大学物理振动与波动

大学物理振动与波动
大学物理振动与波动

振动与波动

选择题

0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示),

作成一复摆.已知细棒绕通过其一端的轴的转动惯量2

3

1ml J =,此摆作微小振

动的周期为 (A) g l π2. (B) g

l 22π. (C) g l 322π

. (D) g

l 3π. [ C ]

3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度 ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为

(A) . (B) /2. (C) 0 . (D) . [ C ]

3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了x .若将m 2移去,并令其振动,则振动周期为

(A) g m x m T 122?π= . (B) g

m x

m T 212?π=. (C) g m x

m T 2121?π=

. (D) g

m m x m T )(2212+π=?. [ B ]

3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m

的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π

=. (B) )

(221k k m

T +π= .

(C) 2121)(2k k k k m T +π=. (D) 2

122k k m

T +π=.

[ C ]

3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质

量为m 的物体,则这三个系统的周期值之比为

(A) 1∶2∶2/1. (B) 1∶2

1

∶2 .l

k 1 m

k 2 m 4m

(C) 1∶2∶

2

1

. (D) 1∶2∶1/4 . [ C ] 3380.如图所示,质量为m 的物体由劲度系数为k 1和k 2的两个轻弹簧连接,在水平光滑导轨上作微小振动,则系统的振动频率为

(A)

m k k 212+π

=ν . (B) m

k k 2

121+π=ν . (C) 212121k mk k k +π=

ν . (D) )

(21

2121k k m k k +π=ν . [ B ]

3396. 一质点作简谐振动.其运动速度与时间的曲线如图所示.若质点的振动规律用余弦函数描述,则其初相应为 (A) /6. (B) 5/6. (C) -5/6. (D) -/6. (E) -2/3. [ C ]

5179.一弹簧振子,重物的质量为m ,弹簧的劲度系数为k ,该振子作振幅为A 的简谐振

动.当重物通过平衡位置且向规定的正方向运动时,开始计时.则其振动方程为: (A) )21/(cos π+=t m k A x (B) )2

1/cos(π-=t m k A x

(C) )π21/(cos +=t k m A x (D) )2

1/cos(π-=t k m A x

(E) t m /k A x cos = [ B ]

5501. 一物体作简谐振动,振动方程为)4

1cos(π+=t A x ω.在 t = T /4(T 为周期)

时刻,物体的加速度为

(A) 222

1ωA -

. (B) 2221

ωA . (C) 232

1ωA -. (D) 2321

ωA . [ B ]

3030.两个同周期简谐振动曲线如图所示.x 1的相位比x 2的相位

(A) 落后/2. (B) 超前. (C) 落后. (D) 超前. [ B ]

3031. 已知一质点沿y轴作简谐振动.其振动方程为)4/3cos(π+=t A y ω.与之对应的振动曲线是 [ B ]

m

k 1

k 2

v (m/s)

t (s)

O m

m v 21

x

t

O x 1 x 2 A y

o y t

A

(A) y o y t (B) A

A

-A -A

3042.一个质点作简谐振动,振幅为A ,在起始时刻质点的位移为A 2

1

,且向x 轴的正方向运

动,代表此简谐振动的旋转矢量图为 [ B ]

3253.一质点作简谐振动,周期为T .当它由平衡位置向x 轴正方向运动时,从二分之一最大位移处到最大位移处这段路程所需要的时间为

(A) T /12. (B) T /8.

(C) T /6. (D) T /4. [ C ]

3270. 一简谐振动曲线如图所示.则振动周期是 (A) 2.62 s . (B) 2.40 s . (C) 2.20 s . (D) 2.00 s . [ B ]

5507. 图中三条曲线分别表示简谐振动中的位移x ,速度

v ,和加速度a .下列说法中哪一个是正确的? (A) 曲线3,1,2分别表示x ,v ,a 曲线; (B) 曲线2,1,3分别表示x ,v ,a 曲线;

(C) 曲线1,3,2分别表示x ,v ,a 曲线; (D) 曲线2,3,1分别表示x ,v ,a 曲线;

(E) 曲线1,2,3分别表示x ,v ,a 曲线. [ E ]

3028.一弹簧振子作简谐振动,总能量为E 1,如果简谐振动振幅增加为原来的两倍,重物的质量增为原来的四倍,则它的总能量E 2变为 (A) E 1/4. (B) E 1/2.

(C) 2E 1. (D) 4 E 1 . [ D ]

3393.当质点以频率作简谐振动时,它的动能的变化频率为 (A) 4 . (B) 2

. (C)

. (D) ν2

1

. [ B ]

3560. 弹簧振子在光滑水平面上作简谐振动时,弹性力在半个周期内所作的功为 (A) kA 2

. (B)

2

2

1kA . (C) (1/4)kA 2

. (D) 0. [ D ]

x o A x A 2

1 ω

A 2

1

ω (B) A 21- (D) o

o o A 21- x

x x A

A x A x ω ω

x (cm) t (s) O 4

2

1 x, v , a

t

O 123

5181.一质点作简谐振动,已知振动频率为f ,则振动动能的变化频率是 (A) 4f . (B) 2 f . (C) f .

(D) 2/f . (E) f /4 [ B ]

5183.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的

(A) 7/16. (B) 9/16. (C) 11/16.

(D) 13/16. (E) 15/16. [ E ]

5504. 一物体作简谐振动,振动方程为)2

1

cos(π+

=t A x ω.则该物体在t = 0时刻的动能与t = T /8(T 为振动周期)时刻的动能之比为:

(A) 1:4. (B) 1:2. (C) 1:1.

(D) 2:1. (E) 4:1. [ D ]

3008.一长度为l 、劲度系数为k 的均匀轻弹簧分割成长度分别为l 1和l 2的两部分,且l 1 = n l 2,n 为整数. 则相应的劲度系数k 1和k 2为

(A) 11+=

n kn

k , )1(2+=n k k . (B) n

n k k )1(1+=, 12+=n k

k .

(C) n n k k )

1(1+=, )1(2+=n k k .

(D) 11+=n kn k , 1

2+=n k

k . [ C ]

3562.图中所画的是两个简谐振动的振动曲线.若这两个简谐振动可叠加,则合成的余

弦振动的初相为

(A) π23. (B) π. (C) π2

1. (D) 0. [ B ]

3058.在下面几种说法中,正确的说法是: (A) 波源不动时,波源的振动周期与波动的周期在数值上是不同的. (B) 波源振动的速度与波速相同.

(C) 在波传播方向上的任一质点振动相位总是比波源的相位滞后(按差值不大于计).

(D) 在波传播方向上的任一质点的振动相位总是比波源的相位超前.(按差值不大于计) [ C ]

3066. 机械波的表达式为y = 0.03cos6(t + 0.01x ) (SI) ,则 (A) 其振幅为3 m . (B) 其周期为s 3

1

(C) 其波速为10 m/s . (D) 波沿x 轴正向传播. [ B ]

3068.已知一平面简谐波的表达式为 )cos(bx at A y -=(a 、b 为正值常量),则

x t O A/ -A

x 1

x 2

(A) 波的频率为a . (B) 波的传播速度为 b/a .

(C) 波长为 / b . (D) 波的周期为2 / a . [ D ]

3147. 一平面简谐波沿Ox 正方向传播,波动表达式为]2

)42(2cos[10.0π+-π=x t y (SI),该波在t = 0.5 s 时刻的波形图是

[ B ]

3479.在简谐波传播过程中,沿传播方向相距为λ2

1(

为波长)的两点的振动速度

必定

(A) 大小相同,而方向相反. (B) 大小和方向均相同. (C) 大小不同,方向相同. (D) 大小不同,而方向相反.[ A ]

3070. 如图所示,有一平面简谐波沿x 轴负方向传播,坐标原

点O 的振动规律为)cos(0φω+=t A y ),则B 点的振动方程为

(A)

])/(cos[0φω+-=u x t A y .

(B) )]/([cos u x t A y +=ω.

(C) })]/([cos{

0φω+-=u x t A y . (D) })]/([cos{

0φω++=u x t A y . [ D ]

3071.一平面简谐波以速度u 沿x 轴正方向传播,在t = t '时波形曲线如图所示.则坐标原点O 的振动方程为

(A) ]2

)(cos[π

+'-=t t b u a y . (B) ]2

)(2cos[π

-'-π=t t b u a y .

(C) ]2

)(cos[π

+'+π=t t b u a y .

(D) ]2

)(cos[π

-'-π=t t b u a y . [ D ]

x (m)O 2

0.10

(A)

x O 2

0.10

y (m)

(B)

x (m)O 2

-0.10

y (m)

(C)x O 2

y (m)

(D)-0.10 x

y u

B

O |x|

x u a b y O

3073.如图,一平面简谐波以波速u 沿x 轴正方向传播,O 为坐标原点.已知P 点的振动方程为 t A y ωcos =,则

x

O u 2l l

y

C P

(A) O 点的振动方程为 )/(cos u l t A y -=ω. (B) 波的表达式为 )]/()/([cos u l u l t A y --=ω. (C) 波的表达式为 )]/()/([cos u x u l t A y -+=ω.

(D)

C 点的振动方程为 )/3(cos u l t A y -=ω.

[ C ]

3145.如图所示为一平面简谐波在t = 0 时刻的波形图,该波的波速u = 200 m/s ,则P 处质点的振动曲线为

[ C ]

3087.一平面简谐波在弹性媒质中传播,在某一瞬时,媒质中某质元正处于平衡位置,此时它的能量是 (A) 动能为零,势能最大. (B) 动能为零,势能为零.

(C) 动能最大,势能最大. (D) 动能最大,势能为零. [ C ]

3089.一平面简谐波在弹性媒质中传播,在媒质质元从最大位移处回到平衡位置的过程中

(A) 它的势能转换成动能. (B) 它的动能转换成势能. (C) 它从相邻的一段媒质质元获得能量,其能量逐渐增加.

(D) 它把自己的能量传给相邻的一段媒质质元,其能量逐渐减小.

[ C ]

3287.当一平面简谐机械波在弹性媒质中传播时,下述各结论哪个是正确的? (A) 媒质质元的振动动能增大时,其弹性势能减小,总机械能守恒.

(B) 媒质质元的振动动能和弹性势能都作周期性变化,但二者的相位不相同. (C) 媒质质元的振动动能和弹性势能的相位在任一时刻都相同,但二者的数值不相等. (D) 媒质质元在其平衡位置处弹性势能最大. [ D ]

3288.当机械波在媒质中传播时,一媒质质元的最大变形量发生在 (A) 媒质质元离开其平衡位置最大位移处.

(B) 媒质质元离开其平衡位置(2/2A )处(A 是振动振幅). (C) 媒质质元在其平衡位置处. (D) 媒质质元离开其平衡位置

A 2

1

处(A 是振动振幅)

. [ C ]

y

(m)

3433. 如图所示,两列波长为 的相干波在P 点相遇.波在S 1点振动的初相是1,S 1到P 点的距离是r 1;波在S 2点的初相是2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为:

(A) λk r r =-12.

(B) π=-k 21

2

φφ.

(C) π=-π+-k r r 2/)(21212λφφ.

(D) π=-π+-k r r 2/)(22112λφφ.

[ D ]

3101.在驻波中,两个相邻波节间各质点的振动 (A) 振幅相同,相位相同. (B) 振幅不同,相位相同.

(C) 振幅相同,相位不同. (D) 振幅不同,相位不同. [ B ]

3308.在波长为 的驻波中,两个相邻波腹之间的距离为 (A) /4. (B) /2. (C) 3/4. (D) . [ B ]

3591.沿着相反方向传播的两列相干波,其表达式为

)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=.

在叠加后形成的驻波中,各处简谐振动的振幅是 (A) A . (B) 2A .

(C) )/2cos(2λx A π. (D) |)/2cos(2|λx A π. [ D ]

3593.有两列沿相反方向传播的相干波,其表达式为

)/(2cos 1λνx t A y -π= 和 )/(2cos 2λνx t A y +π=. 叠加后形成驻波,其波腹位置的坐标为: (A) x =±k . (B) λ)12(2

1

+±=k x . (C) λk x 2

1

±

=. (D) 4/)12(λ+±=k x . 其中的k = 0,1,2,3, …. [ C ]

填空题

3009.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时,

(1) 振子在负的最大位移处,则初相为______________________;

(2) 振子在平衡位置向正方向运动,则初相为________________;

(3) 振子在位移为A /2处,且向负方向运动,则初相为______.

答: 1分 - /2 2分 . 2分

S 2r 1

r 2

P

3010.有两相同的弹簧,其劲度系数均为k .

(1)

把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周

期为___________________;

(2)

把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周

期为___________________________________. 答: k

m /22π 2分

k m 2/2π 2分

3015.在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为

(a) ______________________________;

(b) ______________________________;

(c) ______________________________.

答: )21

2cos(

π-=T t A x π 2分 )21

2cos(π+=T t A x π 2分

)2cos(π+=T

t

A x π 1分

3383.用40N的力拉一轻弹簧,可使其伸长20 cm .此弹簧下应挂__________kg 的物体,才能使弹簧振子作简谐振动的周期T = 0.2 s .

答: 2.0 3分

3032.已知两个简谐振动的振动曲线如图所示.两

简谐振动的最大速率之比为_________________.

答: 1∶1 3分

3036.

(1) 在_____________s 时速度为零.

(2) 在____________ s 时动能最大. (c)v 0v 0v = 0

x (cm)t (s)O 12

4

3 2 -1 1 t (s)

o x (cm) x 1 x 2 1 -2

2

(3) 在____________ s 时加速度取正的最大值.

答: 0.5(2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 0.5(4n +1) n = 0,1,2,3,… 1分

3039.两个简谐振动曲线如图所示,则两个简谐振动 的频率之比1∶2=__________________,加速度最

大值之比a 1m ∶a 2m =__________________________, 初始速率之比v 10∶v 20=____________________.

答: 2∶1 1分 4∶1 1分 2∶1 1分

3046.一简谐振动的旋转矢量图如图所示,振幅矢量长2

cm ,则该简谐振动的初相为____________.振动方程

为______________________________.

答: /4 1分 )4/cos(10

22

π+π?=-t x (SI) 2分

3271.一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为

______________________________________.

答: )2

1cos(04.0π+π=t x 3分

3398.一质点作简谐振动.其振动曲线如图所示.根据此

图,它的周期T =___________,用余弦函数描述时初相

=_________________.

答: 3.43 s 3分

-2/3

2分

3029.一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能

ω ωπt

x

O t =0

t t π/4

x (m)

t O 0.04-0.0412

x

t (s)

O 4 2

2

x 1 t

o

x x 2

A A

大学物理振动波动例题习题

精品 振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06cos(100.25)(SI)x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。 S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。

大学物理振动波动例题习题

振动波动 一、例题 (一)振动 1.证明单摆是简谐振动,给出振动周期及圆频率。 2. 一质点沿x 轴作简谐运动,振幅为12cm ,周期为2s 。当t = 0时, 位移为6cm ,且向x 轴正方向运动。 求: (1) 振动表达式; (2) t = 0.5s 时,质点的位置、速度和加速度; (3)如果在某时刻质点位于x =-0.6cm ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间。 3. 已知两同方向,同频率的简谐振动的方程分别为: x 1= 0.05cos (10 t + 0.75π) 20.06c o s (100.25)(S I ) x t π=+ 求:(1)合振动的初相及振幅. (2)若有另一同方向、同频率的简谐振动x 3 = 0.07cos (10 t +? 3 ), 则当? 3为多少时 x 1 + x 3 的振幅最大?又? 3为多少时 x 2 + x 3的振幅最小? (二)波动 1. 平面简谐波沿x 轴正方向传播,振幅为2 cm ,频率为 50 Hz ,波速为 200 m/s 。在t = 0时,x = 0处的质点正在平衡位置向y 轴正方向运动, 求:(1)波动方程 (2)x = 4 m 处媒质质点振动的表达式及该点在t = 2 s 时的振动速度。 2. 一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播。已知 原点的振动曲线如图所示。求:(1)原点的振动表达式; (2)波动表达式; (3)同一时刻相距m 1的两点之间的位相差。 3. 两相干波源S 1和S 2的振动方程分别是1cos y A t ω=和2cos(/2)y A t ωπ=+。S 1距P 点3个波长,S 2距P 点21/4个波长。求:两波在P 点引起的合振动振幅。 4.沿X 轴传播的平面简谐波方程为 310cos[200(t )]200x y π-=- ,隔开两种媒质的反射界面A 与坐标原点O 相距2.25m ,反射波振幅无变化,反射处为 固定端,求反射波的方程。 二、习题课 (一)振动 1. 一质点在x 轴上作简谐振动,振辐A = 4 cm ,周期T = 2 s ,其平衡位置取作坐标原点。若t = 0时刻质点第一次通过x = -2 cm 处,且向x 轴负方向运动,

大学物理题库-振动与波动

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3 cos 12.0π π-=t x (B ) )(3 cos 12.0π π+=t x (C ) )(3 2cos 12.0π π-=t x (D ) ) (32cos 12.0π π+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ] (A) kA 2 (B )kA 2 /2 (C )kA 2 /4 (D )0

大学物理振动与波动

振动与波动 选择题 0580.一长为l 的均匀细棒悬于通过其一端的光滑水平固定轴上,(如图所示), 作成一复摆.已知细棒绕通过其一端的轴的转动惯量23 1 ml J =,此摆作微小振 动的周期为 (A) g l π2. (B) g l 22π. (C) g l 322π . (D) g l 3π. [ C ] 3001. 把单摆摆球从平衡位置向位移正方向拉开,使摆线与竖直方向成一微小角度θ ,然后由静止放手任其振动,从放手时开始计时.若用余弦函数表示其运动方程,则该单摆振动的初相为 (A) π. (B) π/2. (C) 0 . (D) θ. [ C ] 3003.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2 的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= . (B) g m x m T 212?π=. (C) g m x m T 2121?π= . (D) g m m x m T )(2212+π=?. [ B ] 3004.劲度系数分别为k 1和k 2的两个轻弹簧串联在一起,下面挂着质量为m 的物体,构成一个竖挂的弹簧振子,则该系统的振动周期为 (A) 21212)(2k k k k m T +π =. (B) ) (221k k m T +π= . (C) 2121)(2k k k k m T +π=. (D) 2 122k k m T +π=. [ C ] 3255.如图所示,在一竖直悬挂的弹簧下系一质量为m 的物体,再用此弹簧改系一质量为4m 的物体,最后将此弹簧截断为两个等长的弹簧并联后悬挂质 量为m 的物体,则这三个系统的周期值之比为 (A) 1∶2∶2/1. (B) 1∶2 1 ∶2 .

大学物理习题解答8第八章振动与波动 (1)

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,ω 为角频率,(ωt+?)称为谐振动的相位,t =0时的相位? 称为初相位。 · 简谐振动速度方程 d () d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 2 2 2d ()d cos x a A t t ωω?= =-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 2 12k E m v = · 弹簧的势能为 2 12p E kx = · 振子总能量为 P 2 2 2 2 2 211()+()22 1=2 sin cos k E E E m A t kA t kA ωω?ω?=+=++ 3. 阻尼振动

· 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 2 2 2d d 20d d x x x t t β ω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 2 2 P 2d d 2d d cos x x F x t t t m β ωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻t 两个振动的位移分别为 111()cos x A t ω?=+ 222()cos x A t ω?=+ 合振动方程可表示为 ()cos x A t ω?=+ 其中,A 和? 分别为合振动的振幅与初相位 A =

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1.一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T 1和 T 2。将它们拿到月球上去,相应的周期分别为'T 1和'T 2。则有 ( B ) A .'T T >11且 'T T >22 B .'T T =11且 'T T >22 C .'T T <11且 'T T <22 D .'T T =11且 'T T =22 2.一物体作简谐振动,振动方程为cos 4x A t ?? =+ ?? ? πω,在4 T t = (T 为周期)时刻,物体的加速度为 ( B ) A. 2ω 2ω C. 2ω 2ω 3.一质点作简谐振动,振幅为A ,在起始时刻质点的位移为/2A -,且向x 轴的正方向 运动,代表此简谐振动的旋转矢量图为 ( D ) A A A A A A C) A x x A A x A B C D 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动方程为 )cos(1αω+=t A x .当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二 个质点正在最大正位移处.则第二个质点的振动方程为 ( B ) A. )π21cos( 2++=αωt A x B. )π21 cos(2-+=αωt A x . C. )π2 3 cos( 2-+=αωt A x D. )cos(2π++=αωt A x .

5.波源作简谐运动,其运动方程为t y π240cos 10 0.43 -?=,式中y 的单位为m ,t 的单 位为s ,它所形成的波形以s m /30的速度沿一直线传播,则该波的波长为 ( A ) A .m 25.0 B .m 60.0 C .m 50.0 D .m 32.0 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为: ( B ) A .cos x t ππ??=+ ???2 2233 B .cos x t ππ??=+ ??? 42233 C .cos x t ππ??=- ???22233 D .cos x t ππ??=- ??? 42233 二. 填空题(每空2分) 1. 简谐运动方程为)4 20cos(1.0π π+ =t y (t 以s 计,y 以m 计) ,则其振幅为 0.1 m,周期为 0.1 s ;当t=2s 时位移的大小为205.0m. 2.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动 的初相为4 0π ?=,振动方程为_)4 cos(2π π+ =t y 。 3. 平面简谐波的波动方程为()x t y ππ24cos 08.0-=,式中y 和x 的单位为m ,t 的单位为s ,则该波的振幅A= 0.08 ,波长=λ 1 ,离波源0.80m 及0.30m 两处的相位差=?? -Л 。 4. 一简谐振动曲线如图所示,则由图可确定在t = 2s 时刻质点的位移为___0 ___,速度为:πω3=A . t

大学物理习题集及解答(振动与波,波动光学)

1.有一弹簧,当其下端挂一质量为m的物体时,伸长量为9.8 10-2 m。若使物体上下振动,且规定向下为正方向。(1)t = 0时,物体在平衡位置上方8.0 10-2 m处,由静止开始向下运动,求运动方程。(2)t = 0时,物体在平衡位置并以0.60 m/s的速度向上运动,求运动方程。 题1分析: 求运动方程,也就是要确定振动 的三个特征物理量A、ω,和?。其中振动的角频率是由弹簧振子系统的固有性质(振子质量m及弹簧劲度系数k)决定的,即ω,k可根据物体受力平衡时弹簧的= k/ m

伸长来计算;振幅A 和初相?需要根据初始 条件确定。 解: 物体受力平衡时,弹性力F 与重力P 的大 小相等,即F = mg 。 而此时 弹簧的伸长量m l 2108.9-?=?。 则 弹簧的劲度系数l mg l F k ?=?=//。 系统作简谐运动的角频率为 1s 10//-=?==l g m k ω (1)设系统平衡时,物体所在处为坐标 原点,向下为x 轴正向。 由初始条件t = 0时,m x 210100.8-?=,010=v 可得振幅

m 100.8)/(2210102-?=+=ωv x A ;应用旋转矢量法可确定初相π?=1。则运动方程为 ])s 10cos[()m 100.8(121π+?=--t x (2)t = 0时,020=x , 120s m 6.0-?=v ,同理可得m 100.6)/(22202022-?=+=ωv x A , 2/2π?=;则运动方程为 ]5.0)s 10cos[()m 100.6(122π+?=--t x 2.某振动质点的x -t 曲线如图所示, 试求:(1)运动方程;(2)点P 对应的相位; (3)到达点P 相应位置所需要的时间。 题2分析: 由已知运动方程画振动曲线和由振动曲 线求运动方程是振动中常见的两类问题。

精选-大学物理振动与波练习题与答案

第二章 振动与波习题答案 12、一放置在水平桌面上的弹簧振子,振幅2 10 0.2-?=A 米,周期50.0=T 秒,当0 =t 时 (1) 物体在正方向的端点; (2) 物体在负方向的端点; (3) 物体在平衡位置,向负方向运动; (4) 物体在平衡位置,向正方向运动。 求以上各种情况的谐振动方程。 【解】:π=π = ω45 .02 )m () t 4cos(02.0x ?+π=, )s /m ()2 t 4cos(08.0v π+?+ππ= (1) 01)cos(=?=?,, )m () t 4cos(02.0x π= (2) π=?-=?,1)cos(, )m () t 4cos(02.0x π+π= (3) 2 1)2cos(π=?-=π+?, , )m () 2 t 4cos(02.0x π+π= (4) 21)2cos(π-=?=π+?, , )m () 2 t 4cos(02.0x π-π= 13、已知一个谐振动的振幅02.0=A 米,园频率πω 4=弧度/秒, 初相2/π=?。 (1) 写出谐振动方程; (2) 以位移为纵坐标,时间为横坐标,画出谐振动曲线。 【解】:)m () 2 t 4cos(02.0x π+π= , )(2 12T 秒=ωπ= 15、图中两条曲线表示两个谐振动 (1) 它们哪些物理量相同,哪些物理量不同? (2) 写出它们的振动方程。

【解】:振幅相同,频率和初相不同。 虚线: )2 t 2 1cos(03.0x 1π-π= 米 实线: t cos 03.0x 2π= 米 16、一个质点同时参与两个同方向、同频率的谐振动,它们的振动方程为 t 3cos 4x 1= 厘米 )3 2t 3cos(2x 2π+= 厘米 试用旋转矢量法求出合振动方程。 【解】:)cm () 6 t 3cos(32x π+= 17、设某一时刻的横波波形曲线如图所示,波动以1米/秒的速度沿水平箭头方向传播。 (1) 试分别用箭头表明图中A 、B 、C 、D 、E 、F 、H 各质点在该时刻的运动方向; (2) 画出经过1秒后的波形曲线。 【解】: 18、波源作谐振动,其振动方程为(m ))240(1043t cos y π-?=,它所形成的波以30m/s 的速度沿一直线传播。

大学物理知识总结习题答案(第八章)振动与波动

大学物理知识总结习题答案(第八章)振动与 波动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第八章 振动与波动 本章提要 1. 简谐振动 · 物体在一定位置附近所作的周期性往复运动称为机械振动。 · 简谐振动运动方程 ()cos x A t ω?=+ 其中A 为振幅,为角频率,( t+)称为谐振动的相位,t =0时的相位 称为初相位。 · 简谐振动速度方程 d ()d sin x v A t t ωω?= =-+ · 简谐振动加速度方程 222d ()d cos x a A t t ωω?==-+ · 简谐振动可用旋转矢量法表示。 2. 简谐振动的能量 · 若弹簧振子劲度系数为k ,振动物体质量为m ,在某一时刻m 的位移为x ,振动速度为v ,则振动物体m 动能为 212 k E mv = · 弹簧的势能为 212 p E kx = · 振子总能量为

P 22222211 ()+()221=2sin cos k E E E m A t kA t kA ωω?ω?=+= ++ 3. 阻尼振动 · 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动。 · 阻尼振动的动力学方程为 222d d 20d d x x x t t βω++= 其中,γ是阻尼系数,2m γ β= 。 (1) 当22ωβ>时,振子的运动一个振幅随时间衰减的振动,称阻尼振动。 (2) 当22ωβ=时,不再出现振荡,称临界阻尼。 (3) 当22ωβ<时,不出现振荡,称过阻尼。 4. 受迫振动 · 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 · 受迫振动的运动方程为 22P 2d d 2d d cos x x F x t t t m βωω++= 其中,2k m ω=,为振动系统的固有频率;2C m β=;F 为驱动力振幅。 · 当驱动力振动的频率p ω等于ω时,振幅出现最大值,称为共振。

大学物理复习题答案(振动与波动)讲解学习

大学物理复习题答案(振动与波动)

大学物理1复习题答案 一、单选题(在本题的每一小题备选答案中,只有一个答案是正确的,请把你认为正确答案的题号,填入题干的括号内) 1. 一个弹簧振子和一个单摆(只考虑小幅度摆动),在地面上的固有振动周期分别为T i和T2。将它们拿到月球上去,相应的周期分别为T i'和T2。则有(B ) A. T i' T i且T T2 B. T i' T i 且T2 T2 C. T i' T i且T2T2 D. T i' T i且T2T2 2.一?物体作简谐振动,振动方程为x A cos t-,在t T(T为周 期) 44 时刻,物体的加速度为( B ) A.i,2A2 B.i &A 2c. i、3A2D.T A2 2 2 22 3. —质点作简谐振动,振幅为A,在起始时刻质点的位移为 A 的正方向 4. 两个质点各自作简谐振动,它们的振幅相同、周期相同.第一个质点的振动 方程为 A/2,且向x轴运动,代表此简谐振动的旋转矢量图为( C D

X i Acos( t ).当第一个质点从相对于其平衡位置的正位移处回到平衡位置时,第二个质点正在最大正位移处?则第二个质点的振动方程为 (B ) A. X2 Acos( t 1 1 一冗) B. X2 Acos( t 一冗). 2 2 C. x2Acos( t 3 冗) D. x2Acos( t ). 5. 波源作简谐运动,其运动方程为y 4.0 10 3cos240 t,式中y的单位为 m,t的单位为s,它所形成的波形以30m/s的速度沿一直线传播,则该波的波 长为(A ) A. 0.25m B. 0.60m C. 0.50m D. 0.32m 6.已知某简谐振动的振动曲线如图所示,位移的单位为厘米,时间单位为秒。则此简谐振动的振动方程为:( B ) c 22 2cos 42 A. x 2cos — t B. x-t i x (cm) 3333 O严) 小22 2cos 42-1JY/ C. x 2cos — t 33D. x-t 33 -2 填空题(每空2分) 1. 简谐运动方程为y 0.1cos(20 t -)(t以s计,y以m计),则其振幅为0.1 m,周期为0.1 s ;当t=2s时位移的大小为0.05. 2 m. 2. 一简谐振动的旋转矢量图如图所示,振幅矢量长 的初相为0—,振动方程为_y 2cos( t 一) 4 4

大学物理振动和波动知识点总结

大学物理振动和波动 知识点总结 1.简谐振动的基本特征 (1)简谐振动的运动学方程: cos()x A t ??=+ (2)简谐振动的动力学特征: F kx =-r r 或 2220d x x d t ?+= (3)能量特征: 222111222 k p E E E mv kx KA =+= +=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A r 在x 轴上的投影点的运动可用来 表示简谐振动。 旋转矢量的长度A r 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。 2.描述简谐振动的三个基本量 (1)简谐振动的相位:t ω?+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ?ω=- (2)简谐振动的振幅:A ,它取决于振动的能量。其中:A = (3)简谐振动的角频率:ω,它取决于振动系统本身的性质。 3.简谐振动的合成 (1)两个同方向同频率简谐振动的合成: 合振动的振幅:A = 合振幅最大: 212,0,1,2....k k ??π-==;合振幅最小:21(21),0,1,2....k k ??π-=+= (2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν?=-;合振动不再是谐振动,其振动方程为 21 21 0(2cos 2)cos 222x A t t ννννππ-+= (3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。 (4)与振动的合成相对应,有振动的分解。 4.阻尼振动与受迫振动、共振:

大学物理试题库_振动与波动

一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3 cos 12.0π π-=t x (B ) ) (3cos 12.0π π+=t x (C ) )(3 2cos 12.0π π-=t x (D ) )(3 2cos 12.0π π+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的 四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻 的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10-2 cos (πt/2-π/2) (m) (B) y=2×10-2 cos (πt + π) (m) (C) y=2×10-2 cos(πt/2+π/2) (m) (D) y=2×10-2 cos (πt-3π/2) (m) 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点 的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( )

大学物理题库-振动与波动

振动与波动题库 一、选择题(每题3分) 1、当质点以频率ν 作简谐振动时,它的动能的变化频率为( ) (A ) 2v (B )v (C )v 2 (D )v 4 2、一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2。当0=t 时, 位移为cm 6,且向x 轴正方向运动。则振动表达式为( ) (A) )(3cos 12.0ππ-=t x (B ))(3cos 12.0π π+=t x (C ) )(3 2cos 12.0π π-=t x (D ) ) (32cos 12.0π π+=t x 3、 有一弹簧振子,总能量为E ,如果简谐振动的振幅增加为原来的两倍,重物的质量增加为原来的四倍,则它的总能量变为 ( ) (A )2E (B )4E (C )E /2 (D )E /4 4、机械波的表达式为()()m π06.0π6cos 05.0x t y +=,则 ( ) > (A) 波长为100 m (B) 波速为10 m·s-1 (C) 周期为1/3 s (D) 波沿x 轴正方向传播 5、两分振动方程分别为x 1=3cos (50πt+π/4) ㎝ 和x 2=4cos (50πt+3π/4)㎝,则它们的合振动的振幅为( ) (A) 1㎝ (B )3㎝ (C )5 ㎝ (D )7 ㎝ 6、一平面简谐波,波速为μ=5 cm/s ,设t= 3 s 时刻的波形如图所示,则x=0处的质点的振动方程为 ( ) (A) y=2×10- 2cos (πt/2-π/2) (m) (B) y=2×10- 2cos (πt + π) (m) (C) y=2×10- 2cos(πt/2+π/2) (m) (D) y=2×10- 2cos (πt -3π/2) (m) … 7、一平面简谐波,沿X 轴负方向 传播。x=0处的质点的振动曲线如图所示,若波函数用余弦函数表示,则该波的初位相为( ) (A )0 (B )π (C) π /2 (D) - π /2 8、有一单摆,摆长m 0.1=l ,小球质量g 100=m 。设小球的运动可看作筒谐振动,则该振动的周期为( ) (A) 2π (B )32π (C )102π (D )52π 9、一弹簧振子在光滑的水平面上做简谐振动时,弹性力在半个周期内所做的功为 [ ]

大学物理学振动与波动习题答案汇编

大学物理学(上)第四,第五章习题答案 第4章振动 P174. 4.1 一物体沿x轴做简谐振动,振幅A = 0.12m,周期T = 2s.当t = 0时,物体的位移x = 0.06m,且向x轴正向运动.求:(1)此简谐振动的表达式; (2)t= T/4时物体的位置、速度和加速度; (3)物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间.[解答](1)设物体的简谐振动方程为 x = A cos(ωt + φ), 其中A = 0.12m,角频率ω = 2π/T= π.当t = 0时,x = 0.06m,所以 cosφ = 0.5, 因此 φ= ±π/3. 物体的速度为 v = d x/d t = -ωA sin(ωt + φ). 当t = 0时, v = -ωA sinφ, 由于v > 0,所以sinφ < 0,因此 φ = -π/3. 简谐振动的表达式为 x= 0.12cos(πt –π/3). (2)当t = T/4时物体的位置为 x= 0.12cos(π/2–π/3) = 0.12cosπ/6 = 0.104(m). 速度为 v = -πA sin(π/2–π/3) = -0.12πsinπ/6 = -0.188(m·s-1). 加速度为 a = d v/d t = -ω2A cos(ωt + φ) = -π2A cos(πt - π/3) = -0.12π2cosπ/6 = -1.03(m·s-2). (3)方法一:求时间差.当x = -0.06m 时,可得 cos(πt1 - π/3) = -0.5, 因此 πt1 - π/3 = ±2π/3. 由于物体向x轴负方向运动,即v < 0,所以sin(πt1 - π/3) > 0,因此 πt1 - π/3 = 2π/3, 得t1 = 1s. 当物体从x = -0.06m处第一次回到平衡位置时,x = 0,v > 0,因此 cos(πt2 - π/3) = 0, 可得πt2 - π/3 = -π/2或3π/2等. 由于t2 > 0,所以 πt2 - π/3 = 3π/2, 可得t2 = 11/6 = 1.83(s). 所需要的时间为 Δt = t2 - t1 = 0.83(s). 方法二:反向运动.物体从x = -0.06m,向x轴负方向运动第一次回到平衡位置所需的时间就是它从x= 0.06m,即从起点向x 轴正方向运动第一次回到平衡位置所需的时间.在平衡位置时,x = 0,v < 0,因此 cos(πt - π/3) = 0, 可得πt - π/3 = π/2, 解得t = 5/6 = 0.83(s). [注意]根据振动方程 x = A cos(ωt + φ), 当t = 0时,可得 φ = ±arccos(x0/A),(-π < φ≦π), 初位相的取值由速度决定. 由于 v = d x/d t = -ωA sin(ωt + φ), 当t = 0时, v = -ωA sinφ, 当v > 0时,sinφ < 0,因此 φ = -arccos(x0/A); 当v < 0时,sinφ > 0,因此

大学物理知识总结习题答案振动与波动

1. 简谐振动 物体在一定位置附近所作的周期性往复运 动称为机械振动。 简谐振动运动方程 x A cos( t ) 其中 A 为振幅, 为角频率, 称为初相 位。 · 简谐振动速度方程 dx v dt 简谐振动加速度方程 第八章 振动与波动 本章提要 d 2x dt 2 2 2 A cos ( t ) 简谐振动可用旋转矢量法表示 2. 简谐振动的能量 · 若弹簧振子劲度系数为 k ,振动物体质量为 振动速度为 v ,则振动物体 m 动能为 m ,在某一时刻 m 的位移为 x , E k 12 mv 2 弹簧的势能为 E p 12 kx 2 振子总能量为 E P 3. 阻尼振动 E E k 1 2 2 2 m A sin ( t 2 = 1 kA 2 2 )+ 1 kA 2 cos 2 ( t 2 如果一个振动质点,除了受弹性力之外,还受到一个与速度成正比的阻 t+ )称为谐振动的相位, t =0 时的相位 A sin ( t )

尼作用,那么它将作振幅逐渐衰减的振动,也就是阻尼振动 阻尼振动的动力学方程为 (1) 当 2 2 时,振子的运动一个振幅随时间衰减的振动,称阻尼振动 (2) 当 2 2 时,不再出现振荡,称临界阻尼。 (3) 当 2 2 时,不出现振荡,称过阻尼。 4. 受迫振动 振子在周期性外力作用下发生的振动叫受迫振动,周期性外力称驱动力 受迫振动的运动方程为 d 2x dx 2 F 2 2 x cos P t dt 2 dt m P 其中, 2 k m ,为振动系统的固有频率; 2 C m ;F 为驱动力振幅 当驱动力振动的频率 p 等于 时,振幅出现最大值,称为共振 5. 简谐振动的合成与分解 (1) 一维同频率的简谐振动的合成 若任一时刻 t 两个振动的位移分别为 x 1 A 1 cos ( t 1) x 2 A 2 cos ( t 2 ) 合振动方程可表示为 x A cos ( t ) 其中, A 和 分别为合振动的振幅与初相位 A A 12 A 12 2 A 1A 2 cos( 2 1) A 1 sin 1 A 2 sin 2 tan 1 1 2 2d 2x dx 2 dt 2 2 2 x 0 dt 。 m 其中, 是阻尼系数, 2 A 1 cos 1 A 2 cos 2

大学物理振动和波动知识点总结

大学物理振动和波动知 识点总结 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

大学物理振动和波动 知识点总结 1.简谐振动的基本特征 (1)简谐振动的运动学方程: cos()x A t ??=+ (2)简谐振动的动力学特征: F kx =- 或 2220d x x d t ?+= (3)能量特征: 222111222 k p E E E mv kx KA =+=+=, k p E E = (4)旋转矢量表示: 做逆时针匀速转动的旋转矢量A 在x 轴上的投影点的运动可用来表示简谐振动。 旋转矢量的长度A 等于振动的振幅,旋转矢量的角速度等于谐振动的角频率,旋转矢量在0t =时刻与坐标轴x 的夹角为谐振动的初相。 2.描述简谐振动的三个基本量 (1)简谐振动的相位:t ω?+,它决定了t 时刻简谐振动的状态;其中:00arctan(/)v x ?ω=- (2)简谐振动的振幅:A ,它取决于振动的能量。其中:A =(3)简谐振动的角频率:ω,它取决于振动系统本身的性质。 3.简谐振动的合成 (1)两个同方向同频率简谐振动的合成: 合振动的振幅:A = 合振幅最大: 212,0,1,2....k k ??π-==;合振幅最小: 21(21),0,1,2....k k ??π-=+= (2)不同频率同方向简谐振动的合成:当两个分振动的频率都很大,而两个频率差很小时,产生拍现象,拍频为21ννν?=-;合振动不再是谐振动,其振动方程为 21 21 0(2cos 2)cos 222x A t t ννννππ-+=

(3)相互垂直的两个简谐振动的合成:若两个分振动的频率相同,则合成运动的轨迹一般为椭圆;若两个分振动的频率为简单的整数比,则合成运动的轨迹为李萨如图形。 (4)与振动的合成相对应,有振动的分解。 4.阻尼振动与受迫振动、共振: 阻尼振动: 220220d x dx x dt dt β?++=;受迫振动 220022cos d x dx x f t dt dt β??++= 共振: 当驱动力的频率为某一特定值时,受迫振动的振幅将达到极大值. 5.波的描述 (1)机械波产生条件:波源和弹性介质 (2)描述机械波的物理量:波长λ、周期T (或频率ν)和波速u ,三者之间关系为: uT λ= u λν= (3)平面简谐波的数学描述:(,)cos[()]x y x t A t u ω?=±+; 2(,)cos()x y x t A t πω?λ=±+;(,)cos 2()t x y x t A T π?λ =±+ 其中,x 前面的±号由波的传播方向决定,波沿x 轴的正(负)向传播,取负(正)号。 6.惠更斯原理:波面上的任意一点都可看作是新的次波源,它们发出的次波的包络面就是以后某一时刻新的波面. 7.波的能量 波的平均能量密度:2212 w A ρω=;能量密度(波的强度):2212 P I wu A u S ρω=== 8.波的叠加原理 (1) 波的相干条件:频率相同、振动方向相同、相位差恒定 (2)波的叠加:12cos()y y y A t ω?=+=+

大学物理习题及解答(振动与波、波动光学)

1. 有一弹簧,当其下端挂一质量为m 的物 体时,伸长量为9.8 ? 10-2 m 。若使物体 上下振动,且规定向下为正方向。(1)t = 0时,物体在平衡位置上方8.0 ? 10-2 m 处,由静止开始向下运动,求运动方程。 (2)t = 0时,物体在平衡位置并以0.60 m/s 的速度向上运动,求运动方程。 题1分析: 求运动方程,也就是要确定振动 的三个特征物理量A 、ω,和?。 其 中振动的角频率是由弹簧振子系统的固有 性质(振子质量m 及弹簧劲度系数k )决定 的,即m k /=ω,k 可根据物体受力平衡时 弹簧的伸长来计算;振幅A 和初相?需要根 据初始条件确定。 解:

物体受力平衡时,弹性力F 与重力P 的大 小相等,即F = mg 。 而此时 弹簧的伸长量m l 2108.9-?=?。 则 弹簧的劲度系数l mg l F k ?=?=//。 系统作简谐运动的角频率为 1 s 10//-=?==l g m k ω (1)设系统平衡时,物体所在处为坐标 原点,向下为x 轴正向。 由初始条件t = 0 时,m x 210100.8-?=,010=v 可得振幅 m 100.8)/(2210102-?=+=ωv x A ;应用旋转矢量法 可确定初相π?=1。则运动方程为 ])s 10cos[()m 100.8(121π+?=--t x (2)t = 0时,020=x , 120s m 6.0-?=v ,同理可得m 100.6)/(22202022-?=+=ωv x A , 2/2π?=;则运动方程为

]5.0)s 10cos[()m 100.6(1 22π+?=--t x 2.某振动质点的x -t 曲线如图所示, 试求:(1)运动方程;(2)点P 对应的相位; (3)到达点P 相应位置所需要的时间。 题2分析: 由已知运动方程画振动曲线和由振动曲 线求运动方程是振动中常见的两类问题。 本题就是要通过x -t 图线确定振动的三个特征量量A 、ω,和0?,从而写出运动方程。 曲线最大幅值即为振幅A ;而ω、0?通常可 通过旋转矢量法或解析法解出,一般采用旋 转矢量法比较方便 。

大学物理小结

大学物理小结 大学物理热学部分小结 大学物理的热学部分还是相对不是太难的,因为与高中的物理关联很大,很多概念都是以前接触过的,但是没有深入研究,这已经给这部分的学习带来了极大的便利。如果说要有什么不同,主要那有如下几个方面: (1)、研究方法的不一样:虽然很多内容是接触过的,但是重新学习的时候明显感觉到不一样的是研究方法,随着其他知识的累积,尤其是高数的引入,给物理的学习带来的极大的便利,特别是一些公式的推理过程让我们更好的了解公式的来由,更好的便于记忆和理解。 (2)、准确度的不同:在学习过程中,总有些以前的东西对推翻,因为要考虑的东西越来越多,微观的宏观的等压的等温的……这些都告诉我们要全面细致地学习,应用的知识越来越多,要把知识串成串。 (3)、学习方法的不同:大学阶段的物理学习和中学阶段的物理学习存在着很大的不同,课少了,作业也少了,但是仍然不能放松,毕竟在中学几乎每天都在学物理,所以现在的物理学习更需要自己的主动和认真。 大学物理力学小结

能量守恒定律定律内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为别的形式,或者从一个物体转移到别的物体,在转化或转移的过程中其总量不变。 1)自然界中不同的能量形式与不同的运动形式相对应:物体运动具有机械能、分子运动具有内能、电荷的运动具有电能、原子核内部的运动具有原子能等等。 (2)不同形式的能量之间可以相互转化:“摩擦生热是通过克服摩擦做功将机械能转化为内能;水壶中的水沸腾时水蒸气对壶盖做功将壶盖顶起,表明内能转化为机械能;电流通过电热丝做功可将电能转化为内能等等”。这些实例说明了不同形式的能量之间可以相互转化,且是通过做功来完成的这一转化过程。 (3)某种形式的能减少,一定有其他形式的能增加,且减少量和增加量一定相等.某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等。 能量守恒的具体表达形式保守力学系统:在只有保守力做功的情况下,系统能量表现为机械能(动能和位能),能量守恒具体表达为机械能守恒定律。热力学系统:能量表达为内能,热量和功,能量守恒的表达形式是热力学第一定律。相对论性力学:在相对论里,质量和能量可以相互转变。计及质量改变带来能量变化,能量守恒定律依然成立。历史上也称这种情况下的能量守恒定律为质能守恒定律。

相关文档
最新文档