含偶氮苯共轭微孔聚合物的制备及其锂离子电池性能研究

含偶氮苯共轭微孔聚合物的制备及其锂离子电池性能研究
含偶氮苯共轭微孔聚合物的制备及其锂离子电池性能研究

https://www.360docs.net/doc/de3067773.html, 2018,V〇I.35N〇.05

Chemistry &Bioengineering

doi:10.3969".issn.1672 —5D25.2018.05.005

喻王李,陈俊,周文佩,等.含偶氮苯共扼微孔聚合物的制备及其锂离子电池性能研究化学与生物工程,2018,35(5) $0-25.

Y U W L,C H E N J,Z H0U W P,e t al. Preparation o f azobenzene-based conjugated m icroporous polymers and performance of lithium ion b a t t e r ie s']. Chemistry R Bioengineering,2018 #5(5): 20-25.

含偶氮苯共轭微孔聚合物的制备及其锂离子电池性能研究

喻王李$,陈俊$,周文佩$,汪锋

(1.武汉工程大学化工与制药学院,湖北武汉D30205 %.绿色化工过程教育部重点实验室,湖北武汉D30205)

摘要:以2,2\7,7^四频哪醇硼酸酯-9,9^螺二芴、1,4-苯二硼酸和4,4-二溴偶氮苯为聚合物中间体,采用钯催化的Suzuki-M iyaura偶联反应制备了2种含偶氮苯结构的共扼微孔聚合物A z o-S B F和A z o-P H,对聚合物的结构进行了

表征,并研究了调节构筑单元后共扼微孔聚合物作为正极材料的聚合物的锂离子电池性能。结果表明,2种聚合物A zo-

P H和A z o-S B F的B E T比表面积分别为113 m2+g 1和446 m2+g 1,热力学分解温度均超过了400 °C ; 100 m A+g 1

的电流密度下对聚合物锂离子电池充放电特性测试表明,相比A z o-P H,A z o-S B F电极展现出10. 226 m A+h +g 1的相

始充电比容量和稳健的循琢稳定性,800次充放电循W后,A z o-S B F仍然展现出9. 333 m A+h +g 1的放电比容量。

关键词:偶氮苯;共扼微孔聚合物%里离子电池;正极材料

中图分类号:0631. 2 文献标识码:A文章编号!672-5425 (2018)05-0020-06

Preparation of Azobenzene-Based Conjugated Microporous Polymers

and Performance of Lithium Ion Battery

YU Wang-l t,CHENJun$,ZHOU Wen-pei1,WANG Feng,2*

(1. School o f Chemical Engineering and Pharmacy ^'Wuhan Institute o f Technology ^'Wuhan430205 ?China $

2. Key Laboratory fo r Green Chemical Engineering and Process o f Ministry o f Education 9Wuhan430205 ^China)

Abstract: We prepared tw o kinds of azobenzene-based conjugated m icroporous polym ers(Azo-S B F,Azo-

P H)by palladium-catalyzed S uzuki-M iyaura coupling condensation reaction of 2,2/,7,7/-te tra(pinacol)borate-9,9/-sp iro b iflu o re n e,1,4-phenyldiboronic acid,and 4,4/-dibromoazobenzene,characterized th e ir stru c tu re s,and investigated the perform ance o f lith iu m ion b attery after adjusting the b uilding u n it.The B E T specific surface areas of A zo-P H and Azo-SBF are113 m2?g_1and446 m2?dynamic decom position tem peratures are a ll above 400 https://www.360docs.net/doc/de3067773.html,pared w ith A zo-P H,Azo-SBF electrode showed an im proved in itia l specific charge capacity of10. 226 m A+h +g_1and rela tive ly stable cycling s ta b ility at cur-ren t density of 100 m A ?g_1.The Azo-SBF electrode s till exhibits a specific discharge capacity of 9.333 m A ?h +g—1after 800 charge-discharge cycles.

Keyword s:azobenzene;conjugated m icroporous polym er;lith iu m ion battery;cathode m aterial

锂离子电池是当下性能最好的便携式能源,目前 命、电荷容量、充放电效率等性能稳定良好,但同时也

商业化的锂离子电池正极多采用L iF e P04、L iC〇02、存在矿物资源开采能耗大、正极材料比容量提升空间

L iN i02、L iM n204等无机锂盐材料,这些材料循环寿有限、过充会与电解液剧烈反应放热等不利因素,制约

基金项目:国家自然科学基金项目(1103111),教育部新世纪优秀人才支持计划项目(N C E T-12-0714)

收稿日期!018-01-31

作者简介:喻王李(1993 — ),男,湖北天门人,硕士研究生,研究方向:锂离子电池电极材料,E-m ail:p sw lyu@163. c o m;通讯作者:汪锋,教授,博士生导师,E-m ail:p s fw a n g@w it.e d https://www.360docs.net/doc/de3067773.html,。

叠片式聚合物锂离子电池设计规范

一、叠片式聚合物锂离子电池设计规范 1. 设计容量 为保证电池设计的可靠性和使用寿命,根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.03~1.10。 2. 极片尺寸设计 根据所要设计电池的尺寸,确定单个极片的长度、宽度。 极片长度Lp: Lp = 电池长度-A-B (2) 极片宽度Wp: Wp = 电池宽度-C (3) 包尾极片的长度Lp′: Lp′= 2Lp+ T'-1.0 (4) 包尾极片的宽度Wp′: Wp′= Wp-0.5 (5) 其中: A —系数,取值由电池的厚度T决定,当 (1)T≤3mm时,对于常规电芯A一般取值4.5mm,大电芯一般取值4.8mm; (2) 3mm<T≤4mm时,对于常规电芯A一般取值4.8mm,大电芯一般取值5.0mm; (3) 4mm<T≤5mm时,对于常规电芯A一般取值5.0mm,大电芯一般取值5.2~6.0mm; (4) 5mm<T≤6mm时,对于常规电芯A一般取值5.2mm, 大电芯一般取值5.4~6.0mm。

B —间隙系数,一般取值范围为3.6~4.0mm; C —取值范围一般为2.5~2.6mm(适用于双折边); T'—电芯的理论叠片厚度,T'的确定见6.1节. 图1.双面极片、单面正极包尾极片示意图 3. 极片数、面密度的确定: 确定极片的数量N,并根据电池的设计容量来确定电极的面密度,电池的设计容量一般由正极容量决定,负极容量过剩。在进行理论计算时,一般正极活性物质的质量比容量取140mAh/g,负极活性物质的质量比容量取300mAh/g。 N =(T-0.2)/0.35±1(6) 注:计算时N取整,并根据面密度的值来调整N。 S 极片 = Lp×Wp(7) C 设 = C 正比 ×S 极片 ×N×ρ 正 ×η 正 (8) C 负 = C 设 ×υ(9) = C 负比×S 极片 ×N×ρ 负 ×η 负 (10) 其中: S 极片 —单个极片的面积; C 正比 —正极活性物质的质量比容量,一般取值140mAh/g; η正—正极活性物质的百分含量; ρ正—正极极片的双面面密度(g/m2); C 负 —负极的设计容量; υ—负极容量过剩系数,一般常规电池取值1.00~1.06;DVD电池以及容量大于2000mAh的取值1.05~1.12; C 负比 —负极活性物质的质量比容量,一般取值300mAh/g;

聚合物锂离子电池使用操作说明

聚合物锂离子电池使用操作说明 尊敬的客户: 请仔细阅读并遵照以下注意事项正确使用和操作本公司产品,不正确的使用和操作方法会降低电池的性能,并可能导致电池发热、气胀、破裂、冒烟或者着火等。 1.电池操作注意事项 1)铝塑膜包装材料 1.1由于电芯外包材料铝塑膜容易受尖锐物刺破,必须小心操作。 1.2禁止用尖锐部件碰撞或刮擦电池表面。 1.3安装位置与电芯接触面不可以有尖角,凸起。 1.4避免导电体(包括极耳,引线,电子元件等)与电芯铝塑膜的断口接触。 2)极耳 电池极耳的机械强度并非十分坚固,弯折容易断裂,尤其是正极耳,禁止多次弯折极耳。 3)折边 折边已在电池生产过程中完成,不能随意翻折,随意翻折电芯的折头尤其容易损伤电池,禁止打开或破坏电池的折边和折头。 4)机械 4.1 禁止用硬物敲打、用力踩踏或其它方式对电池进行撞击。 4.2禁止坠落,抛掷或者随意弯折电池。 5)短路 5.1短路会导致电芯严重损坏,任何时候禁止短路电芯。 5.2禁止正负极耳直接接触或同时与金属物体接触。 5.3禁止用金属导线将电池正负极直接相连。 6)保护板焊接 6.1使用小于100W恒温烙铁在极耳焊锡,温度控制在350℃以下。 6.2烙铁头在极耳上连续停留的时间不能超过3秒,焊接次数不能连续超过3次。 6.3禁止电烙铁头接触电池表面。 6.4焊接位置距离极耳根部1厘米以上,若达不到此要求则不允许连续焊接。 6.5电芯极耳最好通过导线与保护板相连。 6.6如果镍片表面不干净,焊接时先用刮片把镍片表面刮干净,然后上锡,再焊了、导线或保护板 6.7 必须在极耳冷却后才能再进行二次焊接。 2电池使用注意事项 1)充电 1.1充电时,充电电流电压及充电温度不得超过规定的标准如果超过定值可能会对电芯的充放电性能, 机械性能及安全性能造成破坏,进而可能导致电池发热、气鼓及泄漏甚至起火。 1.2充电电压:充电电压不得超过本产品规格书中规定的充电电压4.20±0.05V 1.3充电电流:充电电流不得超过本产品规格书中规定的最大充电电流。 1.4充电温度:充电时必须在本产品规格书中规定的温度范围内充电。 1.5禁止反向充电:正确连接电池的正负极,严禁反向充电,若电池正负极接反,将无法对电芯进行充 电。同时。反向充电会降低电芯的充放电性能,安全性,并会导致发热、泄漏。

聚合物电芯和锂电芯区别

聚合物电池和锂电池区别 18650锂离子电池:主要有镍氢电池、锂离子电池、磷酸铁锂 聚合物电池:以钴酸锂材料为正极,碳材料为负极,电解质采用固态或凝胶有机导电膜组成,并采用铝塑膜做外包装的最新一代的可充电锂离子电池 聚合物是液态锂电池的更新换代产品,不仅具有液态锂离子电池存在的爆炸的安全隐患,具有更高的能量密度;同时外形更灵活,方便,重量轻巧;产品性能均达到或超过液态锂离子的技术指标,更具有安全性,受到国内外电子厂商及设计公司的青睐。 1.安全性能好 聚合物锂电池在结构上采用铝塑软包装,有别于也爱电芯的金属外壳,一旦发生安全隐患,液态电芯容易爆炸,而聚合物电芯最多只会气胀。 2.厚度小,能做的更薄 普通液态锂电池采用先定制外壳,后塞正负极材料的方法,厚度做到3.6mm以下,存在技术瓶颈,聚合物电芯部存在这一问题,厚度可做到1mm以下,符合时下手机需求的方向。 3.重量轻 聚合物电池重量较同等容量规格的钢壳锂电池轻40%,较铝壳电池轻20%。 4.容量大 聚合物电池同等尺寸规格的钢壳电池容量高10-15%,较铝壳电池高5-10%,成为彩屏手机及彩信手机的首选,现在市面上新出的彩屏和彩屏手机也大多采用聚合物电芯 5.内阻小 聚合物电芯的内阻较一般液态电芯小,目前聚合物的电芯内阻甚至可做到35mΩ以下,极大的减低了电池的自耗电,延长手机的待机时间,完全可以达到与国际接轨水平这种支持大放电电流的聚合物锂电更是遥控模型的理想选择,成为最有希望替代镍氢电池的产品。 6.形状可定制 聚合物电池可根据客户的需求增加或减少电芯厚度,开发新的电芯型号,价格便宜,开模周期短,有的甚至可以根据手机形状量身定做,以充分利用电池外壳空间,提升电池容量。 7.放电特性佳 聚合物电池采用胶体电解质,相比液态电解质交替电解质具有平稳的放电性和更高的放电平台。 8.保护板设计简单

发光性液晶共轭聚合物的研究进展[1]

发光性液晶共轭聚合物的研究进展 王国杰 李 敏3 陈欣方 (吉林大学材料科学系 长春 130023) 摘 要 综述了可用做发光材料的液晶共轭聚合物(LCCPs)的种类及其制备,介绍了LCCPs在制备发光器件中的取向方法,并对其光学性能进行了评述。 关键词 液晶聚合物 共轭聚合物 发光 Abstract The development of liquid crystalline conjugated polymers(LCCPs)used as light emitting materials is reviewed.The synthesis and properties of electroluminescent LCCPs,and various techniques for orienting LCCPs are presented. K ey w ords Liquid crystalline polymers,C onjugated polymers,Luminescence 1990年Burroughes等[1]在Nature上首次报道了聚合物半导体聚苯撑乙烯(PPV)的电致发光性。随后在1991年得到了Heeger等的进一步确证[2],从此,发光聚合物的研究在世界范围内广泛开展起来。相对于无机和有机小分子发光材料,共轭聚合物发光材料具有以下特点[3]:有良好的成膜性及加工性、可通过旋涂、浇铸等方法制成大面积薄膜;共轭聚合物有优良的粘附性、机械强度及稳定性;其电子结构、发光颜色等通过化学结构的改变和修饰可进行调节;虽然,聚合物自身的电导率很低,但作发光层的膜非常薄(100nm),因此即使驱动电压很低,加在聚合物膜上的电场强度仍足以产生器件发光所需要的电流密度,从而消除了掺杂带来的结构不稳定性。 液晶共轭聚合物(LCCP)是近几年发展起来的一类新型的功能高分子[4~14],它兼有液晶聚合物和共轭聚合物的双重特性,集液晶性和发光性于一身。与各向同性发光聚合物相比,LCCP具有独特的长程有序性、光学各向异性。因而,可用于制备具有偏振发光性和发光视角可控的新型发光器件,并且其分子排列的各向异性可导致材料电荷传输的各向异性。具有取向的发光聚合物发射的偏振光用做液晶显示(LC D)的背照明,可明显提高LC D的亮度、对比度、发光效率和视角等。LCCP 在信息显示方面的应用前景和可观的实用价值,已经引起了科学界和工业界极大兴趣。本文将综述这一类新型功能高分子的研究进展。 1 液晶共轭聚合物的合成与性质 按照聚合物主链的不同,目前文献报道的液晶共轭聚合物可分为聚苯撑乙烯型、聚苯型、聚噻吩型、共聚噻吩型等四类。图1给出了文献报道的液晶共轭聚合物的分子结构。 1.1 聚苯撑乙烯型 二卤代苯与二烯苯通过Heck偶合反应可制备2,52二烷氧基聚苯撑乙烯[4](图1a)。反式聚苯撑乙烯衍生物主链刚硬,侧链烷氧基柔韧,因而,在一定条件下呈现出向列液晶相。此类LCCP的 王国杰 男,28岁,博士,从事高分子化学与物理研究。 3联系人 国家自然科学基金资助项目(29974013) 2000201209收稿,2000205230修回

共轭聚合物光电材料设计

材料化学专业科研训练 题目:共轭聚合物光电材料设计班级:材化12-3 姓名:丁泽 指导教师:杨照地 哈尔滨理工大学化学与环境工程学院 2014年12月31日

摘要 共轭聚合物是由大量重复基元通过化学键连接的一维体系,具有独特的光、电、电化学等性质,由于共轭聚合物结构( 链段、构象、聚集态) 的复杂性,即使在非常精细的合成条件下,少量结构缺陷的形成也是难免的,本文在前人的基础上设计了在PPV共轭聚合物主链及侧链上添加各种基团或原子后的改性情况。共轭聚合物,特别在其固态状态下激发能量能够有效传递,使得少量缺陷的影响被放大,对其光电性质产生巨大影响。因此对共轭聚合物结构缺陷的研究,包括缺陷成因与控制、缺陷密度的分析、缺陷的分子结构与电子结构特征等,对于高品质材料的研发具有重要的意义。 关键词共轭聚合物,PPV,光电材料,合成改性,修饰改性

目录 摘要...................................................................................................................... I 第1章绪论.. (1) 1.1 共轭聚合物概述 (1) 1.1.1 共轭聚合物的分类 (4) 第2章PPV类共轭聚合物 (5) 2.1 PPV类共轭聚合物简介 (5) 2.2 共轭聚合物的缺陷 (6) 2.2.1 PPV 的四面体缺陷 (8) 2.2.2 PPV的氧化缺陷 (9) 2.2.3 顺式缺陷 (10) 第3章PPV共轭聚合物的改性研究 (13) 3.1 PPV类聚合物的结构修饰 (13) 3.1.1 侧链修饰 (14) 3.1.2 主链修饰 (18) 总结 (20) 参考文献 (21)

共轭聚合物的电学性质

共轭聚合物的电学性质 姓名:周宇班级:10级高分子材料与工程1班学号:201015014021 摘要:共轭导电聚合物是一种极有应用前景的功能高分子材料,简单了解共轭导电聚合 物的导电特性、应用以及共轭导电聚合物在制作二次电池、新型电子器件等方面具有独特的特性和优点。 关键词:共轭聚合物电学性质应用及发展 前言 导电高分子的研究和应用是近年来高分子科学最重要的成就之一。1974年日本白川英树等偶然发现一种制备聚乙炔自支撑膜的方法,得到聚乙炔薄膜不仅力学性能优良,且有明亮金属光泽。而后MacDiarmid、Hedger、白川英树等合作发现聚乙炔膜经过AsF5、I2等掺杂后电导率提高13个数量级,达到103S?cm-1,成为导电材料。这一结果突破了传统的认为高分子材料只是良好绝缘体的认识,引起广泛关注。 由于共轭导电聚合物同时具有聚合物、无机半导体和金属导体的特性,因而具有巨大的潜在的商业应用价值。在这里就聚合物的导电性及共轭聚合物材料的特性及其应用作一扼要介绍。 正文 一.聚合物的电学性质 高分子材料的电学性能是指在外加电场作用下材料所表现出来的介电性能、导电性能、电击穿性质以及与其他材料接触、摩擦时所引起的表面静电性质等。 (一)聚合物的介电性能 聚合物在外电场作用下贮存和损耗电能的性质称介电性,这是由于聚合物分子在电场作 tg表示. 用下发生极化引起的,通常用介电系数ε和介电损耗 1.介电损耗 电介质在交变电场中极化时,会因极化方向的变化而损耗部分能量和发热,称介电损耗。介电损耗产生的原因有两方面:一为电导损耗,是指电介质所含的微量导电载流子在电场作用下流动时,因克服电阻所消耗的电能;二为极化损耗,这是由于分子偶极子的取向极化造成的.对非极性聚合物而言,电导损耗可能是主要的.对极性聚合物的介电损耗而言,其主要部分为

卷绕式聚合物锂离子电池设计规范

一、卷绕式聚合物锂离子电池设计规范 1. 设计容量 根据客户需要的最小容量来确定设计容量。 设计容量(mAh)= 要求的最小容量×设计系数(1) 设计系数一般取1.05~1.15。 2.极片方式 正极负极正极负极 1.竖卷式 2.横卷式 根据电池的宽度确定极片的设计方式,一般宽度<20mm的电池采用第一种竖卷的设计方式;宽度≥20mm的电池采用第二种横卷的设计方式。 3.卷针的确定 卷针的宽度Wj由以下公式确定: Wj = W-T-λ(2) 其中: W —电池的宽度; T —电池的厚度; λ—卷芯与包装袋在宽度方向的空隙差值,一般取2~3mm。 卷针厚度Tj由卷针的宽度决定,具体见表1 表1.卷针的宽度 4. 卷芯尺寸的确定 4.1 卷芯厚度 卷芯的厚度T'是指正负极片卷绕成的电芯卡紧后的厚度(不包括包装膜的厚度),一般是根据实际电池的厚度确定的,有以下关系: T' = T-Φ(3)

其中: T —电池的厚度; Φ—系数,一般取0.7~0.9mm,具体数值根据电池的厚度决定。 4.2 卷芯宽度 卷芯的宽度w'是极片卷绕后的电芯的宽度,由以下公式确定: w' = w j+T j+T'+δ(4) 其中: w j—卷针的宽度; T j —卷针的厚度; T'—卷芯的厚度; δ—系数,一般取0.5~1。 5.极片的设计 5.1 极片宽度的确定: 极片的宽度Wa根据卷绕的方式不同分别由以下公式确定(正、负极极片的宽度相同): 横卷:Wa = L-ω(5) 其中: L —电池的长度; ω—系数,根据电池的厚度决定,一般≤3mm的电池取值6.5~7.5mm;>3mm 的电池取值7.0~7.5mm。 竖卷:Wa = L-φ(6) 其中: L —电池的长度; ω—系数,一般取值2.5~3.0mm。

【CN109942570A】一种基于吩噻嗪的共轭微孔聚合物、制备方法和高效催化应用【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910179842.0 (22)申请日 2019.03.11 (71)申请人 中南大学 地址 410083 湖南省长沙市岳麓区麓山南 路932号 (72)发明人 潘春跃 何训名 喻桂朋  (74)专利代理机构 长沙永星专利商标事务所 (普通合伙) 43001 代理人 何方 (51)Int.Cl. C07D 417/14(2006.01) B01J 31/02(2006.01) C07D 209/30(2006.01) B01J 35/10(2006.01) (54)发明名称 一种基于吩噻嗪的共轭微孔聚合物、制备方 法和高效催化应用 (57)摘要 本发明公开了一种基于吩噻嗪的共轭微孔 聚合物、制备方法和高效催化应用,属于光催化 功能材料制备技术领域,本发明所述基于咔唑- 吩噻嗪共轭微孔聚合物,具有高比表面积,优异 的热稳定性及化学稳定性和良好的紫外吸收性 能,具有良好的光催化活性,在光照有氧条件下, 能够高效地催化吲哚的有氧硒化,转化率大于 99%,而且作为异相催化剂,便于分离和回收,能 实现循环使用,基于吩噻嗪的共轭微孔聚合物拓 宽了CMPs在光催化中的应用,具有重要的应用价 值和应用前景。权利要求书2页 说明书11页 附图3页CN 109942570 A 2019.06.28 C N 109942570 A

1.一种基于吩噻嗪的共轭微孔聚合物,其特征在于, 具有式I结构:其中, 单元具有如下结构式中任意一种: 式1-1,式1-2,式1-3分别命名为CMP -CSU8,CMP -CSU8-2和CMP -CSU8-3。 2.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物为粉末状或颗粒状。 3.根据权利要求1所述基于吩噻嗪的共轭微孔聚合物,其特征在于,所述共轭微孔聚合物的平均孔径范围是0.5~50nm,更优选为1~6nm。 4.根据权利要求1~3中任一项所述基于吩噻嗪的共轭微孔聚合物的制备方法,其特征在于,包括以下步骤:(1)制备单元的三溴代物;(2)制备三咔唑吩噻嗪单体: 单元的三溴代物与咔唑以1:3~1:6的物质的量比例加入,在CuI和1,10-菲啰啉的催化下发生偶联反应,即得; (3)将步骤(2)所得三咔唑吩噻嗪单体溶于有机溶剂,加入到有氧化剂的有机溶液中混合进行反应,然后过滤,洗涤,干燥,得到所述基于吩噻嗪的共轭微孔聚合物材料。 权 利 要 求 书1/2页2CN 109942570 A

聚合物锂离子电池测试标准

1.0范围scope 本规范规定了聚合物锂离子电池定义、要求、测验方法。 本规范适用于聚合物锂离子电池(聚合物软包/固态/二次圆柱/一次圆柱),不适用于动力电池。 2.0 3.0引用标准reference standard 下列是本文引用的标准。执行本规范时,所示版本均应为有效版本。使用本规范的各部门应注意下列引用标准是否是最新版本。 GB/T2900.11-1988蓄电池名词术语 GB/T18287-2000蜂窝电话用锂离子电池总规范 UL 1642 锂电池安全测试标准 4.0 定义definition 4.1充电限制电压--电池由恒流充电转入恒压充电时的电压值。 4.2标称容量—指电池在环境温度为25±2℃的条件下,以5h率放电至终止电压时所应提供的电量,用C5表示, 单位为Ah(安培小时)或mAh(毫安小时)。 4.3恢复容量—在规定的温度、时间下贮存一段时间,电池放电后进行充电,并再次放电的容量。 4.4标称电压—用以标识电池电压的适宜的近似值。 4.5终止电压—规定放电终止时电池的负载电压。 4.6漏液—可见液体电解液的漏出。 4.7鼓胀—电池内部压力增加,内有气体,厚度(直径)膨胀率108%以上。 4.8破裂—由于内部外部因素引起电池外壳的机械变形,导致内部物质暴露或溢出,但没有喷出。 4.9起火—电池有可见火焰或冒黑烟等。 4.10爆炸—电池的外壳猛烈破裂导致主要成分抛射出来。 4.11聚合物软包—外包装膜为铝塑膜可循环充放电使用的电池。 4.12聚合物固态—外包装膜为铝塑膜,内部极片与隔膜混为一体可循环充放电使用的电池。 4.13聚合物二次圆柱—可循环充放电使用的聚合物圆柱电池。 4.14聚合物一次圆柱—不可再次充放电使用聚合物圆柱电池。 5.0测试条件和要求test conditions and requirement

聚合物锂离子电池技术

聚合物锂离子电池技术 摘要:本文阐述了不得聚合物锂离子电池的结构特点,从正极材料、电解质、负极材料等几方面综述了聚合物锂离子电池的技引言 能源和环境是人类进入21世纪必须面对的两个严峻问题,开发新能源和清洁可再生能源是今后世界经济中最具决定性影响的技术领域之一。锂离子电池自问世以来发展极快,这是因为它正好满足了移动通讯和笔记本电脑迅猛发展对电源小型化、轻量化、长工作时间、长寿命、无记忆效应和对环境无公害等的要求。而聚合物固态电解质代替液体电解质来制造聚合物锂离子电池,则是锂离子电池的一个重大进步,其主要优点是具有高的可靠性和加工性,可以做成全塑结构,从而使制造超薄及自由度大的电池的愿望得以实现。 1 锂离子电池的结构特点 锂离子电池的正负极活性物质均为嵌入化合物,充电时Li+从正极脱出,经过电解质插入到负极;放电时则相反,电池的充放电过程实际上是Li+在两个电极之间来回嵌入和脱出的过程,故这种电池又称为“摇椅电池”(Rocking Chair Batteries,缩写为RCB)。其反应示意图及基本反应式如下所示:

2. 聚合物锂离子电池技术 2.1 聚合物锂离子电池的性能特点 聚合物锂离子电池是指电解质使用固态聚合物电解质(SPE)的锂离子电池。电池由正极集流体、正极膜、聚合物电解质膜、负极膜、负极集流体紧压复合成型,外包封铝塑复合薄膜,并将其边缘热熔封合,得到聚合物锂离子电池。由于电解质膜是固态,不存在漏液问题,在电池设计上自由度较大,可根据需要进行串并联或采用双极结构。 聚合物锂离子电池具有以下特点:①塑形灵活性;②更高的质量比能量(3倍于MH-Ni电池);③电化学稳定窗口宽,可达5V;④完美的安全可靠性;⑤更长循环寿命,容量损失少;⑥体积利用率高;⑦广泛的应用领域。

水溶性荧光共轭聚合物MPS_PPV的聚合新方法及其荧光波长调控研究

2009年第67卷化学学报V ol. 67, 2009第24期, 2827~2832 ACTA CHIMICA SINICA No. 24, 2827~2832 zhkhe@https://www.360docs.net/doc/de3067773.html, * E-mail: Received April 27, 2009; revised July 29, 2009; accepted August 21, 2009. 国家自然科学基金(Nos. 90717111, 20621502)资助项目.

2828化学学报V ol. 67, 2009 Scheme 1 但是这种方法所需步骤长[图式2(a)], 合成总产率低, 聚合过程操作复杂、所需时间长[见图式2(c)]. Bazan课题组[17]采用1,4-丁基磺酰内酯为原料, 大大缩短了反应步骤并提高了合成产率[图式2(b)]. 但是迄今为止, 在聚合方式上仍然没有大的改进. 过去几年, 我们一直在从事水溶性荧光共轭聚合物传感器研究[3,7,15,18,19], 发现聚合物的聚合方法及其性能对传感器的影响尤为重要, 因此如何实现单体简单快速的聚合具有很重要的意义. 作者以4-甲氧基苯酚和1,3-丙基磺酰内酯为反应原料, 提出了一种新的单体聚合方法[图式2(d)], 使聚合步骤得到了简化, 缩短了反应时间; 同时, 我们发现改变聚合反应溶液中NaOH的浓度, MPS-PPV的链长有所改变, 导致其紫外吸收和荧光发射峰发生变化. 利用元素分析, IR, 1H NMR和动态光散射对0.5 mol/L NaOH乙醇溶液中生成的聚合物进行表征, 所得结果与文献[13]的结果基本相符, 证实目标产物为MPS-PPV. 研究了聚合物与过氧化氢之间的作用, 结果发现, 过氧化氢可使聚合物原有发射峰(508 nm)蓝移, 并在472 nm处出现新的荧光峰, 进一步验证了聚合物的链长与其荧光发射波长的关系. 同时结合聚合物峰形和强度的变化可以实现过氧化氢选择性的检测, 优于单纯基于聚合物荧光猝灭的传感模式, 此研究无疑为基于荧光聚合物的新型生物化学传感器研制提供了新的思路. 1 实验部分 1.1 仪器和试剂 荧光激发和发射光谱使用Perkin Elmer LS55荧光仪测试; 核磁共振于Variant Mercury UX-300核磁共振仪测定; 红外光谱在Nicolet Magna-IR spectrometer 550红外光谱仪上测定; 紫外光谱使用TU-1901紫外光谱仪测试; 元素分析数据在Perkin-Elmer2400元素分析仪上获得; 分子量在ALV/DLS/SLS-5000动态光散射仪上测定; pH用PHS-3C精密pH计调节. 4-甲氧基苯酚、1,3-丙基磺酰内酯、四氢噻吩、三羟甲基氨基甲烷(Tris)均购于Aldrich公司; 二氧杂环己烷购于百灵威化学技术公司; 无水乙醇、乙醚、氯仿、丙酮、DMF (N,N-二甲基甲酰胺)、二氯亚砜、多聚甲醛、苯、无水甲醇、浓盐酸、浓硫酸、无水硫酸镁、过氧化氢均为国药分析纯试剂, 所用MPS-PPV配成1× 10-4 mol/L(以重复单元的浓度表示, 以下相同); Tris缓冲溶液浓度为20 mmol/L, 用浓盐酸调节至所需pH; 过氧化氢现配; 实验用水为超纯水. 1.2 荧光共轭聚合物MPS-PPV的合成 根据文献以4-甲氧基苯酚和1,3-丙基磺酰内酯为起始原料, 通过四步反应和一步聚合得到MPS-PPV, 具体 图式2 MPS-PPV的合成路线图Scheme 2Synthetic route of the MPS-PPV

共轭聚合物合成方法的研究

80 2003年增刊 化学与生物工程 ————一———————一—_—h—一—————●—___-一 共轭聚合物合成方法的研究 王维,张爱清 (中南民族大学化学与生命科学学院,湖北武汉4311074) 摘要:综连了聚芳撑(PPP、PPY、PqP)、聚对苯撑乙烧(PPV)、聚苯胺(PAn)、聚腈(PAZ)几种共轭聚合物的合成 方法,井指出了甚轭聚各物应用中存在问题厦夸后的合成方向。 关键词:典轭聚合物;聚对苯撑}聚吡咯}聚噻吩;聚对苹撑乙烧;聚苯胺;聚腈;合成中图分类号:0631.23 文献标识码:A 文章编号:1672—5425(20(13)增刊一0080一07 聚合物常被认为是绝缘体,但共轭聚合物因其结构特征而具有优良的光电学性能。自1977年白川英 树(K.Shiakawa)和MacDiarmid等人首次用AsF5或 12对聚乙炔(Polyaeetylene,PA)进行P型掺杂,获得 103 s?m1以上的高电导率以来,人们对共轭聚合物 的结构和性能有了新的认识。1990年剑桥大学的Burronghes等用聚对苯撑乙炔(PPV)制备了电致发光器件,引起了世人的关注。共轭聚台物的研究在世 刘丽,路庆华,印杰,朱子康,王宗光.溶胶一凝胶{击制备聚酰亚胺/二氧化钛赙光杂化材料[J].高等学校化学学报,2001.22 (11),1943—1944. JPhotopolSdTechno】,1992-298. KerwlnR E,GodrickMR.Thermally stablephotorejist p。ly— mer[J]PdymEng Sci,1971,8(5)l426—429.YochN.HiramotoH.New photosensitivehigh temperaturepol— ymers forelectric applications[J].JMaeromol Sei Chem,1984, A211I3-14):1641—1663. 攘豪情,李悦生t丁盂贤.新的离子型光敏秉酡亚胺U3.应用化 学,1998.1 8(2).J00—105. WilsonD,Santa Ann.StenzenbergerH D.et a1.Polyimide[M]. Puhllshed r,theUSAChapman andHallNew York.1990:119. Hasegawn M.KoehiM,Mita1,eta1.Moleeulafaggragadonand fluorescencespectraofaromatic I)0lyimides[J].EurPolymJ, 1989,25:349‘354 RubnerR.Kieeberg W,KuhnE.German Patent2 437 348, 1994 界范围内乍l益广泛的开展起来,已逐渐成为一门新型的多学科交叉的研究领域。近些年研究主要集中在聚对苯撑(PPP)、聚吡咯(PPY)、聚噻吩(PTP)、聚苯胺(PAn)和聚苯撑乙炔(PPV),这是因为它们原料易得.合成方法简便、聚合物性能优良等优点,并显示出了广泛的应用前景。其应用领域主要包括:发光材料、非线性光学器件、充电电池、电容器、传感器、液晶材料等,国内外相关研究有不少文献报道[1“…,且部分应用已 [i9]柬普坤,李佐弗,李加深,玛戚,王强.主链古有机硅结构的光敏 聚酰亚胺的研究[J].功能高分子学报,1998.11(1):1998 f20]LinAA,VinodRS,et a1.MaeromoIeeules,1998,21:1165[213 ScaianoJ C.Ferrira J C N。Polym EngSci.1989,29(14);942 [zz3 Chiang wT.MeiwP.Tetrahedmn Letters,199Z,33‘511: 7869-7878. [23]ChiangWT,MeiWP.JApplyPolymSci,1993.50,2191—8195.[24]1wamotoM,KasaharaS?IrayamaK,ct日1.JpnJ Appl phys, 1991.30(2A):L218 [zsJ Jgargoa,MethodsMater,MleroeleetronTechaol(Proc hit. Syrup)。1982:81. [883JoChoi,e1.a1.Polym EngSci,1992.32(21)11632. [273KRCarter.eta1.PMSE,1995t72I 385. [683 E PCassidy,etal Po[ymNews.1989,14:392. 作者简介:扬志兰(1979一),士,硕士研宛生.研究方向:高分子 功能材料。 StudyofPhotosensitivePolyimide YANGZhHan,ZHANGAi-qing (College∥ChemistryandLi尼Science,SouthCentralUniversityforNationalities,Wuhan430074。Chinn) Abstract:Thepresentpaperreviewstheinvestigativeresearchofphotosensitivepolyimides.Thesyntheticmethods,propertiesandapplication arc discussedindetail.Beside,thedevelopmentaldirectionandappliedforegroundo{photosensitivepolyimides in microelectron are included. Keywords:photosensitive;polyimide;syntheticmethod;property;application;microelectron 圮玷钉 q 阳朝 叼 龃 ;  万方数据

水溶性共轭聚合物发光材料(精)

水溶性共轭聚合物发光材料 本论文的研究内容主要涉及共轭高分子发光材料领域。上世纪九十年代以来,共轭高分子发光材料的研究开始成为当今高分子科学热点研究领域之一。共轭高分子发光材料在高分子发光二极管方面的应用研究方兴未艾,水溶性共轭高分子发光材料特别是共轭聚电解质的研究又愈来愈引起人们的关注。本课题组长期从事共轭高分子发光材料的研究,在共轭聚电解质的研究方面也已经有一定的工作积累。除了采用传统的经典化学合成即利用共价键连接的合成方法得到水溶性共轭高分子之外,最近我们开始尝试采用共轭高分子非共价键自组装的方法来制备水溶性共轭高分子发光材料。这类材料主要是利用共轭聚合物和水溶性小分子或者高分子之间的非共价键相互作用而得到的,此类材料目前研究较少,但是当材料科学发展到今天,单一材料的性质已具有某种程度的可预测性时,通过分子层次的剪裁或者组装来实现材料应用上的需求将逐渐上升为研究主流。共轭高分子的分子或者聚集态结构及其性能特别是发光性能的关系始终是贯穿我们课题组学术研究的主线之一,结合本课题组与此相关的工作基础,本论文对水溶性共轭聚合物发光材料进行了系列研究,论文工作主要分为四个部分,分别简述如下:第一部分,合成了系列新型阳离子聚对苯乙烯撑类共轭聚电解质,并进行了系列表征;我们合成了系列胺功能化的苯取代PPV类共聚物P1\'— P4\',通过Wittig反应在主链上分别引入了噻吩、芴、烷氧化的苯以及苯取代的苯等组分,经过季胺化以后得到相应的阳离子发光聚合物。从FT-IR以及~1H NMR谱图分析得知,这些聚合物具有不同含量的顺式构型,其含量与PPV主链上 所引入的芳香基类型有关。它们的发光颜色可以通过在PPV共轭主链上引入具有不同光电性能的单元很方便的进行调控。P3和P3\'主链上含有芴以及大体积苯取代的苯单元,在中性聚合物以及季胺化聚合物中分别表现出最高的荧光量子效率。进一步的荧光猝灭行为研究表明,顺式构型含量较少的P4\'荧光表现出 完全猝灭,而顺式构型含量较多的P1\'-P3\'表现出不完全荧光猝灭。第二部分,在第一部分工作基础之上,我们系统研究了系列聚对苯乙烯撑类共轭聚电解质的荧光猝灭行为,发现包括顺反异构在内的分子结构因素是荧光猝灭行为最主要的影响因素。我们研究了具有不同含量顺反构型的系列阳离子型PPV类衍生物与Fe(CN)_6~(4-)之间的荧光猝灭行为。我们发现,采用Wittig反应所合成的顺式构型含量较多的PPV呈现线性下偏型Stern-Volmer曲线,即不完全荧光猝灭;而采用Gilch反应所得到的全反式构型的PPV的Stern-Volmer曲线则为线性上偏型,即完全荧光猝灭。通过对其荧光猝灭行为比较研究,我们发现荧光猝灭主要是通过电子转移而非能量转移而完成的。考虑到被包埋发色团的存在以及“作用范围”的影响,参考前人工作,我们引入了一个经过修正的Stern-Volmer方程,能很好的拟合顺式构型含量较多的PPV所呈现的线性下偏型Stern-Volmer曲线。此外,对比研究发现,分子链中大体积的苯取代基对荧光猝灭行为很可能存在直接的位阻效应,阻止了发色团与猝灭剂之间的静电相互作用,一定程度上影响了荧光猝灭;而在不存在大体积的苯取代基时,顺式构型的存在应该是产生这种不可接触发色团的主要因素。而链间聚集以及季胺化不完全等其它因素对荧光猝灭行为的影响则较小。由于在Wittig反应中分子侧链中的取代基对于最终的顺式构型含量具有较大影响,我们可以把这些聚合物特殊的荧光猝灭性质本质上归因于其分子链上取代基性质的不同(即分子结构的不同)。第三部分,基于上述结论,我们采用Gilch反应合成了一种侧链无大体积取代基的新型阳离子聚对

聚合物锂离子电池芯检验规范

聚合物锂离子电池芯检验规范 1目的 本标准规定了聚合物锂离子电芯的常规测试方法和要求,及质量评定程序;提供公司产品开发的依据,并在此基础上进行电芯的品质、安全性和风险性评价。 2适用范围 本规范规定了生产的聚合物锂离子常规电芯各项性能的测试方法、要求及质量评定程序。本规范仅在内部使用,对外标准以产品规格书为准。所有测试方法如引用标准,本公司按照本规定的标准进行测试,原则上参考引用标准。对于特定产品的开发参照本标准,作为评估风险的依据,但相关项目不作为最后判定依据。具有明确客户接受的规格书产品的检测,可以依规格书检测,相应的质量风险由相关人员承担。 3职责与权限 3.1检测中心负责本标准的制定和修订; 3.2检测中心负责本标准的执行和维护。 4定义: 4.1聚合物锂离子电芯 Polymer Lithium Ion Battery(PLIB) 指采用铝塑包装膜为外壳的叠层式或卷绕式锂离子电芯,指不具备有特殊的功能和要求的电芯简称聚合物锂离子常规电芯(包括高温电芯)。 4.2充电限制电压 Limited Charge Voltage 按规定,电芯由恒流充电转恒压充电时的电压值4.20V。 4.3放电截止电压 Cut-off Voltage 电芯终止放电时的电压3.00V。 4.4额定容量 Rated Capacity

指电芯在环境温度为20±5℃时,以5h时率放电至终止电压时所提供的容量,用C 5表示,单位Ah(安培小时)或mAh(毫安小时)。 4.5基准电流 Basic Current /1h.。 充放电电流必须以额定容量为基准,电流值用ItA的倍数表示,其中ItA=C h 4.6漏液:L eakage 指电芯或电池有可见的电解液溢出。 4.7破裂 Rupture 由于内部或外部的因素而引起的电芯外壳或电池壳体发生的机械损坏,导致内部物质暴露或溢出,但没有喷出。 4.8起火 Fire 电芯或电池实验过程有可见火焰。 4.9 爆炸 Explosion 电芯或电池的外壳猛烈破裂导致主要成分抛射出来。 4.10常规电芯容量初步分类定义:Definitions of Primary Sorting 小容量电芯:容量为300mAh以内的电芯。 普通容量电芯:容量在300 mAh -1800mAh之间的电芯。 大容量电芯:容量在1800mAh以上的电芯. 4.11循环寿命 Cycle Life 指电芯或电池在一定的充放电制度下,电池的容量衰减到某一规定值前所经历的循环次数。本公司规定电芯容量连续二次循环低于初始容量的80%,则认为电芯寿命终止。 4.12保持容量Capacity Retention 电芯经过相应实验后按标准要求进行放电,所释放出来的容量。

PPV共轭聚合物光电材料

P P V共轭聚合物光电材料 PPV共轭聚合物概述 随着社会的发展,显示技术目前已经成为无论是信息化还是人们日常生活都离不开的高科技领域。阴极射线管(CRT)、液晶显示(LCD)、无机LED、等离子体显示(PDP)和荧光管显示(VFD)等显示技术都在不断的被改进和完善,以适应社会和市场的要求。 有机薄膜电致发光(OLED)是近年来发展迅速并且具有巨大应用前景的新型平板显示技术,按材料的分子结构和化学性质可以分为有机小分子材料和聚合物光电材料,此两种材料各有优缺点。 有机小分子发光材料的优点是:材料易提纯、亮度高、发光效率高和易蒸镀成膜,缺点是热稳定性差且易结晶。 聚合物光电材料的优点是:具有良好的热稳定性、优异的成膜性和较好的机械强度,但材料合成复杂,提纯困难,难制成多层器件。其中聚对苯撑乙烯撑PPV [poly(1,4-phenylenevinylene)]以分子结构易于修饰、合成路线多、发光效率高、热稳定性好而成为最有发展前途的一类发光聚合物。 概括起来,有机电致发光显示器具有以下优点; (1)可实现红、绿、蓝多色显示; (2)具有面光源共同的特点,亮度达200cd/m3; (3)不需要背光源,可使器件小型化; (4)驱动电压较低(直流10V左右),节省能源; (5)器件厚度薄,附加电路简单,可用于超小型便携式显示装置;

(6)响应速度快,是液晶显示器(LCD)的1000倍; (7)器件的象元数为320个,显示精度超过液晶显示器的5倍; (8)可制作在柔软的衬底上,器件可弯曲、折叠。 PPV类高分子是典型的空穴传输型发光材料,空穴的传输速度远远大于电子。PPV类共扼高分子的发光是分子从基态被能量激发到激发态,再由激发态回到基态产生的辐射跃迁过程。由于聚合物具有偶数电子,基态时电子成对存在于各分子轨道,根据Pauli不相容原理,同一轨道上的两个电子自旋相反,所以分子中总的电子自旋为零(S),这个分子所处的电子能态为单重态(2S+1=0)。当分子中的一个电子吸收能量被激发时,通常它的自旋不变,则激发态是单重态;如果激发过程中电子发生自旋反转,则激发态为三重态(三重态的能量低于单重态)。当分子在电场(或光能)激发下被激发到激发单重态(S),经振动能级弛豫到最低激发单重态(S1),最后由S1回到基态So,此时产生荧光;或者经系间跨跃至最低激发三重态(Tl)最后产生Tl-So的电子跃迁,此时辐射出磷光。由于PPV类共扼高分子的EL发光光谱和PL发光光谱极其相似,表明二者具有相同的激发态,即主要通过单重态激发而发出荧光。[1] 图1-1 PPV共扼高分子的辐射跃迁过程

关于锂电池和锂聚合物电池的区别和他们正确的充电方法

关于锂电池和锂聚合物电池的区别及他们正确的充电方法 一、锂电池的种类: 以前市面上所使用的二次电池主要有镍氢(Ni-MH)和锂离子(Li-ion)两种类型。锂离子电池中已经量产的有液体锂离子电池(LiB)和聚合物锂离子电池(LiP)两种。所以在许多情况下,电池上标注了Li-ion的,一定是锂离子电池。但不一定就是液体锂离子 电池,也有可能是聚合物锂离子电池。 锂离子电池是锂电池的改进型产品。锂电池很早以前就有了,但锂是一种高度活跃(还记得它在元素周期表中的位置吗?)的金属,它使用时不太安全,经常会在充电时出现燃烧、爆裂的情况,后来就有了改进型的锂离子电池,加入了能抑制锂元素活跃的成份(比如钴、锰等等)从而使锂电真正达到了安全、高效、方便,而老的锂电池也随之基本上淘汰了。至于如何区分它们,从电池的标识上就能识别,锂电池为Li、锂离子电池为Li-ion。现在,笔记本和手机使用的所谓“锂电池”,其实都是锂离子电池。 现代电池的基本构造包括正极、负极和电解质三项要素。作为电池的一种,锂离子电池同样具有这三个要素。一般锂离子技术使用液体或无机胶体电解液,因此需要坚固的外壳来容纳可燃的活性成分,这就增加了电池的重量和成本,也限制了尺寸大小和造型的灵活性。一般而言,液体锂离子二次电池的最小厚度是6mm,再减少就比较困难。 而所谓聚合物锂离子电池是在这三种主要构造中至少有一项或一项以上使用高分子材 料作为其主要的电池系统。 新一代的聚合物锂离子电池在聚合物化的程度上已经很高,所以形状上可做到薄形化(最薄0.5毫米)、任意面积化和任意形状化,大大提高了电池造型设计的灵活性,从而可以配合产品需求,做成任何形状和容量的电池。同时,聚合物锂离子电池的单位能量比目前的一般锂离子电池提高了50%,其容量、充放电特性、安全性、工作温度范围、循环寿命和环保性能等方面都较锂离子电池有大幅度的提高。 目前市面上所销售的液体锂离子(LiB)电池在过度充电的情形下,容易造成安全阀破裂因而起火的情形,这是非常危险的,所以必需加装保护IC线路以确保电池不会发生过度充电的情形。而高分子聚合物锂离子电池方面,这种类型的电池相对液体锂离子电池而言具有较好的耐充放电特性,因此对外加保护IC线路方面的要求可以适当放宽。此外在充电方面,聚合物锂离子电池可以利用IC定电流充电,和锂离子二次电池所采用的CCCV(Constant Currert-Constant Voltage)充电方式所需的时间比较起来,可以 缩短许多的等待时间。 二、手机制造商对锂电池的使用情况 虽然近几年来几乎所有厂家都已经倾向于采用锂离子电池,但世界各大手机制造商对电池的选择还是有自己的特点和习惯,例如曾经在相同的一段历史时期里: 诺基亚:采用Ni-MH(镍氢)电池、LiB(液体锂离子)电池,未采用LiP(聚合物锂离

相关文档
最新文档