角的大小为() A.π 6 B. π 4 C. π 3 D. π 2 解析建立如图所示的空间直角坐标系,设正方体边长为1,则A(0,0,0),C(1,1,0),B1(1,0,1),D(0,1,0). ∴AC→=(1,1,0),B1D →=(-1,1,-1), ∵AC→·B1D →=1×(-1)+1×1+0×(-1)=0, ∴AC→⊥B1D →, ∴AC与B1D所成的角为π2. 答案 D 2.(2017·郑州调研)在正方体ABCD-A1B1C1D1中,BB1与平面ACD1所成角的正弦值为() A. 3 2 B. 3 3 C. 3 5 D. 2 5 解析设正方体的棱长为1,以D为坐标原点,DA,DC,DD1 所在直线分别为x轴、y轴、z轴,建立空间直角坐标系,如 图所示.则B(1,1,0),B1(1,1,1),A(1,0,0),C(0,1, 0),D1(0,0,1), 所以BB1→=(0,0,1),AC→=(-1,1,0),AD1 →=(-1,0,1). 令平面ACD1的法向量为n=(x,y,z),则n·AC→=-x+y=0,n·AD1 →=-x+z =0,令x=1,可得n=(1,1,1),

所以sin θ=|cos 〈n ,BB 1→ 〉|=13×1=3 3 . 答案 B 3.在正方体ABCD -A 1B 1C 1D 1中,点E 为BB 1的中点,则平面A 1ED 与平面ABCD 所成的锐二面角的余弦值为( ) A.12 B.23 C.33 D.22 解析 以A 为原点建立如图所示的空间直角坐标系 A -xyz ,设棱长为1, 则A 1(0,0,1), E ? ????1,0,12,D (0,1,0), ∴A 1D →=(0,1,-1), A 1E →=? ????1,0,-12, 设平面A 1ED 的一个法向量为n 1=(1,y ,z ),所以有???A 1D →·n 1=0,A 1E →·n 1=0,即???y -z =0,1-12z =0,解得????? y =2,z =2. ∴n 1=(1,2,2). ∵平面ABCD 的一个法向量为n 2=(0,0,1), ∴ cos 〈n 1,n 2〉=23×1=23. 即所成的锐二面角的余弦值为2 3. 答案 B 4.(2017·西安调研)已知六面体ABC -A 1B 1C 1是各棱长均等于a 的正三棱柱,D 是侧棱CC 1的中点,则直线CC 1与平面AB 1D 所成

《用向量法求直线与平面所成的角》教案

第二讲:立体几何中的向量方法——利用空间向量求直线与平面所成的 角大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形”的综合 推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这种方法没有一般 规律可循,对人的智力形成极大的挑战,技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。它能利用代数方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法,避免了传统立体几何中的技巧性问题,因此降低了学生学习的难度,减轻了学生学习的负担,体现了新课程理念。 为适应高中数学教材改革的需要,需要研究用向量法解决立体几何的各种问题。本文举例说明如何用向量法解决立体几何的空间角问题。以此强化向量的应用价值,激发学生学习向量的兴趣,从而达到提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对线面角的求法进行总结。 教学目标 1. 使学生学会求平面的法向量及直线与平面所成的角的向量方法; 2. 使学生能够应用向量方法解决一些简单的立体几何问题; 3. 使学生的分析与推理能力和空间想象能力得到提高. 教学重点 求平面的法向量; 求解直线与平面所成的角的向量法. 教学难点 求解直线与平面所成的角的向量法. 教学过程 I、复习回顾 一、回顾有关知识: 1

1、直线与平面所成的角:(范围:二? [0,—]) 2 思考:设平面:的法向量为n,则::n,BA .与二的关系? JT ■■二日=----- < n, BA > 2 (图 ) 2

利用向量方法求空间角

利用向量方法求空间角 导学目标:1?掌握各种空间角的定义,弄清它们各自的取值范围2掌握异面直线所成 的角,二面角的平面角,直线与平面所成的角的联系和区别.3?体会求空间角中的转化思想、 数形结合思想,熟练掌握平移方法、射影方法等.4.灵活地运用各种方法求空间角. 课前准备里」回扣戟材夯宴基础______________________________________________ 【自主梳理】 1.两条异面直线的夹角 (1)定义:设a, b是两条异面直线,在直线 a上任取一点作直线 a'// b,则a'与a的夹角叫做a与b的夹角. (2) 范围:两异面直线夹角0的取值范围是 __________________________________________ . (3)___________________________________________________________________________ 向量求法:设直线 a, b的方向向量为a, b,其夹角为購则有cos 0= ___________________________ = 2.直线与平面的夹角 (1)定义:直线和平面的夹角,是指直线与它在这个平面内的射影的夹角. ⑵范围:直线和平面夹角0 的取值范围是 (3)向量求法:设直线I的方向向量为a,平面的法向量为u,直线与平面所成的角为0, a与u的夹角为為则有sin 0= ____________ 或cos 0= sin ? 3.二面角 (1) _____________________________ 二面角的取值范围是. (2)二面角的向量求法: ①若AB、CD分别是二面角a I—B的两个面内与棱I垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图①). 胖I ① ② ③ ②设ni,n2分别是二面角 a— I —B的两个面 a B的法向量,则向量 m与匝的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③). 自我检测】 1.已知两平面的法向量分别为 m= (0,1,0),n = (0,1,1),则两平面所成的二面角为( ) A. 45 ° B. 135 ° C. 45。或135 ° D. 90 ° 2?若直线l1,I2的方向向量分别为a= (2,4,- 4),b= (-6,9,6),则() A . I1 / I2 B. I1 丄丨2 C. l1与12相交但不垂直 D.以上均不正确 3.若直线I的方向向量与平面a的法向量的夹角等于 120。,则直线I与平面a所成的 角等于() A . 120 ° B. 60 ° C. 30° D.以上均错 4.(2011湛江月考)二面角的棱上有 A、B两点,直线AC、BD分别在这个二面角的两个半平

用向量法求空间角与距离

用向量法求空间角与距离 1.1. 向量的数量积和坐标运算 b a ,是两个非零向量,它们的夹角为 ,则数 cos |||| b 叫做与的数量积(或内积),记作b a ,即.cos |||| 其几何意义是a 的长度与b 在a 的方向上的投影的乘积. 其坐标运算是: 若),,(),,,(222111z y x b z y x a ,则 ①212121z z y y x x b a ; ②2 22222212121||,||z y x b z y x a ; ③212121z z y y x x b a ④2 2 2 22 22 12 12 12 12121,cos z y x z y x z z y y x x b a 1.2. 异面直线n m ,所成的角 分别在直线n m ,上取定向量,,b a 则异面直线n m ,所成的角 等于向量b a ,所成的角或其补角(如图1所示),则 .||||| |cos b a b a (例如2004年高考数学广东卷第18题第(2)问) 1.3. 异面直线n m 、的距离 分别在直线n m 、上取定向量,,b a 求与向量b a 、都垂直的 向量,分别在n m 、上各取一个定点B A 、,则异面直线n m 、的距离d 等于在 上的射影长,即| |n d . 图1

证明:设CD 为公垂线段,取b a ,(如图1所示),则 | |||)( | |||n d 设直线n m ,所成的角为 ,显然.||||| |cos b a b a 1.4. 直线L 与平面 所成的角 在L 上取定,求平面 的法向量2所示), 再求 | |||cos n AB 2 为所求的角. 1.5. 二面角 方法一:构造二面角 l 的两个半平面 、的法向量 21n n 、(都取向上的方向,如图3所示),则 ① 若二面角 l 是“钝角型”的如图3甲所示,那么其大小等于两法向量21n n 、的夹角的补角,即| |||cos 2121n n (例如2004年高考数学广 东卷第18题第(1)问). ② 若二面角 l 是“锐角型”的如图3乙所示, 那么其大 小等于两法向量21n n 、的夹角, 即| |||cos 2121n n (例如 2004年高考数学广东卷第18题第(1)问). 方法二:在二面角的棱l 上确定两个点B A 、,过B A 、分别在平面 、内求出与l 垂直的向量21n n 、(如图4所示) ,则二面角 l 的大小等于向量21n n 、的夹角,即 图3乙 图3 图4 图2

向量法求空间角(有答案)

姓 名 年级 性 别 学 校 学 科 教师 上课日期 上课时间 课题 17向量法求空间角 角的分类 向量求法 范围 两异面直线l 1与l 2所成的角θ 设l 1与l 2的方向向量为a ,b ,则cos θ=___________=_______________ (0,π 2 ] 直线l 与平面 α所成的角θ 设l 的方向向量为a ,平面 α的法向量为n ,则sin θ=___________=________ [0,π 2] 二面角α-l -β的平面角θ 设平面α,β的法向量为n 1, n 2,则|cos θ|=___________=|n 1·n 2| |n 1|·|n 2| [0,π] 类型一 异面直线所成的角 例1、如图,在三棱锥V -ABC 中,顶点C 在空间直角坐标系的原点处,顶点A ,B ,V 分别在x 轴、y 轴、z 轴上,D 是线段AB 的中点,且AC =BC =2,∠VDC =θ. 当θ=π 3时,求异面直线AC 与VD 所成角的余弦值 【自主解答】 由于AC =BC =2,D 是AB 的中点,所以C (0,0,0),A (2,0,0),B (0,2,0),D (1,1,0) 当θ=π 3 时,在Rt △VCD 中,CD =2,∴V (0,0,6),∴AC →=(-2,0,0),VD → =(1,1,-6), ∴cos 〈AC → ,VD → 〉= AC →·VD → |AC →||VD →| =-22×22=-24. ∴异面直线AC 与VD 所成角的余弦值为24. 1.几何法求异面直线的夹角时,需要通过作平行线将异面直线的夹角转化为平面角,再解三角形来求解,过程相当复杂;用向量法求异面直线的夹角,可以避免复杂的几何作图和论证过程只需对相应向量运算即可. 2.由于两异面直线夹角θ的范围是(0,π 2],而两向量夹角α的范围是[0,π],故应有cos θ=|cos α|,求解时要特别注意. 变式1、在长方体ABCD -A 1B 1C 1D 1中,已知DA =DC =4,DD 1=3,求异面直线A 1B 与B 1C 所成角的余弦值. 【解】 以D 为坐标原点,分别以DA ,DC ,DD 1所在直线为x 轴、y 轴、z 轴,建立空间直角坐标系,如图,则A 1(4,0,3),B (4,4,0),B 1(4,4,3),C (0,4,0),

利用空间向量求空间角-教案

利用空间向量求空间角-教案

利用空间向量求空间角 备课人:龙朝芬授课人:龙朝芬 授课时间:2016年11月28日一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标

系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l , m 的方向向量分别为a ,b ,异面直线l ,m 所成的角 为θ,则cos cos ,a b θ== a b a b ?. 2、线面角公式:设直线l 为平面α的斜线,a 为l 的方向向量,n 为平面α的法向量,θ为l 与α所成的角,则sin cos ,a n θ== a n a n ?. α m b θ a l

3、面面角公式:设1 n ,2 n 分别为平面α、β的法向 量,二面角为θ,则12 ,n n θ= 或12 ,n n θπ=- (需要根据 具体情况判断相等或互补),其中121212 cos ,n n n n n n ?= . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=, SO ⊥ 面OABC ,且1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n a

向量法求空间角(高二数学-立体几何)

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形,DP AD ⊥,⊥CD 平面ADPQ , DP AQ AB 2 1 ==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -ABCD 中,O 为底面正方形的中心,侧棱PA 与底面ABCD 所成的角的正切值为 2 6 . (1)求侧面PAD 与底面ABCD 所成的二面角的大小; (2)若E 是PB 的中点,求异面直线PD 与AE 所成角的正切值; (3)问在棱AD 上是否存在一点F ,使EF ⊥侧面PBC ,若存在,试确定点F 的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB ⊥平面ACD ,DE//AB ,△ACD 是正三角形,AD=DE=2AB ,且F 是CD 的中点. (1)求证:AF//平面BCE ; (2)求证:平面BCE ⊥平面CDE ; (3)求平面BCE 与平面ACD 所成锐二面角的大小. 4.(本小题满分12分)如图,在四棱锥ABCD P -中,PD ⊥底面ABCD ,且底面ABCD 为正方形,G F E PD AD ,,,2==分别为CB PD PC ,,的中点. (1)求证://AP 平面EFG ; (2)求平面GEF 和平面DEF 的夹角. 5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线AC 与平面1A BC 所成的角为 6 π ,求锐二面角 B C O E P

向量法求空间角(高二数学-立体几何)-精选.

A B C D P Q 向量法求空间角 1.(本小题满分10分)在如图所示的多面体中,四边形ABCD 为正方形,四边形ADPQ 是直角梯形, DP AD ⊥,⊥CD 平面ADPQ ,DP AQ AB 2 1==. (1)求证:⊥PQ 平面DCQ ; (2)求平面BCQ 与平面ADPQ 所成的锐二面角的大小. 2.(满分13分)如图所示,正四棱锥P -中,O 为底面正方形的中心,侧棱与底面所成的角的正切值为26 . (1)求侧面与底面所成的二面角的大小; D B A

(2)若E是的中点,求异面直线与所成角的正切值; (3)问在棱上是否存在一点F,使⊥侧面,若存在,试确定点F的位置;若不存在,说明理由. 3.(本小题只理科做,满分14分)如图,已知AB⊥平面ACD,DE//AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中点. (1)求证:AF//平面BCE; (2)求证:平面BCE⊥平面CDE; (3)求平面BCE与平面ACD所成锐二面 角的大小.

4.(本小题满分12分)如图,在四棱锥ABCD P-中,PD⊥底面ABCD,且底面ABCD为正方形,G , = =分别为 ,2 AD, F E PD ,的中点. PC, PD CB (1)求证:// AP平面EFG; (2)求平面GEF和平面DEF的夹角.

5.如图,在直三棱柱111ABC A B C -中,平面1A BC ⊥ 侧面11A ABB 且12AA AB ==. (Ⅰ)求证:AB BC ⊥; (Ⅱ)若直线与平面1A BC 所成的角为6 π,求锐二面角1A A C B --的大小.

用向量方法求空间角和距离(教师)

用向量方法求空间角和距离 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1 求空间角问题 空间的角主要有:异面直线所成的角;直线和平面所成的角;二面角. (1)求异面直线所成的角 设a r 、b r 分别为异面直线a 、b 的方向向量, 则两异面直线所成的角α=arccos |||||| a b a b r r g r r (2)求线面角 设l r 是斜线l 的方向向量,n r 是平面α的法向量, 则斜线l 与平面α所成的角α=arcsin |||||| l n l n r r g r r (3)求二面角 法一、在α内a r l ⊥,在β内b r l ⊥,其方向如图,则二面 角l αβ--的平面角α=arccos |||| a b a b r r g r r 法二、设12,,n n u r u u r 是二面角l αβ--的两个半平面的法向

量,其方向一个指向内侧,另一个指向外侧,则二面角l αβ--的平 面角α=12 12arccos |||| n n n n u r u u r g u r u u r 2 求空间距离问题 构成空间的点、线、面之间有七种距离,这里着重介绍点面距离的求法,象异面直线间的距离、线面距离;面面距离都可化为点面距离来求. (1)求点面距离 法一、设n r 是平面α的法向量,在α内取一点B, 则 A 到α的距离|| |||cos ||| AB n d AB n θ==u u u r r u u u r g r 法二、设AO α⊥于O,利用AO α⊥和点O 在α内 的向量表示,可确定点O 的位置,从而求出||AO uuu r . (2)求异面直线的距离 法一、找平面β使b β?且a βP ,则异面直线a 、b 的距离就转化为直线a 到平面β的距离,又转化为点A 到平面β的距离. 法二、在a 上取一点A, 在b 上取一点B, 设a r 、b r 分别为异面直线a 、b 的方向向量,求n r (n r a ⊥r ,n r b ⊥r ),则异面直线 a 、 b 的距离 || |||cos ||| AB n d AB n θ== u u u r r u u u r g r (此方法移植于点面距离的求法). 例1.如图,在棱长为2的正方体1111ABCD A B C D -中,E 、F 分别是棱1111,A D A B 的中点.

利用空间向量求空间角教案设计

利用空间向量求空间角 备课人:龙朝芬 授课人:龙朝芬 授课时间:2016年11月28日 一、高考考纲要求: 能用向量方法解决异面直线的夹角、线面角、面面角问题.体会向量法在立体几何中的应用. 二、命题趋势: 在高考中,本部分知识是考查的重点内容之一,主要考查异面直线所成角、线面角、面面角的计算,属中档题,综合性较强,与平行垂直联系较多. 三、教学目标 知识与技能:能用向量法熟练解决异面直线的夹角、线面角、面面角的计算问题,了解向量法在研究立体几何问题中的应用; 过程与方法:通过向量这个载体,实现“几何问题代数化”的思想,进一步发展学生的空间想象能力和几何直观能力; 情感态度价值观:通过数形结合的思想和方法的应用,进一步让学生感受和体会空间直角坐标系,方向向量,法向量的魅力. 四、教学重难点 重点:用向量法求空间角——线线角、线面角、二面角; 难点:将立体几何问题转化为向量问题. 五、教学过程 (一)空间角公式 1、异面直线所成角公式:如图,设异面直线l ,m 的方向向量分别为a r ,b r ,异面直线l ,m

2、线面角公式:设直线l 为平面α的斜线,a r 为l 的方向向量,n r 为平面α的法向量,θ为 l 与α所成的角,则sin cos ,a n θ==r r a n a n ?r r r r . 3、面面角公式:设1n r ,2n r 分别为平面α、β的法向量,二面角为θ,则12,n n θ=r r 或 12,n n θπ=-r r (需要根据具体情况判断相等或互补) ,其中121212 cos ,n n n n n n ?=r r r r r r . (二)典例分析 如图,已知:在直角梯形OABC 中,//OA BC ,90AOC ∠=o ,SO ⊥面OABC ,且 1,2OS OC BC OA ====.求: (1)异面直线SA 和OB 所成的角的余弦值; (2)OS 与面SAB 所成角α的正弦值; (3)二面角B AS O --的余弦值. α θ O O A B C S n r a

向量法求空间角、距离和二面角

向量法求空间角、距离和二面角 1.1.向量的数量积和坐标运算 a,b是两个非零向量,它们的夹角为,则数|a| |b|cos叫做a与b的数量积(或内积),记作a b,即a b | a | | b | cos .其几何意义是a的长度与b在a的方向上的投影的乘积.其坐标运算是: —¥■—* 若a (x1,y1,^),b (X2,y2,Z2),贝U ① a b X1X2 y〃2 Z1Z2; ②|a| X12y12z/,|b| X22目; Z22; ③ a b X1X2 y1 y2 z1z2 X1X2 y“2 Z1Z2 ④C0S a , b 丨 2 2 2 厂 2 2 2 X1 y1 Z, . X2 y2 Z2 1.2.异面直线m,n所成的角 分别在直线m,n上取定向量a,b,则异面直线m,n所 成的角等于向量a,b所成的角或其补角(如图1所 示),则cos |a b 1 .(例如2004年高考数学广东 D图1 b B |a| |b| 卷第18题第(2)问) 1.3.异面直线m、n的距离 分别在直线m、n上取定向量a,b,求与向量a、b都垂直的 向量n,分别在m、n上各取一个定点A、B,则异面直线m、n的距离d等于AB在

| AB n | n上的射影长,即d |n| 证明:设CD为公垂线段,取CA a, DB b (如图1所示),则

CD CA AB BD CD n (CA AB BD) |CD n| |AB n| d |CD| 皿 1 |n| 设直线m, n所成的角为,显然cos la b| |a| |b| 14直线L与平面所成的角 在L上取定AB ,求平面的法向量n (如图2所 示), 再求cos ,则 |AB| | n| 2为所求的角. 1.5 . 二面角 方法一:构造二面 角 量n1、门2 (都取向上的方向,如图3所示), 则 的两个半平面、的法向 ① 若二面角l 是“钝角型”的如图3甲所示, 那么其大小等于两法向量n1、n2的夹角的补角,即cos ri t n2 g | “2 | .(例如2004年高考数学广东卷第18题第(1)问). ②若二面角l 是“锐角型”的如图3乙所示, 那么其大小等于两法向量n1、门2的夹角,即 n t n2 cos .(例如2004年高考数学广东卷第 |n 1 | |n2 | 图3 乙 18题第(1)问). 方法二:在二面角的棱I上确定两个点A、 求出与I垂直的向量n1、门2 (如图4所示),则

向量法求空间中的角和距离

向量法求空间中的角和距离 广东省惠州市惠阳区崇雅中学高中部 彭海廷 在高考的立体几何试题中,求角与距离是常考查的问题,其传统的“三步曲”解法:“作图、证明、解三角形”,作辅助线多、技巧性强,是教学和学习的难点.向量进入高中教材,为立体几何增添了活力,新思想、新方法与时俱进,本专题将运用向量方法简捷地解决这些问题. 1、 空间角问题 (1)求两异面直线的夹角 设异面直线a 、b 的夹角为θ() 090θ<≤,a 、b 分别为a 、b 的一个方向向量,则 cos cos ,a b a b a b θ?== ,可求得θ的大小。 例1 已知四棱锥P-ABCD 的底面为直角梯形,AB ∥DC ,⊥=∠PA DAB ,90 底面ABCD ,且PA=AD=DC= 2 1 AB=1,M 是PB 的中点。 (Ⅰ)证明:面 PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; 解:因为PA ⊥PD ,PA ⊥AB ,AD ⊥AB , 以A 为坐标原点AD 长为单位长度, 如图建立空间直角坐标系,则各点坐标为 A (0,0,0)B (0,2,0),C (1,1,0), D (1,0,0),P (0,0,1),M (0,1,)2 1. (Ⅰ)证明:因(0,0,1),(0,1,0),0,.AP DC AP DC AP DC ==?=⊥故所以 由题设知AD ⊥DC ,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD. 又DC 在面PCD 上,故面PAD ⊥面PCD. (Ⅱ)解:因),1,2,0(),0,1,1(-== . 510 | |||,cos ,2,5||,2||=?>=<=?==PB AC PB AC PB AC 所以故 (2)求二面角 设m 、n 分别是平面α与β的法向量,则二面角所成的平面角θ=π-φ或θ=φ,其中当m 与n 同向时取θ=π-φ;异向时取θ=φ,φ是m 与n 的夹角,用 cos ,m n m n m n ?= 求出。 例2 如右下图,在长方体1111ABCD A B C D -中,已知14,3,2AB AD AA ===,,E F 分别是线段,AB BC 上的点,且1EB FB ==

《用向量法求二面角的平面角》教案

第三讲:立体几何中的向量方法 利用空间向量求二面角的平面角 大家知道,立体几何是高中数学学习的一个难点,以往学生学习立体几何时,主要采取“形到形” 的综合推理方法,即根据题设条件,将空间图形转化为平面图形,再由线线,线面等关系确定结果,这 种方法没有一般规律可循, 对人的智力形成极大的挑战, 技巧性较强,致使大多数学生都感到束手无策。 高中新教材中,向量知识的引入,为学生解决立体几何问题提供了一个有效的工具。 它能利用代数 方法解决立体几何问题,体现了数形结合的思想。并且引入向量,对于某些立体几何问题提供通法, 避 免了传统立体几何中的技巧性问题, 因此降低了学生学习的难度, 减轻了学生学习的负担, 体现了新课 程理念。 为适应高中数学教材改革的需要, 需要研究用向量法解决立体几何的各种问题。 本文举例说明如何 用向量法解决立体几何的空间角问题。 以此强化向量的应用价值, 激发学生学习向量的兴趣, 从而达到 提高学生解题能力的目的。 利用向量法求空间角,不需要繁杂的推理,只需要将几何问题转化为向量的代数运算,方便快捷。 空间角主要包括线线角、线面角和二面角,下面对二面角的求法进行总结。 教学目标 1使学生会求平面的法向量; 2. 使学生学会求二面角的平面角的向量方法; 3. 使学生能够应用向量方法解决一些简单的立体几何问题; 4. 使学生的分析与推理能力和空间想象能力得到提高 教学重点 求平面的法向量; 求解二面角的平面角的向量法 教学难点 求解二面角的平面角的向量法 教学过程 I 、复习回顾 一、回顾相关公式: 1、二面角的平面角:(范围: [0,]) n i ,屯 —.― cos cos n i , n 2 —=■ cos cos n^n ? n 2 n?n 2 1 n 结论: 或

向量法求解空间角问题

(B )13-

(14)已知双曲线C :22 221x y a b -=()0,0a b >>的左顶点为A ,右焦点为F ,点()0,B b ,且0BA BF =,则双 曲线C 的离心率为 . (15)( ) 4 2 2x x --的展开式中,3 x 的系数为 . (用数字填写答案) (16)已知函数()211, 1, 42, 1x x f x x x x ?-+

(23)(本小题满分10分)选修4-4:坐标系与参数方程 在平面直角坐标系xOy中,以坐标原点O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为θ ρsin 2 =,[) 0,2 θ∈π. (Ⅰ)求曲线C的直角坐标方程; (Ⅱ)在曲线C上求一点D,使它到直线l: 33, 32 x t y t ?=+ ? ? =-+ ?? (t为参数,t∈R)的距离最短,并求出点D的直角坐标. (19)(本小题满分12分) 如图,四棱柱 1111 ABCD A B C D -的底面ABCD是菱形,AC BD O =, 1 A O⊥底面ABCD,2 1 = =AA AB. (Ⅰ)证明:平面 1 ACO⊥平面 11 BB D D; (Ⅱ)若60 BAD ∠=,求二面角 1 B OB C --的余弦值. A B C D O

相关文档
最新文档