期权定价模型

期权定价模型
期权定价模型

期权定价模型

【学习目标】

本章是期权部分的重点内容之一。本章主要介绍了著名的Black-Scholes期权定价模型和由J. Cox、S. Ross和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。学习完本章,读者应能掌握Black-Scholes期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。

自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授 Fischer Black和Myron Scholes发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes期权定价模型,在学术界和实务界引起强烈的反响,Scholes并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox、S. Ross和M. Rubinstein三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。

1Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities”, Journal of Political Economy, 81( May-June), p. 637-659

2从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章

第一节 Black-Scholes 期权定价模型

一、Black-Scholes 期权定价模型的假设条件

Black-Scholes 期权定价模型的七个假设条件如下:

1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动1,即

dz dt S

dS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。μ和σ都是已知的。

简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变化趋势;二是随机波动项,即dz σ,可以看作随机波动使得股票价格变动偏离总体趋势的部分。

2.在期权有效期内,标的资产没有现金收益支付。综合1和2,意味着标的资产价格的变动是连续而均匀的,不存在突然的跳跃。

3. 没有交易费用和税收,不考虑保证金问题,即不存在影响收益的任何外部因素。综合2和3,意味着投资者的收益仅来源于价格的

1 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页

变动,而没有其他影响因素。

4. 该标的资产可以被自由地买卖,即允许卖空,且所有证券都是完全可分的。

5. 在期权有效期内,无风险利率r 为常数,投资者可以此利率无限制地进行借贷。

6.期权为欧式看涨期权,其执行价格为X ,当前时刻为t ,到期时刻为T 。

7.不存在无风险套利机会。

二、Black-Scholes 期权定价模型

(一)Black-Scholes 期权定价公式

在上述假设条件的基础上,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的一个微分方程:

rf S f S S f rS t f =??+??+??222221σ (11.1)

其中f 为期权价格,其他参数符号的意义同前。

通过解这个微分方程,Black 和Scholes 得到了如下适用于无收益资产欧式看涨期权的定价公式:

)()(2)(1d N Xe d SN c t T r ---= (11.2)

其中,

t T d t

T t T r X S d t T t T r X S d --=---+=--++=σσσσσ12221))(2/()/ln()

)(2/()/ln(

c 为无收益资产欧式看涨期权价格;N (x )为标准正态分布变量的累计概率分布函数(即这个变量小于x 的概率),根据标准正态分布函数特性,我们有)(1)(x N x N -=-。

(二)Black-Scholes 期权定价公式的理解

1.期权价格的影响因素

首先,让我们将Black-Scholes 期权定价公式与第十章中分析的期权价格的影响因素联系起来。在第十章中,我们已经得知期权价格的影响因素包括:标的资产市场价格、执行价格、波动率、无风险利率、到期时间和现金收益。在式(11.2)中,除了由于我们假设标的资产无现金收益之外,其他几个参数都包括在内,且影响方向与前文分析的一致。

2.风险中性定价原理

其次我们要谈到一个对于衍生产品定价非常重要的原理:风险中性定价原理。观察式(11.2),以及第十章中的期权价格影响因素分析,我们可以注意到期权价格是与标的资产的预期收益率无关的。即在第一节我们描述标的资产价格所遵循的几何布朗运动时曾经出现过的预期收益率μ在期权定价公式中消失了。这对于寻求期权定价的人们来说无疑是一个很大的好消息。因为迄今为止,人们仍然没有找到计算证券预期收益率的确定方法。期权价格与μ的无关性,显然大

大降低了期权定价的难度和不确定性。

进一步考虑,受制于主观风险收益偏好的标的证券预期收益率μ并未包括在期权的价值决定公式中,公式中出现的变量为标的证券当前市价(S)、执行价格(X)、时间(t)、证券价格的波动率(σ)和无风险利率r,它们全都是客观变量,独立于主观变量——风险收益偏好。既然主观风险偏好对期权价格没有影响,这使得我们可以利用Black-Scholes期权定价模型所揭示的期权价格的这一特性,作出一个可以大大简化我们工作的简单假设:

在对衍生证券定价时,所有投资者都是风险中性的。

在所有投资者都是风险中性的条件下(有时我们称之为进入了一个“风险中性世界”),所有证券的预期收益率都可以等于无风险利率r,这是因为风险中性的投资者并不需要额外的收益来吸引他们承担风险。同样,在风险中性条件下,所有现金流量都可以通过无风险利率进行贴现求得现值。这就是风险中性定价原理。

应该注意的是,风险中性假定仅仅是一个人为假定,但通过这种假定所获得的结论不仅适用于投资者风险中性情况,也适用于投资者厌恶风险的所有情况。

为了更好地理解风险中性定价原理,我们可以举一个简单的例子来说明。

假设一种不支付红利股票目前的市价为10元,我们知道在3个月后,该股票价格要么是11元,要么是9元。现在我们要找出一份3个月期协议价格为10.5元的该股票欧式看涨期权的价值。

由于欧式期权不会提前执行,其价值取决于3个月后股票的市价。若3个月后该股票价格等于11元,则该期权价值为0.5元;若3个月后该股票价格等于9元,则该期权价值为0。

为了找出该期权的价值,我们可构建一个由一单位看涨期权空头和?单位的标的股票多头组成的组合。若3个月后该股票价格等于11元时,该组合价值等于(11?-0.5)元;若3个月后该股票价格等于9元时,该组合价值等于9?元。为了使该组合价值处于无风险状态,我们应选择适当的?值,使3个月后该组合的价值不变,这意味着:

11?-0.5=9?

?=0.25

因此,一个无风险组合应包括一份看涨期权空头和0.25股标的股票。无论3个月后股票价格等于11元还是9元,该组合价值都将等于2.25元。

在没有套利机会情况下,无风险组合只能获得无风险利率。假设现在的无风险年利率等于10%,则该组合的现值应为:

元19.225.225.01.0=?-e

由于该组合中有一单位看涨期权空头和0.25单位股票多头,而目前股票市场为10元,因此:

31.019.225.010==-?f f 这就是说,该看涨期权的价值应为0.31元,否则就会存在无风险套利机会。

从该例子可以看出,在确定期权价值时,我们并不需要知道股票价格上涨到11元的概率和下降到9元的概率。但这并不意味着概率可以随心所欲地给定。事实上,只要股票的预期收益率给定,股票上升和下降的概率也就确定了。例如,在风险中性世界中,无风险利率为10%,则股票上升的概率P 可以通过下式来求:

0.10.2510[119(1)]e P P -?=?+-

P=62.66%。

又如,如果在现实世界中股票的预期收益率为15%,则股票的上升概率可以通过下式来求:

0.150.2510[119(1)]e P P -?=?+-

P=69.11%。

可见,投资者厌恶风险程度决定了股票的预期收益率,而股票的预期收益率决定了股票升跌的概率。然而,无论投资者厌恶风险程度如何,从而无论该股票上升或下降的概率如何,该期权的价值都等于0.31元。

3. 对期权定价公式的经济理解。

首先,从Black-Scholes 期权定价模型自身的求解过程来看1,N(d 2)实际上是在风险中性世界中S T 大于X 的概率,或者说是欧式看

涨期权被执行的概率,因此,e -r(T-t)XN(d 2)是X 的风险中性期望值的现

值,更朴素地说,可以看成期权可能带来的收入现值。SN(d 1)= e -r(T-t)S T N(d 1)是S T 的风险中性期望值的现值,可以看成期权持有者将来可能

1 Black-Scholes 期权定价模型的具体推导过程参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-133页

支付的价格的现值。因此整个欧式看涨期权公式就可以被看作期权未来期望回报的现值。 其次,1)df N d dS

?==(,显然反映了标的资产变动一个很小的单位时,期权价格的变化量;或者说,如果要避免标的资产价格变化给期权价格带来的影响,一个单位的看涨期权多头,就需要?单位的标的

资产空头加以保值。事实上,我们在第十二章中将看到,1)N

d ?=(是复制交易策略中股票的数量,SN (d 1)就是股票的市值, -

e -r(T-t)XN(d 2)则是复制交易策略中负债的价值。

最后,从金融工程的角度来看,欧式看涨期权可以分拆成资产或无价值看涨期权(Asset-or-noting call option )多头和现金或无价值看涨期权(cash-or-nothing option )空头,SN(d 1)是资产或无

价值看涨期权的价值,-e -r(T-t)XN(d 2)是X 份现金或无价值看涨期权空

头的价值。这是因为,对于一个资产或无价值看涨期权来说,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付一个等于资产价格本身的金额,根据前文对N(d 2)和SN(d 1)的分析,可以得出该期权的价值为e -r(T-t)S T N(d 1)= SN(d 1)的结论;同样,对于(标准)现金或无价值看涨期权,如果标的资产价格在到期时低于执行价格,该期权没有价值;如果高于执行价格,则该期权支付1元, 由于期权到期时价格超过执行价格的概率为N(d 2),则1份现金或无价值看涨期权的现值为-e -r(T-t) N(d 2)。

(三)Black-Scholes 期权定价公式的拓展

1.无收益资产欧式看跌期权的定价公式

Black-Scholes 期权定价模型给出的是无收益资产欧式看涨期权的定价公式,根据欧式看涨期权和看跌期权之间的平价关系,可以得到无收益资产欧式看跌期权的定价公式:

()()21()()r T t r T t p c Xe S Xe N d SN d ----=+-=--- (11.3)

2. 无收益资产美式期权的定价公式

在标的资产无收益情况下,由于C=c ,因此式(11.2)也给出了无收益资产美式看涨期权的价值。

由于美式看跌期权与看涨期权之间不存在严密的平价关系,因此美式看跌期权的定价还没有得到一个精确的解析公式,但可以用数值方法以及解析近似方法求出。

3. 有收益资产期权的定价公式

到现在为止,我们一直假设期权的标的资产没有现金收益。那么,对于有收益资产,其期权定价公式是什么呢?实际上,如果收益可以准确地预测到,或者说是已知的,那么有收益资产的欧式期权定价并不复杂。

在收益已知情况下,我们可以把标的证券价格分解成两部分:期权有效期内已知现金收益的现值部分和一个有风险部分。当期权到期时,这部分现值将由于标的资产支付现金收益而消失。因此,我们只要用S 表示有风险部分的证券价格。σ表示风险部分遵循随机过程的波动率1,就可直接套用公式(11.2)和(11.3)分别计算出有收益

1从理论上说,风险部分的波动率并不完全等于整个证券价格的的波动率,有风险部分的波动率近似等于整个证券价格波动率乘以S/(S -V),这里V 是红利现值。但在本书中,为了方便起见,我们假设两者是相等的。

资产的欧式看涨期权和看跌期权的价值。

当标的证券已知收益的现值为I时,我们只要用(S-I)代替式(11.2)和(11.3)中的S即可求出固定收益证券欧式看涨和看跌期权的价格。

当标的证券的收益为按连续复利计算的固定收益率q(单位为年)时,我们只要将)

-代替式(11.2)和(11.3)中的S就可求出支

(t

q

T

Se-

付连续复利收益率证券的欧式看涨和看跌期权的价格。在各种期权中,股票指数期权、外汇期权和期货期权的标的资产可以看作支付连续红利率,因而它们适用于这一定价公式。具体的内容,我们将在第十三章深入阐述。

另外,对于有收益资产的美式期权,由于有提前执行的可能,我们无法得到精确的解析解,仍然需要用数值方法以及解析近似方法求出。

三、Black-Scholes期权定价公式的计算

(一)Black-Scholes期权定价模型的参数

我们已经知道,Black-Scholes期权定价模型中的期权价格取决于下列五个参数:标的资产市场价格、执行价格、到期期限、无风险利率和标的资产价格波动率(即标的资产收益率的标准差)。在这些参数当中,前三个都是很容易获得的确定数值。但是无风险利率和标的资产价格波动率则需要通过一定的计算求得估计值。

1.估计无风险利率

在发达的金融市场上,很容易获得对无风险利率的估计值。但是在实际应用的时候仍然需要注意几个问题。首先,我们需要选择正确的利率。一般来说,在美国人们大多选择美国国库券利率作为无风险利率的估计值。由于美国国库券所报出的利率通常为贴现率(即利息占票面价值的比例),因此需要转化为通常的利率,并且用连续复利的方式表达出来,才可以在Black-Scholes 公式中应用。其次,要小心地选择国库券的到期日。如果利率期限结构曲线倾斜严重,那么不同到期日的收益率很可能相差很大,我们必须选择距离期权到期日最近的那个国库券的利率作为无风险利率。

我们用一个例子来说明无风险利率的计算。假设一个还有84天到期的国库券,其买入报价为8.83,卖出报价为8.77。由于短期国库券市场报价为贴现率,我们可以推算出其中间报价对应的现金价格(面值为100美元)为

8.838.778410097.9472360TB P +????=-= ???????

美元 进一步应用连续复利利率的计算公式得到相应的利率:

()0.231001000.090297.947

r T t r TB e e r P -?=→=→= 2. 估计标的资产价格的波动率

估计标的资产价格的波动率要比估计无风险利率困难得多,也更为重要。正如第十章所述,估计标的资产价格波动率有两种方法:历史波动率和隐含波动率。

(1) 历史波动率

所谓历史波动率就是从标的资产价格的历史数据中计算出价格收益率的标准差。以股票价格为例,表11-1列出了计算股票价格波动率的一个简单说明。很显然,计算波动率的时候,我们运用了统计学中计算样本均值和标准差的简单方法。其中,t R 为股票价格百分比收益率,R (或者为μ)则为连续复利收益率(估计)均值,()Var R (或者2σ)则是连续复利收益率(估计)方差,σ就是相应的(估计)标准差(波动率),即Black-Scholes 公式计算时所用的参数。在表11-1中,共有11天的收盘价信息,因此得到10个收益率信息。

()()1

1

211ln 1ln 1t t t T

t t T

t t R P P R R T Var R R R T -=====--∑∑

表11-1 历史波动率计算

天数

t P t R ()ln t R ()2ln t R R - 0

100.00 1

101.50 1.0150 0.0149 0.000154 2

98.00 0.9655 -0.0351 0.001410 3

96.75 0.9872 -0.0128 0.000234 4

100.50 1.0388 0.0380 0.001264 5

101.00 1.0050 0.0050 0.000006 6

103.25 1.0223 0.0220 0.000382 7 105.00 1.0169 0.0168 0.000205

8

102.75 0.9786 -0.0217 0.000582 9

103.00 1.0024 0.0024 0.000000 10

102.50 0.9951 -0.0049 0.000053 总计 0.0247 0.004294 样本均值0.0247/100.00247μ==

样本方差20.004294/90.000477σ==

样本标准差0.021843σ=

在Black-Scholes 公式所用的参数中,有三个参数与时间有关:到期期限、无风险利率和波动率。值得注意的是,这三个参数的时间单位必须相同,或者同为天、周,或者同为年。年是经常被用到的时间单位,因此,我们常常需要将诸如表11-1中得到的天波动率转化为年波动率。在考虑年波动率时,有一个问题需要加以重视:一年的天数究竟按照日历天数还是按照交易天数计算。一般认为,证券价格的波动主要来自交易日。因此,在转换年波动率时,应该按照一年252个交易日进行计算。这样,表11-1中计算得到的天波动率相应的年波动率为

0.3467year day σσ==。

在我们的例子中,我们使用的是10天的历史数据。在实际计算时,这个天数的选择往往很不容易。从统计的角度来看,时间越长,数据越多,获得的精确度一般越高。但是,资产价格收益率的波动率却又常常随时间而变化,太长的时间段反而可能降低波动率的精确度。因此,计算波动率时,要注意选取距离今天较近的时间,一般的经验法则是设定度量波动率的时期等于期权的到期期限。因此,如果要为9

个月的期权定价,可使用9个月的历史数据。

(2)隐含波动率

从Black-Scholes 期权定价模型本身来说,公式中的波动率指的是未来的波动率数据,这使得历史波动率始终存在着较大的缺陷。为了回避这一缺陷,一些学者将目光转向隐含波动率的计算。所谓的隐含波动率,即根据Black-Scholes 期权定价公式,将公式中除了波动率以外的参数和市场上的期权报价代入,计算得到的波动率数据。显然,这里计算得到的波动率可以看作是市场对未来波动率的预期。当然,由于Black-Scholes 期权定价公式比较复杂,隐含波动率的计算一般需要通过计算机完成。

(二)Black-Scholes 期权定价公式的计算:一个例子

为了使读者进一步理解Black-Scholes 期权定价模型,我们下面用一个简单的例子,来说明这一模型的计算过程。

例11.1假设某种不支付红利股票的市价为50元,无风险利率为12%,该股票的年波动率为10%,求该股票协议价格为50元、期限1年的欧式看涨期权和看跌期权价格。

在本题中,可以将相关参数表达如下:

S =50,X =50,r=0.12,σ=0.1,T=1,

计算过程可分为三步:

第一步,先算出1d 和2d 。

121 1.250.1 1.15

d d d ===-=

第二步,计算()1N d 和()2N d 。

()()()()12 1.250.8944

1.150.8749N d N N d N ====

第三步,上述结果及已知条件代入公式(11.2),这样,欧式看涨期权和看跌期权价格分别为:

0.121500.8944500.8749 5.92c e -?=?-?=美元

()()0.1215010.87495010.89440.27p e -?=?--?-=美元

在本例中,标的资产执行价格和市场价格正好相等,但是看涨期权的价格却与看跌期权的价格相差悬殊。其中的原因在于利率和到期期限对期权价格的影响。在本例中,利率高达12%,到期期限长达一年。在这种情况下,执行价格的现值将大大降低。对于欧式看涨期权来说,这意味着内在价值的大幅上升;而对欧式看跌期权来说,却意味着内在价值的大幅降低。因此,在计算了执行价格的现值以后,看涨期权是实值期权而看跌期权则是一个虚值期权。事实上,由于实际中的市场短期利率通常较低,期权到期期限一般不超过9个月,因此如果标的资产市场价格与执行价格相等,同样条件下的看涨期权价格和看跌期权价格一般比较接近。

四、Black-Scholes 期权定价公式的精确度实证

要求证Black-Scholes 期权定价公式的精确度,我们可以运用Black-Scholes 期权定价公式计算出期权价格的理论值,然后与市场上的期权价格进行比较。如果两者不存在显著的差别,那么这个定价公式的精度应该是令人满意的。

从总的实证研究结果来看,Black-Scholes期权定价公式存在一定偏差,但它依然是迄今为止解释期权价格动态的最佳模型之一。与CAPM解释股票价格差异的能力相比,Black-Scholes期权定价公式可以较好地解释期权的价格差异。这也正是Scholes得以获得1997年诺贝尔经济学奖的重要原因。

一般认为,造成用Black-Scholes期权定价公式估计的期权价格与市场价格存在差异的原因主要有以下几个:

1.计算错误;

2.期权市场价格偏离均衡;

3.使用的错误的参数;

4.Black-Scholes期权定价公式建立在众多假定的基础上。

五、Black-Scholes期权定价公式的应用

Black-Scholes期权定价公式除了可以用来估计期权价格,在其它一些方面也有重要的应用。主要包括评估组合保险成本、给可转换债券定价和为认股权证估值。

(一)评估组合保险成本

证券组合保险是指事先能够确定最大损失的投资策略。比如在持有相关资产的同时买入看跌期权就是一种组合保险。

假设你掌管着价值1亿的股票投资组合,这个股票投资组合于市场组合十分类似。你担心类似于1987年10月19日的股灾会吞噬你的股票组合,这时购买一份看跌期权也许是合理的。显然,期权的执

行价格越低,组合保险的成本越小,不过也许我们需要一个确切的评估,市场上可能根本就没有对应的期权,要准确估算成本十分困难,此时Black-Scholes 期权定价公式就十分有用。比如也许10%的损失是可以接受的,那么执行价格就可以设为9000万,然后再将利率、波动率和保值期限的数据代进公式,就可以合理估算保值成本。

(二)给可转换债券定价

可转换债券是一种可由债券持有者转换成股票的债券,因此可转换债券相当于一份普通的公司债券和一份看涨期权的组合。即

CB B C V V V =+

其中CB V 表示可转换债券的价值,B V 代表从可转换债券中剥离出

来的债券的价值,C V 代表从可转换债券中剥离出来的期权的价值。

在实际中C V 的估计是十分复杂的,因为C V 对利率非常敏感,而布

莱克_舒尔斯期权定价公式假定无风险利率不变,对C V 显然不适用。

其次,从可转换债券中隐含的期权的执行与否会因为股票股利和债券利息的问题复杂化。第三,许多可转换债券的转换比例会随时间变化。

还有就是绝大多数可转换债券是可赎回的。可赎回债券的分解更加复杂。对债券持有者而言,它相当于一份普通的公司债券、一份看涨期权多头(转换权)和一份看涨期权空头(赎回权)的组合。可赎回的可转换债券对股票价格变动很敏感,而且对利率也非常敏感。当利率下降的时候,公司可能会选择赎回债券。当然,利率上升的时候债券价值也会上升。

(三)为认股权证估值

认股权证通常是与债券或优先股一起发行的,它的持有人拥有在特定时间以特定价格认购一定数量的普通股,因此认股权证其实是一份看涨期权,不过两者之间还是存在细微的差别,看涨期权执行的时候,发行股票的公司并不会受到影响,而认股权证的执行将导致公司发行更多的股票,因此,认股权证的执行存在稀释效应,在估值的时候必须考虑这一点。

第二节二叉树模型

B lack-Scholes模型的提出,对期权定价的研究而言,是一个开创性的研究。然而,由于该模型涉及到比较复杂的数学问题,对大多数人而言较难理解和操作。1979年,J. Cox、S. Ross和M. Rubinstein 三人发表《期权定价:一种被简化的方法》1一文,用一种比较浅显的方法导出了期权定价模型,这一模型被称为“二叉树模型(the Binomial Model)”或“二叉树模型”,是期权数值定价方法的一种。二叉树模型的优点在于其比较简单直观,不需要太多的数学知识就可以加以应用。同时,它不仅可以为欧式期权定价,而且可以为美式期权定价;不仅可以为无收益资产定价,而且可以为有收益资产定价,应用相当广泛,目前已经成为金融界最基本的期权定价方法之一。

一、二叉树模型的基本方法

我们从简单的无收益资产期权的定价开始讲解二叉树模型,之后再逐步加以扩展。

二叉树模型首先把期权的有效期分为很多很小的时间间隔t?,并假设在每一个时间间隔t?内证券价格只有两种运动的可能:从开始的

u>,S上升到原先的u倍,即到达Su;下降到原先的d倍,即Sd。其中,1 1

d<,如图11.1所示。价格上升的概率假设为q,下降的概率假设为

1J. Cox, J., Ross, S., and Rubinstein: Option Pricing (1979) “a Simplified Approach”, Journal of Financial Economics, September, p.7

1q -。

图11.1 t ?时间内资产价格的变动

相应地,期权价值也会有所不同,分别为u f 和d f 。

注意,在较大的时间间隔内,这种二值运动的假设当然不符合实际,但是当时间间隔非常小的时候,比如在每个瞬间,资产价格只有这两个运动方向的假设是可以接受的。因此,二叉树模型实际上是在用大量离散的小幅度二值运动来模拟连续的资产价格运动。

(一)单步二叉树模型

运用单步二叉树为期权定价,可以有两种方法:无套利方法和风险中性定价方法。

1.无套利定价法

由于期权和标的资产的风险源是相同的,在如图11.1的单步二叉树中,我们可以构造一个证券组合,包括?股资产多头和一个看涨期权空头。如果我们取适当的?值,使

u d Su f Sd f ?-=?-

则无论资产价格是上升还是下跌,这个组合的价值都是相等的。

第11章 期权定价模型

第11章 布莱克-舒尔茨-默顿期权定价模型 一、基本思路 1. 基本思路 我们为了给股票期权定价,必须先了解股票本身的走势。因为股票期权是其标的资产(即股票)的衍生工具,在已知执行价格、期权有效期、无风险利率和标的资产收益的情况下,期权价格变化的唯一来源就是股票价格的变化,股票价格是影响期权价格的最根本因素。 用几何布朗运动表示股票价格的变化过程,具体形式如下: dS dt dz S μσ=+ 或者表示为dS Sdt Sdz μσ=+ 伊藤引理表明,当股票价格服从上述随机过程时,作为衍生品的期权价格f 将服从 22221()2f f f f df S S dt Sdz S t S S μσσ????=+++???? 两式表明:股票价格及其衍生品——期权价格都只受到同一种不确定性的影响,只是两者对随机因素变化的反应程度不同而已。 从数学上看,将两式联立,解方程组可消掉随机项。其金融含义可看作:买入股票、卖空期权构造一个短期内没有不确定性的投资组合。在一个无套利市场中,该投资组合必然只能获得无风险利率收益。由此可得到一个期权价格满足的微分方程,此即为BSM 期权定价模型的微分形式,具体为 2222 12f f f rS S rf t S S σ???++=??? 由于该公式中不包含反映投资者风险偏好的参数——预期收益,因此可以在风险中性世界里求解该微分方程。求解该方程可得到期权定价公式。无股利欧式看涨期权的价格为 ()12()()r T t c SN d Xe N d --=- 其中, 21221d d d = ==- 根据无股利欧式看涨期权和看跌期权平价公式 ()21()()r T t p Xe N d SN d --=--- 可求出无股利欧式看跌期权定价公式 ()21()()r T t p Xe N d SN d --=--- 无收益美式看涨期权是不会提前执行的,因此无收益美式看涨期权定价公式和欧式看涨期权定价公式相同, ()12()()r T t C SN d Xe N d --=- 对于有收益欧式期权,需要在股票价格中抛去收益的现值,对有收益的美式看涨期权,需要考虑其提前执行的情况,由于不存在美式期权之间的平价公式,因此无法给出美式看跌期权

BS期权定价模型

Black-Scholes期权定价模型 (重定向自Black—Scholes公式) Black-Scholes期权定价模型(Black-Scholes Option Pricing Model),布莱克-肖尔斯期权定价模型 Black-Scholes 期权定价模型概述 1997年10月10日,第二十九届诺贝尔经济学奖授予了两位美国学者,哈佛商学院教授罗伯特·默顿(RoBert Merton)和斯坦福大学教授迈伦·斯克尔斯(Myron Scholes)。他们创立和发展的布莱克——斯克尔斯期权定价模型(Black Scholes Option Pricing Model)为包括股票、债券、货币、商品在内的新兴衍生金融市场的各种以市价价格变动定价的衍生金融工具的合理定价奠定了基础。 斯克尔斯与他的同事、已故数学家费雪·布莱克(Fischer Black)在70年代初合作研究出了一个期权定价的复杂公式。与此同时,默顿也发现了同样的公式及许多其它有关期权的有用结论。结果,两篇论文几乎同时在不同刊物上发表。所以,布莱克—斯克尔斯定价模型亦可称为布莱克—斯克尔斯—默顿定价模型。默顿扩展了原模型的内涵,使之同样运用于许多其它形式的金融交易。瑞典皇家科学协会(The Royal Swedish Academyof Sciencese)赞誉他们在期权定价方面的研究成果是今后25年经济科学中的最杰出贡献。 [编辑] B-S期权定价模型(以下简称B-S模型)及其假设条件 [编辑] (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会;

(定价策略)二项期权定价模型

摘要: 在可转债的定价过程中,期权部分的定价最为复杂,本文介绍了对可转债价值中期权部分的一种定价方法——二项期权定价模型,以单一时期内买权定价为例进行了。 一般来说,二项期权定价模型(binomal option price model , BOPM )的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM 的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权的定价方法。与期货不同的是,期货的套头交易一旦建立就不用改变,而期权的套头交易则需不断调整,直至期权到期。 一、对股票价格和期权价格变化的描述 假设股票当期(t =0)的价格S 为100元,时期末(t =1)的价格有两种可能:若上升,则为120元,记做uS ;若下降,则为90元,记做dS 。执行价格为110元。相对应地来看,期权价格则分别记做0C 、up C 、down C ,则在t =1时,up C 、down C 分别等于max (120-110,0)、max (90-110,0),即10元和0。此时的状态可以用下图描述: uS =120 股价上升时 分 析 师:高谦 报告类型:可转换债券研究 二项期权定价模型

S =100 dS =90 股价下降时 up C =10 max (120-110,0) 0C =? down C =0 max (90-110,0) 二、构建投资组合求解买权 (一)构建投资组合 在上图中,唯一需要求解的是0C 。为求解0C ,也即给t =0时的买权定价,可以证明0C 的价格可以通过建立期权和相关资产的零风险套利交易来得到,具体来说,就是考虑一个包括股票和无风险债券在内的投资组合,该组合在市场上不存在无风险套利机会时等于买权的价格,因此可以用来模拟买权的价格。 我们可以考虑这样一个投资组合: (1) 以价格0C 卖出一份看涨期权; (2) 以价格100买入0.333股股票; (3) 以无风险利率8%借入27.78元。 (二)投资组合的净现金流分析 根据上述投资组合,可以得到t =0时期的净现金流为:0C -(0.333×100+27.78)。根据前述对股票和期权价格变化的描述,在到期日时会出现两种可能的结果,这两种结果在到期日时的现金流可以描述如下: 股价上升时的现金流 股价下跌时的现金流 买进一份看涨期权 -10(由max 【120-110】得到) 0(由max 【90-110】得到) 股票变现 40(由0.333×120得到) 30(由0.333×90得到) 偿付贷款 -30(由-27.78×1.08得到) -30(由-27.78×1.08得到) 净现金流 0 0 这表明,不管相关资产的价格是上升还是下降,这个投资组合的最终结果都

期权定价模型分类及其实际应用

摘要 随着社会的进步,金融市场的发展逐步完善,越来越多的金融衍生品走进了人们的视野。期权作为重要的金融衍生品之一,受到许多投资者与研究者的关注。本文就是对期权的产生与发展和期权相关的定价模型进行了讨论。本文先简要介绍了期权的发展史以及现阶段的概况,随后对期权进行分类详解,接着以B-S 模型和二叉树模型这两种经典定价模型为例进行了深入讨论并举例说明他们的实际应用,最后又分析了几种新型期权和他们的定价模型,并简要介绍了他们的实际用途。 关键词:期权发展历程;期权的分类;B-S定价模型;二叉树模型

Abstract With the development of the society, finance market has been impr oving gradually, more and more financial derivative instruments have come to the eyesight of people. Option, as the important tool of fina ncial derivative instrument, has been cast more attention by the inve stor and the researcher. This essay would focus on the generation of option and Capital Asset Pricing Model of the option. First, this dis sertation introduces the history and nowadays state of the option development. Then, it focuses its attention on classifying and description of the option. This paper raises the Black-Scholes Model and Binary Tree Model as typical example to talk deeply about their appliance. Finally, this paper analysis so me kinds of new options and their asset pricing model, and introduce the practical use of the new option to all readers. Keywords: history of option development Option classifying Black-Scholes Model Binary Tree Model

B-S期权定价模型的推导过程

B-S期权定价模型(以下简称B-S模型)及其假设条件 (一)B-S模型有7个重要的假设 1、股票价格行为服从对数正态分布模式; 2、在期权有效期内,无风险利率和金融资产收益变量是恒定的; 3、市场无摩擦,即不存在税收和交易成本,所有证券完全可分割; 4、金融资产在期权有效期内无红利及其它所得(该假设后被放弃); 5、该期权是欧式期权,即在期权到期前不可实施。 6、不存在无风险套利机会; 7、证券交易是持续的; 8、投资者能够以无风险利率借贷。 (二)荣获诺贝尔经济学奖的B-S定价公式[1] C = S * N(d 1) ? Le? rT N(d2) 其中: C—期权初始合理价格 L—期权交割价格 S—所交易金融资产现价 T—期权有效期 r—连续复利计无风险利率H

σ2—年度化方差 N()—正态分布变量的累积概率分布函数,在此应当说明两点: 第一,该模型中无风险利率必须是连续复利形式。一个简单的或不连续的无风险利率(设为r0)一般是一年复利一次,而r要求利率连续复利。r0必须转化为r方能代入上式计算。两者换算关系为:r = ln(1 + r 0)或r0=Er-1。例如r0=0.06,则r=ln(1+0.06)=0.0583,即100以5.83%的连续复利投资第二年将获106,该结果与直接用r0=0.06计算的答案一致。 第二,期权有效期T的相对数表示,即期权有效天数与一年365天的比值。如果期权有效期为100天,则。 B-S定价模型的推导与运用[1] (一)B-S模型的推导B-S模型的推导是由看涨期权入手的,对于一项看涨期权,其到期的期值是: E[G] = E[max(S t? L,O)] 其中,E[G]—看涨期权到期期望值 S t—到期所交易金融资产的市场价值 L—期权交割(实施)价 到期有两种可能情况: 1、如果S t > L,则期权实施以进帐(In-the-money)生效,且max(S t? L,O) = S t? L 2、如果S t < L,则期权所有人放弃购买权力,期权以出帐(Out-of-the-money)失效,且有: max(S t? L,O) = 0 从而: 其中:P:(S t > L)的概率E[S t | S t > L]:既定(S t > L)下S t的期望值将E[G]按有效期无风险连续复利rT贴现,得期权初始合理价格:

第十一章 期权定价模型

第十一章 期权定价模型 【学习目标】 本章是期权部分的重点内容之一。本章主要介绍了著名的Black-Scholes 期权定价模型和由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型,并对其经济理解和应用进行了进一步的讲解。学习完本章,读者应能掌握Black-Scholes 期权定价公式及其基本运用,掌握运用二叉树模型为期权进行定价的基本方法。 自从期权交易产生以来,尤其是股票期权交易产生以来,学者们即一直致力于对期权定价问题的探讨。1973年,美国芝加哥大学教授 Fischer Black 和Myron Scholes 发表《期权定价与公司负债》1一文,提出了著名的Black-Scholes 期权定价模型,在学术界和实务界引起强烈的反响,Scholes 并由此获得1997年的诺贝尔经济学奖。在他们之后,其他各种期权定价模型也纷纷被提出,其中最著名的是1979年由J. Cox 、S. Ross 和M. Rubinstein 三人提出的二叉树模型。在本章中,我们将介绍以上这两个期权定价模型,并对其进行相应的分析和探讨2。 第一节 Black-Scholes 期权定价模型 一、Black-Scholes 期权定价模型的假设条件 Black-Scholes 期权定价模型的七个假设条件如下: 1. 期权标的资产为一风险资产(Black-Scholes 期权定价模型中为股票),当前时刻市场价格为S 。S 遵循几何布朗运动3,即 dz dt S dS σμ+= 其中,dS 为股票价格瞬时变化值,dt 为极短瞬间的时间变化值,dz 为均值为零,方差为dt 的无穷小的随机变化值(dt dz ε=,称为标准布朗运动,ε代表从标准正态分布(即均值为0、标准差为1.0的正态分布)中取的一个随机值),μ为股票价格在单位时间内的期望收益率(以连续复利表示),σ则是股票价格的波动率,即证券收益率在单位时间内的标准差。μ和σ都是已知的。 简单地分析几何布朗运动,意味着股票价格在短时期内的变动(即收益)来源于两个方面:一是单位时间内已知的一个收益率变化μ,被称为漂移率,可以被看成一个总体的变 1 Black, F., and Scholes (1973) “The Pricing of Options and Corporate Liabilities ”, Journal of Political Economy , 81( May-June), p. 637-659 2 从本书难度的设定出发,本章只介绍期权定价模型的基本内容及其理解,而不具体推导模型,更深入的内容可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 第六章 3 有关股票价格及其衍生证券所遵循的随机过程的详细信息,可参见郑振龙. 金融工程. 北京: 高等教育出版社, 2003. 115页-121页

期权定价模型与数值方法

参考文献 1、期权、期货和其它衍生产品,John Hull,华夏出版社。 2、期权定价的数学模型和方法,姜礼尚著,高等教育出版社。 3、金融衍生产品定价的数学模型与案例分析,姜礼尚等著,高等教育 出版社。 4、金融衍生产品定价—数理金融引论,孙建著,中国经济出版社。 5、金融衍生工具中的数学,朱波译,西南财经大学出版社。 6、N umerical methods in finance and economics—a MATLAB-based introduction, Paolo Brandimarte,A JOHN WILEY & SONS,INC.,PUBLICATION 7.金融计算教程—MATLAB金融工具箱的应用,张树德编著,清华大学出 版社。 8、数值分析及其MATLAB实现,任玉杰著,高等教育出版社。 9、数学物理方程讲义,姜礼尚著,高等教育出版社。 10、英汉双向金融词典,田文举主编,上海交通大学出版社。 11、偏微分方程数值解法,孙志忠编著,科学出版社。 第三部分期权定价模型与数值方法 期权是人们为了规避市场风险而创造出来的一种金融衍生工具。理论和实践均表明,只要投资者合理的选择其手中证券和相应衍生物的比例,就可以获得无风险收益。这种组合的确定有赖于对衍生证券的定价。上个世纪七十年代初期,Black 和 Scholes 通过研究股票价格的变化规律,运用套期保值的思想,成功的推出了在无分红情况下股票期权价格所满足的随机偏微分方程。从而为期权的精确合理的定价提供了有利的保障。这一杰出的成果极大的推进了金融衍生市场的稳定、完善与繁荣。

一、期权定价基础 1.1 期权及其有关概念 1.期权的定义 期权分为买入期权(Call Option)和卖出期权(Put Option) 买入期权:又称看涨期权(或敲入期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格买入一定数量某种资产的权利的一种法律合同。 卖出期权:又称看跌期权(或敲出期权),它赋予期权持有者在给定时间(或在此时间之前任一时刻)按规定价格卖出一定数量某种资产的权利的一种法律合同。 针对有效期规定不同期权又分为欧式期权(European Option)与美式期权(American Option) 欧式期权只有在到期日当天或在到期日之前的某一规定的时间可以行使的权利 美式期权在到期日之前的任意时刻都可以行使的权利。 2.期权的要素 期权的四个要素:施权价(exercise price或striking price);施权日(maturing data);标的资产(underlying asset);期权费(option premium)对于期权的购买者(持有者)而言,付出期权费后,只有权利而没有义务;对期权的出售者而言,接受期权费后,只有义务而没有权利。 3.期权的内在价值 买入期权在执行日的价值 C为 T 其中, E为施权价, S为标的资产的市场价。 T

期权定价模型

二、期权价值评估的方法 (一)期权估价原理 1、复制原理 基本思想复制原理的基本思想是:构造一个股票和贷款的适当组合,使得无论股价如何变动投资组合的损益都与期权相同,那么创建该投资组合的成本就是期权的价值。 基本公式每份期权价格(买价)=借钱买若干股股票的投资支出=购买股票支出-借款额 计算步骤(1)确定可能的到期日股票价格Su和Sd 上行股价Su=股票现价S×上行乘数u 下行股价Sd=股票现价S×下行乘数d (2)根据执行价格计算确定到期日期权价值Cu和Cd: 股价上行时期权到期日价值Cu=上行股价-执行价格 股价下行时期权到期日价值Cd=0 (3)计算套期保值率: 套期保值比率H=期权价值变化/股价变化=(CU-Cd)/(SU-Sd) (4)计算投资组合的成本(期权价值)=购买股票支出-借款数额 购买股票支出=套期保值率×股票现价=H×S0 借款数额=价格下行时股票收入的现值 =(到期日下行股价×套期保值率)/(1+r)= H×Sd/(1+r) 2、风险中性原理 基本思想假设投资者对待风险的态度是中性的,所有证券的预期收益率都应当是无风险利率;假设股票不派发红利,股票价格的上升百分比就是股票投资的收益率。 因此: 期望报酬率(无风险收益率)=(上行概率×股价上升时股价变动百分比)+(下行概率×股价下降时股价变动百分比) =p×股价上升时股价变动百分比+(1-p)×股价下降时股价变动百分比 计算步骤 (1)确定可能的到期日股票价格Su和Sd(同复制原理) (2)根据执行价格计算确定到期日期权价值Cu和Cd(同复制原理) (3)计算上行概率和下行概率 期望报酬率=(上行概率×股价上升百分比)+(下行概率×股价下降百分比) (4)计算期权价值 期权价值=(上行概率×Cu+下行概率×Cd)/(1+r) (二)二叉树期权定价模型 1、单期二叉树定价模型 基本原理风险中性原理的应用 计算公式(1)教材公式 期权价格= U=股价上行乘数=1+股价上升百分比

期权定价模型

第14章期权定价模型 中央财经大学 刘志东2010-06-162 期权的应用 激励方式 一些证券具有期权的特征:可回购债、可转债 Hedging, (speculative) investing, and asset allocation are among the top reasons for option trading. In essence, options and other derivatives provide a tailored service of risk by slicing, reshaping, and re packaging the existing risks in the underlying security. The risks are still the same, but investors can choose to take on different aspects of the existing risks in the underlying asset.

2010-06-163 期权定价方法的应用 期权定价的技巧被广泛的应用到许多金融领域和非金融领域,包括各种衍生证券定价、公司投资决策、自然资源开发、核废料处理等。 学术领域内的巨大进步带来了实际领域的飞速发展。期权定价的技巧对产生全球化的金融产品和金融市场起着最基本的作用。 近年来,从事金融产品的创造及定价的行业蓬勃发展,从而使得期权定价理论得到不断的改进和拓展。 所以,无论从理论还是从实际需要出发,期权定价的思想都具有十分重要的意义。2010-06-164 1. 一些基本定义 例子1: 投资者B 和W 计划签定一份合同:现在B 支付给W 200元,交换条件是在接下来的六个月的任何时间,允许B 自愿从W 那里以150元/股的价格购买100股IBM 公司股票。IBM 公司股票现在的价格为145元/股。问题: B 和W 为什么都愿意签定这个合同? B 如果不支付给W 200元,W 是否愿意签定这个合同?

期权定价模型介绍及改进

Final Exam 课程:金融计量 Title: Give a literature review on option pricing. Try to propose a new option and study the price of new option or try to improve a known option and study the price of the improved option.

期权定价模型介绍及改进课程名称:金融计量 任课老师:XX 姓名:XXX 学号:XXXXXX 班级:XXXXXX 2014年1月8日

目录 一、期权定价模型的发展 (4) 二、期权的基础知识 (5) 2.1期权的概念及分类 (5) 2.1.1期权的基本概念 (5) 2.1.2期权的分类 (5) 2.2影响期权定价的主要因素 (6) 2.2.1期权价格 (6) 2.2.2期权价值的构成 (6) 2.2.3期权价格的决定因素 (7) 2.3期权的作用-投机与保值 (8) 三、期权定价模型介绍 (9) 3.1期权定价的基本原理 (9) 3.2期权定价的方法 (9) 3.3常见期权定价模型 (10) 3.3.1二叉树模型 (10) 3.3.1.1单周期二叉树定价模型 (10) 3.3.1.2n周期二叉树定价模型 (11) 3.3.2 Black-Scholes 公式 (12) 3.3.2.1无风险投资组合方法 (13) 3.3.2.2风险中性(等价鞅测度)方法 (14) 3.4常见定价模型应用分析 (15) 四、期权定价模型的推广及改进 (15) 4.1二叉树定价模型的推广 (15) 4.2Black-Scholes定价模型的推广 (16) 五、结论 (17) 参考文献 (18)

关于期权定价模型

关于期权定价模型

期权定价问题的数学模型 白秀琴杨宝玉(平顶山工业职业技术学院,基础部,河南平顶山467001) 摘要:介绍了资产定价理论近十年来的发展状况和历史背景,阐述了期权定价的基本概念 和基本假设的直观模型。 关键词:期权;套利;数学模型 Mathematical Model of OPricing Model BAI Xiu-qin,Yang Bao-yu (Pingdingshang Industrial College Of Technology,Pingdingshan,Henan,467001) Abstract: Introducing the historical background of asset pricing theory and the development during the past 10 years .Expounding the intuitive model of the basic concept and the basic assumptions of option pricing Key words: option arbitrage

mathematicai model 金融数学是研究经济运行规律的一门新兴学科,是数学与金融学的交叉,建立数学模型是对金融理论和实践进行数量分析和研究的主要方法。金融数学的几个主要理论是投资组合选择理论,资本资产定价理论,期权定价理论。本文主要探讨期权定价理论的数学模型及应用。 一 、期权定价理论的基本思想及其发展 期权是一种选择权,是其购买者在支付一定数额的期权费后,即拥有在某一特定时间内以某一确定的价格买卖某种特定商品契约的权利,但又无实施这种权利(即必须买进或卖出)的义务。它按交易性质可分为看涨期权和看跌期权,前者赋予期权拥有者在未来按履约价格购买期权标的物权利,又称买入期权;后者赋予期权拥有者在未来履约价格售出期权标的物权利,又称为卖出期权。期权按权利行使时间的不同,还可以分为欧式期权和美式期权,欧式期权只有在权利到期日才能履约交易,美式期权则在期权有效期内的任何时间都可以行使权利。 期权的交易由来已久,但金融期权到20世纪70年代才创立,并在80年代得到广泛应用。1973年4月26日美国率先成立了芝加哥期权交易所,使期权合约在交割数额,交割月份以及交易程序等方面实现了标准化。在标准化的期权合约中,只有期权的价格是唯一的变量,是交易双方在交易所内用公开竞价方式决定出来的。而其余项目都是事先规定的。因此,我们的问题就是如何确定期权的合理价格。目前两个经典的期权定价模型是Black-Scholes 期权定价模型和Cox-Ross-Rubinstein 二项式期权定价公式。尽管它们是针对不同状态而言的,但二者在本质上是完全一致的。 在讨论期权定价模型之前,我们先对金融价格行为进行分析。 二、金融价格行为 资产价格的随机行为是金融经济学领域中的一个重要内容。价格波动的合理解释在决定资产本身的均衡价格及衍生定价中起着重要的作用。资产价格波动的经典假设,也是被广泛应用的一个假设是资产价格遵循一扩散过程,称其为几何布朗运动,即 )()()()(t dB t S dt t S t dS σα+= (1) 其中,S(t)为t 时刻的资产价格,μ为飘移率,σ为资产价格的波动率,B(t)遵循一标准的维纳过程。为说明问题的方便,下面我们引入It?引理: 设F(S,t)是关于S 两次连续可微,关于t 一次可微的函数,S(t)是满足随机微分方程(1)的扩散过程,则有以下随机变量函数的It?微分公式 dt F dS F dt F t S dF SS S t 2 21),(σ++= (2) Black-Scholes 期权定价模型的一个重要假设是资产价格遵循对数正态分布,即)(ln ),(t S t S F =。将该式与(1)式同时代入(2)式,有 )()()(ln 2 2 1t dB dt t S d σσα+-= (3) 从而有

第六章布莱克-舒尔斯期权定价模型

第六章 布莱克-舒尔斯期权定价模型 一、 影响期权价值的主要因素 由前面的分析知道决定期权价值(价格)C V 的因素是到期的 股票市场价格m S 和股票的执行价格X 。但是到期m S 是未知的,它 的变化还要受价格趋势和时间价值等因素的影响。 1)标的股票价格与股票执行价格的影响。标的股票市场价格越高,则买入期权的价值越高,卖出期权的价值越低;期权的执行价越高,则买入的期权价值越低,卖出期权的价值越高。 2)标的股票价格变化范围的影响。在标的股票价格变动范围增大的,虽然正反两方面的影响都会增大,但由于期权持有者只享受正向影响增大的好处,因此,期权的价值随着标的股价变动范围的增大而升高。如下图: )(s f )(1s f )(2s f x s 股票的价格由密度函数)(1s f 变为)(2s f ,S>X 的可能性增大,买入期权的价值增大,对卖出期权的价值则相反。 3)到期时间距离的影响。距离愈长,股价变动的可能性愈大。由于期权持有者只会在标的股价变动中受益,因此,距离期

权到期的时间越长,期权的价值就越高。 4)利率的影响。利率越高,则到期m S 的现值就越低,使得 买入期权价值提高,而卖出期权价值降低。 5)现金股利的影响。股票期权受到股票分割或发放股票股利的保护,期权数量也适应调整,而不受影响,但是期权不受现金股利的保护,因此当股票的价格因公司发放现金股利而下降时,买入期权的价值下降,卖出期权的价值便上升。 二、布莱克-舒尔斯期权定价模型的假设条件 B-S 模型是反映欧式不分红的买入期权定价模型,它的假定条件,除了市场无摩擦(例如无税、无交易成本、可以无限制自由借贷等)以外,还有: 1. 股票价格是连续的随机变量,所以股票可以无限分割。 2. T 时期内各时段的预期收益率 r i 和收益方差σi 保持 不变。 3. 在任何时段股票的复利收益率服从对数正态分布,即 在t 1-t 2时段内有: ()()()2221211()ln ,()S t N t t t t S t μσ??-- ??? 因为股票的价格可以用随机过程{},...2,1)(=t t S 表示,其中S (t )表示第t 日股票的价格,它是一个随机变量. 则第t 日股票的收 益率(年收益率)为R t :3651)1()(t R t S t S +=- 股票的年收益率(单利)R 应该是:

期权定价二项式模型.doc

二项期权定价模型 二项期权定价模型假设股价波动只有向上和向下两个方向,且假设在整个考察期内,股价每次向上(或向下)波动的概率和幅度不变。模型将考察的存续期分为若干阶段,根据股价的历史波动率模拟出正股在整个存续期内所有可能的发展路径,并对每一路径上的每一节点计算权证行权收益和用贴现法计算出的权证价格。对于美式权证,由于可以提前行权,每一节点上权证的理论价格应为权证行权收益和贴现计算出的权证价格两者较大者。 二项式期权定价模型概述 1973年,布莱克和休尔斯(Blackand Scholes)提出了布莱克-休尔斯期权定价公式,对标的资产的价格服从正态分布的期权进行定价。随后,罗斯开始研究标的资产的价格服从非正态分布的期权定价理论。1976年,罗斯和约翰·考科斯(John Cox)在《金融经济学杂志》上发表论文“基于另类随机过程的期权定价”,提出了风险中性定价理论。 1979年,罗斯、考科斯和马克·鲁宾斯坦(Mark Rubinstein)在《金融经济学杂志》上发表论文“期权定价:一种简单的方法”,该文提出了一种简单的对离散时间的期权的定价方法,被称为Cox-Ross-Rubinstein二项式期权定价模型。 二项式期权定价模型和布莱克-休尔斯期权定价模型,是两种相互补充的方法。二项式期权定价模型推导比较简单,更适合说明期权定价的基本概念。二项式期权定价模型建立在一个基本假设基础上,即在给定的时间间隔内,证券的价格运动有两个可能的方向:上涨或者下跌。虽然这一假设非常简单,但由于可以把一个给定的时间段细分为更小的时间单位,因而二项式期权定价模型适用于处理更为复杂的期权。 随着要考虑的价格变动数目的增加,二项式期权定价模型的分布函数就越来越趋向于正态分布,二项式期权定价模型和布莱克-休尔斯期权定价模型相一致。二项式期权定价模型的优点,是简化了期权定价的计算并增加了直观性,因此现在已成为全世界各大证券交易所的主要定价标准之一。 一般来说,二项期权定价模型的基本假设是在每一时期股价的变动方向只有两个,即上升或下降。BOPM的定价依据是在期权在第一次买进时,能建立起一个零风险套头交易,或者说可以使用一个证券组合来模拟期权的价值,该证券组合在没有套利机会时应等于买权的价格;反之,如果存在套利机会,投资者则可以买两种产品种价格便宜者,卖出价格较高者,从而获得无风险收益,当然这种套利机会只会在极短的时间里存在。这一证券组合的主要功能是给出了买权

常用的几个期权定价模型的基本原理及其对比分析

常用的几个期权定价模型的基本原理及其对比分析 (function() { var s = "_" + Math.random().toString(36).slice(2); document.write(''); (window.slotbydup = window.slotbydup || []).push({ id: "u3686515", container: s }); })(); [摘要] 期权是一类重要的金融衍生产品,它赋予持有者的是一种买权或卖权,

而并非义务,所以期权持有者可以选择行使权利,也可以放弃行权。那么,如何对期权定价才能对期权的发行者、持有者双方更加合理?于是就产生了期权的定价问题。在现代金融理论中,期权定价已经成为其重要的组成部分,关于对期权定价模型的研究成果也是层出不穷,文章主要介绍在连续时间下常用的三种期权定价模型:Black-Scholes模型、 Ornstein-Ulhenbeck过程模型以及跳跃-扩散模型,并对这三种模型作简要的对比分析。 [关键词] Black-Scholes期权定价模型;Ornstein-Ulhenbeck过程的期权定价模型;跳跃-扩散过程的期权定价模型;风险中性定价 doi :10 . 3969 / j . issn . 1673 - 0194 . 2018. 23. 050 [中图分类号] F830.9 [文献标识码] A [文章编号] 1673 - 0194(2018)23- 0117- 04 1 Black-Scholes期权定价模型 1970年初,美国经济学家布莱克(F.Black)和斯科尔斯(M.Scholes)发现无支付红利的股票的衍生证券的价格必然满足一个微分方程,他们推导出了该方程的解析解,并得到了欧式看涨、看跌期权的价格。该理论被视为期权定价史上的丰碑,为此,斯科尔斯

期权定价模型分类及其实际应用

随着社会的进步,金融市场的发展逐步完善,越来越多的金融衍生品走进了人们的视野。期权作为重要的金融衍生品之一,受到许多投资者与研究者的关注。本文就是对期权的产生与发展和期权相关的定价模型进行了讨论。本文先简要介绍了期权的发展史以及现阶段的概况,随后对期权进行分类详解,接着以B-S模型和二叉树模型这两种经典定价模型为例进行了深入讨论并举例说明他们的实际应用,最后又分析了几种新型期权和他们的定价模型,并简要介绍了他们的实际用途。 关键词:期权发展历程;期权的分类;B-S定价模型;二叉树模型 ?Abstract With thedevelopmentofthesociety, finance mar kethas been improving gradually,more and more f inancial derivative instruments havecome to the eyesight of people. Option, asthe important tool of financial derivativeinstrument, has been cast more attention by theinvestor and the researcher.This essaywould focuson the generation of option and Capital Asset Pricing Model ofthe option.First,thisdissertation in troducesthehistory and nowadaysstate of the option development. Then, it focuses its attention on classifying and description of the option.This paper r aises the Black-ScholesModel and Binary Tree Model astypical example totalk deeplyabou ttheir appliance. Finally, thispaper analysis some kinds of newoptions and their asse tpricing model, and introduce the practical us e o f thenewoption to all readers.??Keywords: historyof option developmentOption classifyin g ?Black-Scholes Model BinaryTree Model

期权定价理论

期权定价理论 期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。而期权定价理论被认为是经济学中唯一一个先于实践的理论。当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。后来默顿对此进行了改进。布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。 期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。在此之前,许多学者都研究过这一问题。最早的是法国数学家路易·巴舍利耶(Lowis Bachelier )于1900年提出的模型。随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。但他们都没能完全解出具体的方程。本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。 一、预备知识 (一)连续复利 我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。因而,熟悉连续复利的计算是十分必要的。 假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为 n r A )1(+。如果每年计m 次利息,则终值为:mn m r A )1(+ 。 当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rn Ae 。 对一笔以利率r 连续复利n 年的资金,其终值为现值乘以rn e ,而对一笔以利率r 连续复利贴现n 年的资金,其现值为终值是乘上rn e -。 在股票投资中,我们一般都以连续复利计息。也就是说,现在金额为S 投资股票,期望以复利μ计息,经过T 时期后(T 一般以年为单位),股票的期望价格为:T T Se S μ=,从而可得: S S T T ln 1= μ。也就是说,股票价格的期望收益率为股票价格比的对数。

基于B-S期权定价模型的股权价值评估

基于B-S期权定价模型的股权价值评估 摘要:随着我国经济的不断发展,股份制公司在市场经济中的优势越来越明显,吸引了一大批企业进行股份制改革。在企业改制过程中,股权价值的确定是整个股份制改革的重要步骤,本文针对一般性企业的股份改制过程中的股权价值问题进行探讨,并将实物期权中的B-S股权定价模型方法引入估价价值评估中,对企业改制过程中的股权价值评估方法进行新的探讨,为更多企业在改制过程中的股权定价提供参考依据。 关键词:B-S期权定价模型;企业改制;股权价值评估 1.研究背景和研究意义 1.1研究背景 有限责任公司和股份有限公司是我国企业主要的存在形式,随着经济的不断发展,股份有限公司形式成为越来越多企业的选择,股份有限公司在经济发展中的作用也愈加凸显。不少原有形式为有限责任公司的企业也在进行股份制改革,以优化企业的产权结构,丰富产权主体。股份制改革,有利于拓宽企业的筹资渠道,改善筹资难问题,获取稳定的发展资金;有利于分散风险,保障企业的生产运营和战略发展;通过股权激励等方式,有利于吸引和保留更多优秀的技术人才和管理人才,为企业的发展提供源源不断的动力;其资本聚集的效应,也顺应了社会生产的发展趋势,有利于优化资源配置,促进资本流动。随着越来越多的企业进行股份制改制,对企业改制的股权评估需求也越来越多。企业在进行股份制改革时,涉及到股权价值的衡量问题,由此产生了股权价值的评估需求。对股权价值进行评估,往往需要委托专业的评估机构,这不仅符合我国的法律法规,也符合市场运行的要求。 在企业改制过程中,股权价值的确定是整个股份制改革的重要步骤,在股权转让时,股权的价值更是关键因素,合理的股权价格有利于加深交易各方对该企业的价值认识,促成股权转让行为。在进行股权价值评估时,不同的计量方法,也会使最后的评估结果出现差异,因此在评估时,需要针对评估对象的具体情况选择合适的方法。由于我国市场经济条件的特殊性,在评估时需要对评估方法进行灵活应用,许多国外的评估惯例在我国并不适用,我国并不具备国外相对成熟的市场条件,但由于国外资产评估行业发展远远早于我国的资产评估行业的发展,在理论和实践上仍有许多值得借鉴的地方。就股权价值评估而言,我国对股权价值评估的理论研究还相对落后,对实践操作的指导也相对欠缺,虽然可以借鉴国外股权价值评估的已有成果,但是我国还不具备相应的市场经济条件,故我国在股权价值评估的理论和实践研究上还任重道远。 1.2研究意义 在我国企业改制越来越盛行,对股权价值评估的需求越来越大的背景下,我国股权价值

相关文档
最新文档