三相异步电机串电阻启动

三相异步电机串电阻启动
三相异步电机串电阻启动

1异步电动机的结构及原理

1.1 异步电动机的基本结构

图1-1 绕线型异步电动机的结构

1—转子绕组2—端盖3—轴承4—定子绕组5—转子

6—定子7—集电环8—出线盒

1 定子:定子铁心:0.5mm厚硅钢片叠压而成,磁路的一部分

定子绕组:电磁线制而成,电路一部分

机座:铸铁或钢板焊接而成

(1)定子铁心是电动机磁路的一部分,装在机座里。为了降低定子铁心里的铁损耗,定子铁心用用0.5mm厚的硅钢片叠压而成的,在硅钢片的两面还应途上绝缘漆。下图所示为定子槽,其中(a)是开口槽,用于大、中型容量的高压异步电动机中;(b)是半开口槽,用于中型500V以下的异步电动机中;

(c)是半闭口槽,用于低压小型异步电动机中。

(2)定子绕组:高压大、中型容量的异步电动机定子绕组常采用Y接,只有三根引出线,对中、小容量低压异步电动机,通常把定子三相绕组的六根出线头都引出来,根据需要可接成Y形或△形,如图(b)所示。定子绕组用绝缘的铜(或铝)导线绕成,嵌在定子槽内。

(3)机座:主要是为了固定与支撑定子铁心。如果是端盖轴承电机,还要支撑电机的转子部分。因此,机座应有足够的机械强度和刚度。对中、小

型异步电动机,通常用铸铁机座。对大型电机,一般采用钢板焊接的机座,整个机座和座式轴承都固定在同一个底板上。

2 转子:

(1)转轴:支撑转子

(2)转子铁心:0.5mm硅钢片叠压而成。

(3)转子绕组:笼型绕组,绕线型绕组

图1-2 转子结构

(1)转子铁心:是电动机磁路的一部分,它用0.5mm厚的硅钢片叠压而成。铁心固定在转轴或转子支架上,整个转子的外表呈圆柱形。

(2)转子绕组:分为笼型和绕线型两类

1)笼型转子:笼型绕组是一个自己短路的绕组。在转子的每个槽里放上一根导体,在铁心的两端用端环连接起来,形成一个短路的绕组。如果把转子铁心拿掉,则可看出,剩下来的绕组形状像个松鼠笼子,如图(a)所示,因此又叫鼠笼转子。导条的材料有用铜的,也有用铝的。

2)绕线型转子:绕线型转子的槽内嵌放有用绝缘导线组成的三相绕组,一般都联接成Y形。转子绕组的三条引线分别接到三个滑环上,用一套电刷装置引出来,如图所示。这就可以把外接电阻串联到转子绕组回路里去,以改善电动机的启动性能或调节电动机的转速。

图1-3 绕线型转子

3 气隙:

文献1提出磁路的一部分, 异步电动机的气隙比同容量直流电动机的气隙小得多,在中小型异步电动机中,气隙一般为0.2~1.5mm左右。

1.2 异步电动机的工作原理

文献2提出三相异步电动机定子接三相电源后,电机内便形成圆形旋转磁动势,圆形旋转磁密,设其方向为逆时针转,如图所示。若转子不转,转子鼠笼导条与旋转磁密有相对运动,导条中有感应电动势e,方向由右手定则确定。由于转子导条彼此在端部短路,于是导条中有电流,不考虑电动势与电流的相位差时,电流方向同电动势方向。这样,导条就在磁场中受力f,用左手定则确定受力方向,如图所示。

转子受力,产生转矩T,为电磁转矩,方向与旋转磁动势同方向,转子便在该方向上旋转起来。转子旋转后,转速为n,只要n<n1(n1为旋转磁动势同步转

速),转子导条与磁场仍有相对运动,产生与转子不转时相同方向的电动势、

图1-4 转子受力图

电流及受力,电磁转矩T仍旧为逆时针方向,转子继续旋转,稳定运行在T=TL

情况下。

2 绕线型异步电动机的起动

2.1基本概念

1 起动定义:电动机接到电源上,从静止状态到稳定运行状态的过程;

2 起动电流:n=0,S=1时的电流。

k

st Z U x x r r U I 1

2

212211

)()(=

'++'+=

起动电流倍数:7~5==

N

st

i I I k 3 起动转矩:n=0,s=1时的电磁转矩。

221()212

1

11

st

em st st st r m I P m s T I r '

'=

=

=ΩΩΩ

4 起动电流大的原因:此时处于短路。

5 起动转矩不大的原因:1)m Φ减少; 使T ST 不大。

2)2cos ?减小;

6 起动要求:(1)起动电流尽量较小。

(2)起动转矩尽量大,减小起动时间

(3)起动设备简单,可靠。

2.2 起动指标

起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。 对于任何一台电动机,在起动时需注意以下两个基本要求。

1 起动转矩足够大

只有T ST >T L 时,电动机才能改变原来的静止状态,拖动生产机械运转。一般要求T ST >(1.1~1.2)T L 。T ST 越大于T L ,起动过程所需要的时间就越短。

2 起动电流不要超过允许范围

文献3提出对三相异步电动机来说,由于起动瞬间s=1,旋转磁场与转子磁场之间的相对运动速度很大,转子电路的感应电动势及电流都很大,所以起动电流远大于额定电流。在电源容量与电动机的额定功率相比不是足够大时,会引起输

电线路上电压降的增加,造成供电电压的明显下降,不仅影响了同一供电系统中其他负载的工作,而且会延长电动机本身的起动时间。此外在起动过于频繁时,还会引起电动机过热。在这两种情况下,就必须设法减小起动电流。

2.3 绕线型异步电动及转子串电阻起动

1 起动过程

绕线型异步电动机的转子串联合适的电阻不但可以减小起动电流,而且还可以增大起动转矩,因而,要求起动转矩大或频繁的生产机械常采用绕线型异步电动机拖动。

容量较小的三相绕线型异步电动机可以采用转子电路串联起动变阻器的方法起动。容量较大的绕线型异步电动机一般采用分级起动的方法以保证起动过程中都有较大的起动转矩和较小的起动电流。现以两级起动为例介绍其起动步骤和起动过程。原理图和机械特性如下图所示。图中机械特性只画出了每条特性的n

M 段,并近似用直线代替。起动步骤如下:

(1)串联起动电阻R

st1和R

st2

起动

起动前开关S

1和S

2

断开,使得转子每相电路串入电阻R

st1

和R

st2

,加上转子每相绕

组自身的电阻R

2

,转子电路毎相总电阻为

R

22=R

2

+R

st1

+R

st2

然后合上电源开关S,这时电动机的机械特性为绕线型异步电动机的分级起动

图中的a。由于起动转矩T

1远大于负载转矩T

L

,电动机拖动生产机械开始起动,工

作点沿特性a由a

1点向a

2

点移动。

(2)切除起动电阻R

st2

当工作点到达a

2点,即电磁T等于切换转矩T

2

时,合上开关S

2

切除起动电阻R

st2

转子毎相电路的总电阻变为

R 21=R

2

+R

st1

图2-1 绕线型异步电动机的分级起动

文献4提出这时电动机的机械特性变为特性b 。由于切除R st2的瞬间,转速来不及突变,故工作点由特性a 上的a 2点平移到特性b 上的b 1点,使这时的电磁转矩仍等于T 1,电动机继续加速,工作点沿特性b 由b 1 点向b 2点移动。 (3)切除起动电阻R st1

当工作点到达b 2点,即电磁转矩T 又等于切换转矩T 2时,合上开关S 1,切除起动电阻R st1,电动机转子电路短接,转子毎相电路的总电阻变为

R 20=R 2

机械特性变为固有特性c 。工作点由b 2平移至c 1点,使得这时的电磁转矩T 仍正好等于T 1。电动机继续加速,工作点沿特性c 由c 1向c 2点移动,经过c 2点,最后稳定运行在p 点。整个起动过程结束。 为了使起动过程满足上述要求,选择正确的起动电阻,下面分两种情况来讨论。

2 起动级数未定时起动电阻的计算

(1)选择起动转矩T 1和切换转矩T 2 一般选择:

T 1=(0.8~0.9)T M (2.2.1) T 2=(1.1~1.2)T L (2.2.2) (2)求出起切转矩比β

β=2

1

T T (2.2.3)

(3)求出起动级数m

利用图2.2.1(b )所示起动过程中的机械特性,根据几何关系推导起动级数

m 的计算公式如下:

由特性c 与水平虚线构成的直角三角形求得

M T T 1=Mc c n n n n --010=Mc

c s s 1

M T T 2=Mc c n n n n --020=Mc

c s s 2

式中,n c1和n c2是工作在c 1点和c 2点是的转速,n Mc 是T M 与特性c 交点上的

转速。s c1、s c2和s Mc 是与之对应的转差率。同理可以求得

M T T 1=Ma a s s 1=Mb b s s 1=Mc c s s 1

M T T 2=Ma a s s 2=Mb b s s 2=Mc

c s s 2

由于s b1=s b2,对应两式相除,并参照公式s M =2

2

X R 可得

β=21T T =Mb Ma s s =221222//X R X R =21

22

R R

由于s c1=s c2,对应两式相除,可得

β=21T T =Mc Mb s s =220221//X R X R =20

21

R R

可见

R 22=βR 21 R 21=βR 20

所以

R 22=2βR 20=βR 21

若是m 级起动,则

R 2m =m βR 20=m βR 2

式中

R 2m =R 2+R st1+R st2+…R STM

因此

β=

2

2R R m

m

由前面的分析还可以得到

Mc c s s 1=Ma

a s s 1

s c1=s a1

Ma

MC s s =1×222220//X R X R =2220R R =22

2

R R

若是m 级起动,则

s c1=

m

R R 22

此外,在固有特性c 上工作时

N T T 1=N

c s s 1

s c1=s 1 N

T T 1

将这些关系代入β公式,可得

β=

1

T s T N N

m

(2.2.4) 两边取对数,便得到了起动级数m 的计算公式

m=β

lg lg

1T s T N N

(2.2.5)

若m 不是整数可取相近整数。

(4)重新计算β,校验T 2是否在规定的范围之内。

若m 是取相近整数,则需重新由式(2.2.4)计算β,并由式(2.2.3)

求出T 2,校验T 2是否在式(2.2.2)所规定的范围之内。若不在规定的范围之内,需加大起动级数m ,重新计算β和T 2,直到T 2满足要求为止 (5)求出转子毎相绕组的电阻R 2

转子毎相绕组的电阻可以通过实测或者通过铭牌上提供的转子额定线

电压U 2N 和转子绕组的额定线电流I 2N 进行计算。

由于转子绕组为星形联结,相电流等于线电流。因此,在额定状态下运

行时

I 2N =

)

(22

22X s R E s N N +=

)

(3/22

22X s R U s N N N +

由于s N 很小,S N X 2可以忽略不计,则

I 2N =

2

23R U s N N

由此求得R 2的计算公式为

R 2=N N N I U s 223 (2.2.6)

(6)计算各级起动电阻

由前面的分析知道

??

??

?????=====2222

21222

212

20R R R R R R R R R m

m ββββ

(2.2.7)

(7)求出各级起动电阻

???

?

???

-=-=-=-)1(22212222211m m stm st st R R R R R R R R R (2.2.8)

3 起动级数已定时,起动电阻的计算

计算步骤如下:

(1) 按式(2.2.1)选择T 1。 (2) 按式(2.2.4)求出β。

(3) 按式(2.2.3)求出T 2,并检验T 2是否在式(2.2.2)规定的范围之内,

否则加大起动级数m ,重新计算,直到T 2符合要求为止。

(4) 按式(2.2.6)求出R 2.

(5) 用最后确定的β和m ,按式(2.2.7)求出各级总电阻。 (6) 用式(2.2.8)求出各级起动电阻。

综上所述,对设计任务进行如下设计:

(1)选择起动转矩T 1

T N =

N

N

n P π260=266.32N ·m T M =αMT T N =692.43 N ·m

T 1=(0.8~0.9)T M =(553.94~623.19) N ·m

取T 1=580 N ·m

(2)求出起切转矩比β

s N =

0n n n N

-=0.0433 β=

1

T s T N N

m

2.2 (3)求出切换转矩T 2

T 2=

β

1

T =263.64 N ·m 由于T 2>1.1T L ,所以所选m 和β合适。 (4)求出转子毎相绕组电阻

R 2=

N

N N I U s 223=0.0844Ω

(5)求出各级总电阻

R 21=βR 2=0.186Ω R 22=βR 21=0.408Ω R 23=βR 22=0.899Ω

(6)求出各级起动电阻

R st1=R 21-R 2=0.102Ω R st2=R 22-R 21=0.222Ω R st3=R 23-R 22=0.491Ω

结论

绕线型异步电动机的转子串联合适的电阻不但可以减小起动电流,而且可以增大起动转矩,因而,要求起动转矩或起动频繁的生产机械常采用绕线型异步电动机来拖动。

在设计起动电阻时,可分为起动级数未定、已定两方面,看具体的已知条件,根据已知条件选择合适的方法确定起动电阻。

绕线型异步电动机优点是可以通过集电环和电刷,在转子回路中串入外加电阻,以改善起动性能并可改变外加电阻在一定范围内调节转速。但绕线型异步电动机结构复杂,价格较贵运行的可靠性也较差。

参考文献

1、于福鸿.电机与拖动基础.吉林科学技术出版社,1996年

2、顾绳谷.电机及拖动基础(第2版).北京:机械工业出版社,2000年

3、李发海.电机学.北京:科学出版社,2001年

4、唐介.电机与拖动.北京:高等教育出版社,2003.7

他励直流电动机串电阻启动的设计15613

题目 他励直流电动机串电阻启动的设计 专业:电气工程及其自动化 班级:13电牵1班 姓名:贤第 学号:20130210470103

Pan=200kw ;Uan=440v ;Ian=497A ;nN=1500r/min;Ra=0.076Ω; 采用分级启动,启动电流最大不超过2Ia N,,求各段电阻值,并且求出切除电阻时的瞬时转速和电动势,并作出机械特性曲线,对启动特性进行分析。 三、设计计划 第1天查阅资料,熟悉所选题目; 第2天根据基本原理进行方案分析; 第3天整理思路,按步骤进行设计; 第4天整理设计说明书; 第5天准备答辩; 四、设计要求 1、设计工作量为按要求完成设计说明书一份。 2、设计必须根据进度计划按期完成。 3、设计说明书必须经指导教师审查签字方可答辩。

摘要 他励直流电动机启动时由于电枢感应电动势Ea =CeΦn = 0 ,最初启动电流IS =U/Ra,若直接启动,由于Ra很小,ISt会十几倍甚至几十倍于额定电流, 无法换向,同时也会过热,因此不能直接启动。 要限制启动电流ISt的大小可以有两种方法:降低电枢电压和电枢回路串接附加电阻。本文仅以他励直流电动机的串电阻启动为主题进行详细的阐述。 在实际中,如果能够做到适当选用各级启动电阻,那么串电阻启动由于其启动设备简单、 经济和可靠,同时可以做到平滑启动,因而得到广泛应用。但对于不同类型和规格的直流电动机,对启动电阻的级数要求也不尽相同。 关键词:他励直流电动机;启动电流;串电阻启动; 目录 引言 (5) 1 直流电动机 (7) 1.1直流电动机的工作原理 (7) 1.2直流电动机的分类 (7) 1.3他励直流电机工作原理 (8)

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

绕线型异步电动机串电阻

课程设计名称:电子技术课程设计题目:绕线型异步电动机串电阻启动 学期:2013-2014学年第2学期 专业:电气技术 班级:电技12-2 姓名:周立君 学号:1205020229 指导教师:王巍

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 绕线型三相异步电动机串电阻启动设计 二、设计任务 1、分析绕线型三相异步电动机的启动过程; 2、给出启动级数、各级启动电阻计算公式; 3、以实际例子说明启动级数和各级启动电阻的计算过程; 三、设计计划 电机与拖动课程设计共计1周内完成: 1、第1~2天查资料,熟悉题目; 2、第3~5天方案分析,具体按步骤进行设计及整理设计说明书; 3、第6天准备答辩; 4、第7天答辩。 四、设计要求 1、以实际例子说明启动级数和各级启动电阻的计算步骤; 2、对电枢串电阻启动进行优缺点分析; 指导教师:王巍 时间:年月日

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机;电枢串电阻;启动

直流电动机串电阻分级启动仿真实验设计

直流电动机串电阻分级启动仿真实验 电路图搭建: 如果电动机直接启动的话,设置Step1/ Step2 /Step3的起始值为0,并且step time 设为0,也就是在0时刻开始以后一直都为0值,也就是三个电阻开关保持闭合,使所串电阻短路,仿真得到转速和电枢电流的启动图形: 可以发现,启动电流在很短的时间里就冲击到很大的值,我们将电流波形横坐标和纵坐标分别放大看看: 从图中可以看到,在时间约为0.08s时刻电流冲击到了大约1840A,这很显然不符合要求,电机一启动就烧,或者启动瞬间熔断丝就烧断。

如果这时候串一个1Ω的电阻,也就是讲三个电阻值都串进电路,设置Step1/ Step2 /Step3的step time 设置为20s,得到以下波形: 可以发现启动电流变小了很多,在200A左右,这也就满足启动电流限制的要求了,但是串联的电阻不能一直在电路中,这样会造成能量损耗,因为虽然电阻很小,但是电流很大,电流平方得到损耗电功率就很大了,即使是在额定运行时,额定电流大约在88.8A,而且我们还发现在时间t=10s时刻,电机还没有达到额定运行状态,也就是启动过程太慢,这主要是串了启动电阻的原因。

现在我们采用分级启动,下次电阻降低是在电流约为额定的1.2倍时,这样我们选t=3.5s时,把串的0.518Ω的电阻去掉,使所串电阻为0.482Ω,设置step3的step time 为3.5s,得到如下仿真图: 可以发现电流会在3.5s时又有一个冲击电流,大约是210V左右,一般也能满足要求, 也就是说,二次所串的电阻0.482欧姆能够满足要求,现在我们试试如果去掉0.838Ω的电阻,只剩一只0.162Ω时仿真的波形: 很显然看出,在时间3.5s时刻,冲击电流很大,大约460V(底下的放大波形可以清楚地看出),这也就不能满足电机的启动电流的要求。所以我们在去电阻时候要选择大小,不能一次性完全去掉,而是一次一次的分级去掉。下面就是我们进行的第二次去电阻。

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

三相异步电动机启动方法

三相异步电动机启动方法 降压启动就可以降低启动电流,减少线路压降。除直接启动外,降压启动一般有星-三角降压启动,自藕变压降压启动,变频启动、软启动等。 三相异步电动机接线图 三相异步电机接线图:三相电动机的三相定子绕组每相绕组都有两个引出线头。一头叫做首端,另一头叫末端。规定第一相绕组首端用D 1表示,末端用D 4表示;第二相绕组首端用D2表示,末端用D5表示;第三相绕组首末端分别用D3和D6来表示。这六个引出线头引入接线盒的接线柱上,接线柱相应地标出D1~D6的标记,见图(1)。三相定子绕组的六根端头可将三相定子绕组接成星形或三角形,星形接法是将三相绕组的末端并联起来,即将D4、D5、D6三个接线柱用铜片连结在一起,而将三相绕组首端分别接入三相交流电源,即将D1、D2、D3分别接入A、B、C相电源,如图(2)所示。而三角形接法则是将第一相绕组的首端D 1与第三相绕组的末端D6相连接,再接入一相电源;第二相绕组的首端D2与第一相绕组的末端D4相连接,再接入第二相电源;第三相绕组的首端D3与第二相绕组的末端D5相连接,再接入第三相电源。即在接线板上将接线柱D1和D6、D2和D4、D3和D5分别用铜片连接起来,再分别接入三相电源,如图(3)所示。一台电动机是接成星形还是接成三角形,应视厂家规定而进行,可以从电动机铭牌上查到。三相定子绕组的首末端是生产厂家事先设定好的,绝不可任意颠倒,但可将三相绕组的首末端一起颠倒,例如将三相绕组的末端D4、D5、D6倒过来作为首端,而将D1、D2、D3作为末端,但绝不可单独将一相绕组的首末端颠倒,否则将产生接线错误。如果接线盒中发生接线错误,或者绕组首末端弄错,轻则电动机不能正常起动,长时间通电造成启动电流过大,电动机发热严重,影响寿命,重则烧毁电动机绕组,或造成电源短路。 1、三相电源绕组有几种接线方式?三相负载的连接方式有几种? 答:三相发电机或三相变压器的二次侧都具有三相绕组,它们都是用星Y形或三角△形的方式连接起来的。 三相负载的连接与发电机三相绕组的连接相似,也可接成形或三角形△。 2、什么叫三相三线制电路?什么叫三相四线制电路? 答:将负载与发电机用三根火线连接起来。就是三相三线制电路。 用三根火线和一根中线把电源和负载起来,就是三相四线制电路。 3、什么叫三相电源和负载的星型连接?什么叫相、线电压和相、线电流?他们之间的关系如何? 答:将三相绕级的末端连接在一起,从首端分别引出导线,这就是星形连接。通常三相绕组的始端用A、B、C表示,末端用X、Y、Z表示。绕组始端的引出线称为火线。三个绕组末端连接在一起的公共点“O”称为中性点,从中性点引出的一根导线称为零线(也称中线)。如果中性点接地,则零线也称做地线。 每相组两端间的电压(即每相绕组首端与中线之间的电压)uA、uB、uC叫做相电压。 两根火线之间(即两相之间)的电压uAB、uBC、uCA叫做线电压。 流过电源每相绕组或负载的电流,叫做相电流。火线中的电流iA、iB、iC,叫做线电流。在星形连接中,线电压的有效值是相电压有效值的倍,即U线=U相。线电流等于相电流。 即I线=I相。 4、三相四线制供电系统中,中性线(零线)的作用是什么?为什么零线不允许断路?答:中性线是三相电路的公共回线。中性线能保证三相负载成为三个互不影响的独立回路;

他励直流电机串电阻启动

他励直流电动机串电阻启动仿真一、工作原理 电动机的起动是指电机合上电源后,从静止状态加速到所要求的稳定转速时的过程。起动时把电动机电枢直接加上额定电压是不允许的,因为在起动前,电机转速为零,由电枢电势公式可知,Ea也为零,电枢绕组电阻Ra又很小,若此时加上额定电压,会引起过大的起动电流Is,Is = UN/Ra,其值可达额定值的10~20倍。这样大的启动电流会产生强烈火花,甚至烧毁换向器;还会加剧电网电压的波动,影响同一电网上其他设备的正常运行,甚至可能引起电源开关跳闸。 直流电动机在电枢回路中串联电阻起动是限制起动电流和起动转矩的有效方法之一。建立他励直流电动机电枢串联电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。 二、参数计算 有一台他励直流电动机,参数如下: PN=100KW UaN=440V IaN=497A

nN=1500r/min Ra=0.076Ω 若采用串电阻启动,所串电阻计算如下: (1)选择I1和I2 I1=(1.5~2.0)IaN=(1.5~2.0)497A=(745.5~994)A I2=(1.1~1.2)IaN=(1.1~1.2)497A=(546.7~596.4)A 选择I1=850A ,I2=550A (2)求出起切电流比β 5.1550 85021===I I β (3)求出启动时的电枢电路电阻Ram Ω=Ω==518.0850 4401I U R aN am (4)求出启动级数m 74.45 .1lg 076.0518.0lg lg lg ===βa aN R R m 故取m=5 (5)重新计算β,校验I 2

电机与拖动课程设计---他励直流电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机串电阻启动 专业:电气工程及其自动化 班级: 姓名: 学号:

直流电动机是人类最早发明和应用的一种电机。直流电机可作为电动机用,也可作为发电机用。直流电动机是将直流电能转换成机械能而带动生产机械运转的电器设备。与交流电动机相比,直流机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,但是它具有良好的启动、调速和制动性能,因此在速度调节要求较要、正反转和启动频繁或多个单元同步协调运转的生产机械上,仍广泛采用直流电动机拖动。在工业领域直流电动机仍占有一席之地。因此有必要了解直流电动的运行特性。在四种直流电动机中,他励电动机应用最为广泛。 关键词:直流电机;串电阻;启动;原理;分类:机械特性;变速

1 直流电动机简介............................... 错误!未定义书签。 2 直流电机的基本结构 (1) 2.1 定子 (1) 2.2 转子.................................... 错误!未定义书签。 2.3 气隙.................................... 错误!未定义书签。 3 直流电动机的工作原理 (2) 4 直流电机的分类 (3) 5 他励直流电动机的机械特性 (5) 6 直流电机的名牌数据和主要系列 (6) 7 固有机械特性与人为机械特性 (7) 8 他励直流电动机串电阻起动 (8) 9 起动电阻的计算 (10) 10 设计得出结论 (12) 体会............................................ 错误!未定义书签。参考文献........................................ 错误!未定义书签。

三相异步电动机启动图(精)

1、三相异步电动机的点动控制 点动正转控制线路是用按钮、接触器来控制电动机运转的最简单的正转控制线路。所谓点动控制是指:按下按钮,电动机就得电运转;松开按钮,电动机就失电停转。 典型的三相异步电动机的点动控制电气原理图如图3-1(a所示。点动正转控制线路是由转换开关QS 、熔断器FU 、启动按钮SB 、接触器KM 及电动机M 组成。其中以转换开关QS 作电源隔离开关,熔断器FU 作短路保护,按钮SB 控制接触器KM 的线圈得电、失电,接触器KM 的主触头控制电动机M 的启动与停止。 点动控制原理:当电动机需要点动时,先合上转换开关QS ,此时电动机M 尚未接通电源。按下启动按钮SB ,接触器KM 的线圈得电,带动接触器KM 的三对主触头闭合,电动机M 便接通电源启动运转。当电动机需要停转时,只要松开启动按钮SB ,使接触器KM 的线圈失电,带动接触器KM 的三对主触头恢复断

开,电动机M 失电停转。在生产实际应用中,电动机的点动控制电路使用非常广泛,把启动按钮SB 换成压力接点、限位节点、水位接点等,就可以实现各种各样的自动控制电路,控制小型电动机的自动运行。 2. 三相异步电动机的自锁控制 三相异步电动机的自锁控制线路如图3-2所示,和点动控制的主电路大致相同,但在控制电路中又串接了一个停止按钮SB1,在启动按钮SB2的两端并接了接触器KM 的一对常开辅助触头。接触器自锁正转控制线路不但能使电动机连续运转,而且还有一个重要的特点,就是具有欠压和失压保护作用。它主要由按钮开关SB (起停电动机使用)、交流接触器KM (用做接通和切断电动机的电源以及失压和欠压保护等)、热继电器(用做电动机的过载保护)等组成。 欠压保护:“欠压”是指线路电压低于电动机应加的额定电压。“欠压保护”是指当线路电压下降到某一数值时,电动机能自动脱离电源电压停转,避免电动机在欠压下运行的一种保护。因为当线路电压下降时,电动机的转矩随之减小,电动机的转速也随之降低,从而使电动机的工作电流增大,影响电动机的正常运行,电压下降严重时还会引起“堵转”(即 电动机接通电源但不转动)的现象,以致损坏电动机。采用接触器自锁正转控制线路就可避免电动机欠压运行,这是因为当线路电压下降到一定值(一般指低于额定电压85%以下)时,接触器线圈两端的电压也同样下降到一定值,从而使接触器线圈磁通减弱,产生的电磁吸力减小。当电磁吸力减小到小于反作用弹簧的拉力时,动铁心被迫释放,带动主触头、自锁触头同时断开,自动切断主电路和控制电路,电动机失电停转,达到欠压保护的目的。

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

直流电机启动方法

直流电机启动方法 直流电机从接通电源开始转动,直至升速到某一固定转数稳定运行,这一过程称为电动机的启动过程。直流电机有直接合闸起动、串电阻起动和降电压启动三种方法。 由于直流电机电枢回路电阻和电感都较小,而转动体具有一定的机械惯性,因此当直流电机接通电源后,起动的开始阶段电枢转速以及相应的反电动势很小,起动电流很大。最大可达额定电流的15~20倍。这一电流会使电网受到扰动、机组受到机械冲击、换向器发生火花。因此直接合闸起动只适用于功率不大于4千瓦的电动机。 为了限制起动电流,常在电枢回路内串入专门设计的可变电阻。在起动过程中随着转速的不断升高及时逐级将各分段电阻短接,使起动电流限制在某一允许值以内。这种起动方法称为串电阻起动,非常简单,设备轻便,广泛应用于各种中小型直流电机中。但由于起动过程中能量消耗大,不适于经常起动的电机和中、大型直流电机。但对于某些特殊需要,例如城市电车虽经常起动,为了简化设备,减轻重量和操作维修方便,通常采用串电阻起动方法。 对容量较大的直流电机,通常采用降电压起动。即由单独的可调压直流电源对电机电枢供电,控制电源电压既可使电机平滑起动,又能实现调速。此种方法电源设备比较复杂。下面和松文机电具体了解一下这些启动方式。 a.直接合闸起动。 直接合闸起动就是将电动机直接接入到额定电压的电源上启动。由于电动机所加的是额定电源,而电动机开始接通电源瞬间电枢不动,电枢反电动势E。为零,所以启动时电流很大。启动时电动机最大电流为正因为电动机启动电流很大,所以启动转矩大,电动机启

动迅速,启动时间短。 不过,电动机一旦开始运转,电枢绕组就有感应电动势产生,且转数越高,电枢反电动势就越大。随着电动机转数上升,电流迅速下降,电磁转矩也随之下降。当电动机电磁转矩与负载阻力转矩相平衡时,电动机的启动过程结束而进人稳定运行状态。 直接合闸起动的优点是不需其他设备,操作简便;缺点是启动电流大。它只适用于小型电动机,如家用电器中的直流电机。 b. 串电阻起动 串电阻起动就是在启动时将一组启动电阻RP串人电枢回路,以限制启动电流,而当转数上升到额定转数后,再把启动变阻器从电枢回路中切除。 串电阻起动的优点是启动电流小;缺点是变阻器比较笨重,启动过程中要消耗很多的能量。 c.降电压起动。 降电压起动就是在启动时通过暂时降低电动机供电电压的办法来限制启动电流,当然降压启动要有一套可变电压的直流电源,这种方法只适合于大功率直流电机。

PLC课程设计-三相异步电动机转子串电阻启动

目录 摘要 (1) 关键词 (1) 1 关于PLC (2) 1.1概述 (2) 1.2 PLC的系统组成 (2) 2 S7-200简介 (3) 2.1 概述 (3) 2.2 组成 (3) 3 三相异步电动机的工作原理和结构组成 (3) 3.1 工作原理 (3) 3.2 结构组成 (4) 3.2.1 定子 (4) 3.2.2 转子 (4) 3.2.3 气隙 (4) 3.3 异步电动机的结构特点 (5) 3.4 转子串电阻启动的原理 (5) 3.5 启动电阻的使用原则 (5) 4 课程设计的目的 (5) 5 主接线图 (6) 5.1三相异步电动机转子串电阻启动主接线图 (6) 5.2绕线式的作用以及优缺点 (6) 6 硬件系统的设置 (6) 6.1 资源配置 (6) 6.2 PLC接线图 (7) 7 主程序设置 (7) 7.1 主程序梯形图 (7) 7.2 工作过程分析 (9) 8模拟软件上仿真动作与实验面板上调试演示结果 (10) 9课程设计总结 (11) 参考文献 (12)

三相异步电动机转子串电阻启动 三相异步电动机转子串电阻启动 指导教师 摘要:PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC;编程语言;三相异步电机;继电器 Three-phase Asynchronous Motor Rotor String Resistance Start Student majoring in Automation Liu Tong Tutor Zhou Jing Lei Abstract:PLC in three-phase asynchronous motor control application, compared with the traditional relay control, has control of speed, high reliability and flexibility, the perfect function etc. Long-term since, PLC is always in the industrial automation control field, igge for various automatic control equipment provides a very reliable control applications. It can provide security for automation control application reliable and comparatively perfect solutions, suitable for the current industrial enterprise of automation needs. This paper introduces the design of three-phase asynchronous motor, the PLC control circuit, this circuit mainly stable performance, simple and practical for the purpose. Key words: PLC;programming languages,;three-phase asynchronous motor,;relays

三相异步电机起动方式(精)

三相异步电机起动方式 1)直接起动,电机直接接额定电压起动。(55KW以下) 2)降压起动:(55KW以上)降压起动的主要目的是为了限制起动电流,但同时也限制了起动转矩,因此,这种方法只适用于轻载或空载情况下起动。常用的降压起动方法有下列几种: (1)定子串电抗降压起动;这种起动方法是在电动机定子绕组的电路中串入一个三相电抗器,电抗器说简单点就是线圈,能够产生感应电动势来降低直接输入的工频电压。 (2)星形-三角形启动器起动;这种方法只适用于正常运转时定子绕组作三角形连接的电动机。起动时,先将定子绕组改接成星形,使加在每相绕组上的电压降低到额定电压的1/根号3,从而降低了起动电。因为如果380V三相供电,三角形电机的相电压为380V,则在单相上的线电压也为380V,但是如果改为星型启动的话,相电压380V,线电压只有220V,定子电压降低了;待电动机转速升高后,再将绕组接成三角形,使其在额定电压下运行。

可以证明,星形起动时的起动电流(线电流)仅为三角形直接起动时电流(线电流)的1/3,即IYst=(1/3)I△st;其起动转矩也为后者的1/3 (3)软起动器起动; (4)用自耦变压器起动。对容量较大或正常运行时作星形连接的电动机,可应用 自耦变压器降压起动。 自耦变压器降压起动的优点是不受电动机绕组接线方法的限制,可按照允许的起动电流和所需的起动转矩选择不同的抽头,常用于起动容量较大的电动机。其缺点是设备费用高,不宜频繁起动。

单相异步电机起动方式 1)电阻分相起动; 2)电容分相起动; 3)继电器起动等。 一、直流电机的旋转原理 直流电机是磁场不动,导体在磁场中运动;交流电机是磁场旋转运动,而导体不动.直流电动机分为定子绕组和转子绕组.定子绕组产生磁场.当通直流电时.定子绕组产生固定极性的磁场.转子通直流电在磁场中受力.于是转子在磁场中受力就旋转起来. 二、单相交流电动机的旋转原理 单相交流电动机只有一个绕组,转子是鼠笼式的。单相电不能产生旋转磁场.要使单 相电动机能自动旋转起来,我们可在定子中加上一个起动绕组,起动绕组与主绕组在空间上相差90度,起动绕组要串接一个合适的电容,使得与主绕组的电流在相位上近似相差90度,即所谓的分相原理。这样两个在时间上相差90度的电流通入两个在空间上相差90度的绕组,将会在空间上产生(两相)旋转磁场,在这个旋转磁场作用下,转子就能自动起动。

绕线型三相异步电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:绕线型三相异步电动机串电阻启动 专业:电气工程及其自动化 班级:电气09-1 姓名: XXX 学号:XXXXXXXXXX XXXX大学 课程设计成绩评定表

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机电枢串电阻启动

目录 引言 (1) 1三相异步电动机 (2) 1.1 三相异步电动机的基本结构 (2) 1.1.1 定子 (2) 1.1.2 转子 (2) 1.2 三相异步电动机的工作原理 (2) 1.2.1 旋转磁场 (2) 1.2.2 电磁转矩的产生 (3) 1.3 异步电动机的启动方法 (3)

1.4 异步电动机的启动指标 (3) 2 绕线形异步电动机串电阻启动 (4) 2.1 启动过程分析 (4) 2.1.1 串联启动电阻Rst和Rst启动 (4) 2.1.2 切除启动电阻Rst2 (5) 2.1.3 切除启动电阻Rs1 (5) 2.2 启动电阻的计算 (5) 2.2.1 选择起动转矩Tst1和切换转矩Tst2…………………………… 5 2.2.2 求出起动转矩比β (5) 2.2.3 求出起动级数m (5) 2.2.4 重新计算β,校验T ,是否在规定范围内……………………… 7 2.2.5 求出转子每相绕组的电阻R (7) 2.2.6 计算各级总电阻 (7) 2.2.7 求出各级起动的电阻 (8) 3 实际例子分析 (9) 3.1 电动机相关参数 (9) 3.2 计算起动转矩T1 (9) 3.3 计算切换转矩T2 (9) 3.4 计算切换转矩比β (9) 3.5 计算起动级数 (9)

他励直流电动机串电阻的设计

淮阴工学院 课程设计说明书 作者: 学号: 学院: 机械工程学院 专业: 机械电子工程 题目: 他励直流电动机串电阻启动的设计指导者:

绪论 (1) 1直流电动机 (2) 1.1直流电动机的工作原理 (2) 1.2直流电动机的分类 (2) 1.3直流电动机的工作原理 (2) 2他励直流电动机 (4) 2.1他励直流电动机的机械特性 (4) 2.2他励直流电动机的启动 (5) 2.21对启动的要求 (5) 2.22电枢回路串电阻启动 (5) 2.3直流电动机电枢串电阻启动设计方案 (8) 2.31分级启动主回路和控制回路以及相关电器元件 (10) 2.32启动特性曲线 (10) 3设计体会 (11) 4参考文献 (12)

绪论 直流他励电动机控制器的优点是,线路无需切换即可实现牵引与制动的转换,带载能力强,防空转性能好。但是,如果不能掌握正确的启动方法,电机还是不能正常运行的。下面,我们就要对电机的启动过程和方法做一些必要的分析。 由于启动瞬间n=0,电枢电动势0=Φ=n K E e ,而电枢电阻有很小,所以启 动电流R U n =st I 将达到很大的数值。过大的启动电流,会引起电网电压的波动,影响其他用户的正常用电,并且会使电动机轴上受到很大的冲击。这种不采取任何措施就直接把电动机加上额定电压的启动办法,称为直接启动。处个别容量很小的电动机可以直接采用外,一般直流电动机不允许直接启动【1】。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法【2】。本文对他励直流电机进行细致的介绍,用图片与文字相结合的方式 对他励直流电机工作时过程中的变量与时间的关系进行描绘,使我们更加清楚的了解他励直流电机的工作原理。

三相异步电动机的起动和制动方法

三相异步电动机的起动和制动方法 【摘要】电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。对异步电动机起动性能的要求,主要有以下两点:起动电流要小,以减小对电网的冲击;起动转矩要大,以加速起动过程,缩短起动时间。其起动方法有直接起动、降压起动。异步电动机制动的目的是使电力拖动系统快速停车或者使拖动系统尽快减速,对于位能性负载,制动运行可获得稳定的下降速度。其制动方法有能耗制动、反接制动和回馈制动。 【关键词】直接起动;降压起动;能耗制动;反接制动;回馈制动 引言 电动机的起动是指电动机接通电源后,由静止状态加速到稳定运行状态的过程。三相异步电动机除了运行于电动状态外,还时常运行于制动状态。 运行于电动状态时,Tem与n方向相同,Tem是驱动转矩,电动机从电网吸收电能并转换成机械能从轴上输出,其机械特性位于第一或第三象限。运行于制动状态时,Tem与n方向相反,Tem是制动转矩,电动机从轴上吸收机械能并转换成电能,该电能或消耗在电机内部,或反馈回电网,其机械特性位于第二或第四象限。 本篇将分别介绍笼型异步电动机和绕线转子异步电动机的起动方法,异步电动机的能耗制动、反接制动和回馈制动方法。 1.三相笼型异步电动机的起动 笼型异步电动机的起动方法有两种:直接起动和降压起动。下面分别进行介绍。 1.1 直接起动 直接起动也称全压起动。起动时,电动机定子绕组直接接入额定电压的电网上。这是一种最简单的起动方法,不需要复杂的起动设备,但是,它的起动性能恰好与所要求的相反。即: 1.1.1 起动电流Ist大 对于普通笼型异步电动机,起动电流倍数kI=Ist/IN=4~7。起动电流大的原因是:起动时,n=0,s=1,转子电动势很大,所以转子电流很大,根据磁动势平衡关系,定子电流也必然很大。 1.1.2 起动转矩Tst不大

三相异步电动机启动方式

三相异步电机起动方式是? 1、直接起动,电机直接接额定电压起动。 2、降压起动:(1)定子串电抗降压起动 (2)星形-三角形启动器起动 (3)软起动器起动 (4)用自耦变压器起动 这几种降压起动方式根据什么条件选择?它们的优缺点是什么? 三相异步电机降压起动方式选择比较: (1)实行降压起动的目的是为了减小线路的浪涌,保障变压器正常供电。电机直接启动它的启动电流是额定电流的7倍。 (2)星-三角降压起动:启动电流是额定电流的2.3倍。但星三角启动的力距较小,只能轻负载的电机可以启动。一般叫重负启动荷设备不能用。星三角启动造价轻、体积小、操作方便。 (3)软起动:软启动是,由变频器无级变速启动,一般用于须要调速的设备上,而单一为启动电机的基本不用。造价最大、使用方便、运行平稳。 (4)自耦变压器降压起动:自耦变压启动由于它可以按要求调整启动电流,所以它的启动力距比较大,适合重负载启动,或大型机械设备。它的体积大、造价也大、操作麻烦。 三相异步电动机的七种调速方式(一) 三相异步电动机转速公式为:n=60f/p(1-s) 从上式可见,改变供电频率f、电动机的极对数p及转差率s均可达到改变转速的目的。从调速的本质来看,不同的调速方式无非是改变交流电动机的同步转速或不改变同步转速两种。 一、变极对数调速方法 这种调速方法是用改变定子绕组的接线方式来改变笼型电动机定子极对数达到调速 目的,特点如下: 具有较硬的机械特性,稳定性良好; 无转差损耗,效率高; 接线简单、控制方便、价格低; 有级调速,级差较大,不能获得平滑调速;可以与调压调速、电磁转差离合器配合使用,获得较高效率的平滑调速特性。 本方法适用于不需要无级调速的生产机械,如金属切削机床、升降机、起重设备、风机、水泵等。 二、变频调速方法 变频调速是改变电动机定子电源的频率,从而改变其同步转速的调速方法。变频调速系统主要设备是提供变频电源的变频器,变频器可分成交流-直流-交流变频器和交流-交流变频器两大类,目前国内大都使用交-直-交变频器。其特点:

三相异步电动机的启动_New

三相异步电动机的启动

————————————————————————————————作者:————————————————————————————————日期:

三相异步电动机的启动 异步电动机启动时的要求: 1、电动机有足够大的启动转矩。 2、一定大小启动转矩前提下,启动电流越小越好。 3、启动所需设备简单,操作方便。 4、启动过程中功率损耗越小越好。 一、鼠笼式异步电动机的启动 1、直接启动 即启动时加在电动机定子绕组上的电压为额定电压。三相异步电动机直接启动的条件(满足一条即可)

1、容量在7.5KW以下的电动机均可采用。 2、电动机在启动瞬间造成的电网电压降不大于电源电压正常值的10%,对于不常启动的电动机可放宽到15%。 3、可用经验公式粗估电动机是否可直接启动 优点:所需启动设备简单,启动时间短,启动方式简单、可靠,所需成本低。 缺点:对电动机及电网有一定冲击 2、降压启动 在电动机启动时降低定子绕组上的电压,启动结束时加额定电压的启动方式。降压启动能起到降低电动机启动电流目的,但由于转矩与电压的平方成正比,因此降压启动时电动机的转矩减小较多,故只适用于空载或轻载启动。 A、自耦变压器(亦称补偿器)降压启动

(1)接线:自耦变压器的高压边投入电网,低压边接至电动机,有几个不同电压比的分接头供选择。 (2)特点:设自耦变压器的变比为K,原边电压为U1,副边电压U2= U1/K,副边电流I2(即通过电动机定子绕组的线电流)也按正比减小,又因为I1= I2/K,则电源供给电动机的启动电流为直接启动时1/K2倍。因电压降低了1/K倍,转矩降为1/K2倍。 自耦变压器副边有2~3组抽头,如二次电压分别为原边电压的80 %、60%、40%。 优点:可按允许的启动电流和所需的启动转矩来选择自耦变压器的不同抽头实现降压启动,定子绕组采用Y或Δ。 缺点:设备体积大,投资较贵。 B、星—三角(Y—Δ )降压启动 (1)接线:启动时先将定子接成星形,启动完再接成Δ。 (2)特点:启动电流、电源电流和启动转矩只有直接启动时1/3。

相关文档
最新文档