高中物理微元法解决物理试题专项训练及答案及解析

高中物理微元法解决物理试题专项训练及答案及解析
高中物理微元法解决物理试题专项训练及答案及解析

高中物理微元法解决物理试题专项训练及答案及解析

一、微元法解决物理试题

1.如图所示,长为l 均匀铁链对称挂在一轻质小滑轮上,由于某一微小扰动使铁链向一侧滑动,则铁链完全离开滑轮时速度大小为( )

A 2gl

B gl

C 2

gl D 1

2

gl 【答案】C 【解析】 【分析】 【详解】

铁链从开始到刚脱离滑轮的过程中,链条重心下降的高度为

244l l l H =

-= 链条下落过程,由机械能守恒定律,得:

2142

l mg mv ?

= 解得:

2

gl v =

2gl A 项与题意不相符; gl B 项与题意不相符; 2

gl

与分析相符,故C 项与题意相符; D.

1

2

gl D 项与题意不相符.

2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为

m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均

为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂

直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与m

n 、和v 的

关系正确的是( )

A .

21

6

nsmv B .2

13

nmv

C .

21

6

nmv D .2

13

nmv t ?

【答案】B 【解析】 【详解】

一个粒子每与器壁碰撞一次给器壁的冲量2I mv ?=,如图所示,

以器壁上面积为S 的部分为底、v t ?为高构成柱体,由题设可知,其内有1

6

的粒子在t ?时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数1

6

N n Sv t =

??,t ?时间内粒子给器壁的冲量21·

3I N I nSmv t =?=?,由I F t =?可得213I F nSmv t ==?,21

3

F f nmv S ==,故选B .

3.“水上飞人表演”是近几年来观赏性较高的水上表演项目之一,其原理是利用脚上喷水装置产生的反冲动力,使表演者在水面之上腾空而起。同时能在空中完成各种特技动作,如图甲所示。为简化问题。将表演者和装备与竖直软水管看成分离的两部分。如图乙所示。已知表演者及空中装备的总质量为M ,竖直软水管的横截面积为S ,水的密度为ρ,重力加速度为g 。若水流竖直向上喷出,与表演者按触后能以原速率反向弹回,要保持表演者在空中静止,软水管的出水速度至少为( )

A .

2Mg

S

ρ B .

Mg

S

ρ C .

2Mg

S

ρ D .

4Mg

S

ρ 【答案】C 【解析】 【详解】

设出水速度为v ,则极短的时间t 内,出水的质量为

m Svt ρ=

速度由竖起向上的v 的变为竖起向下的v ,表演者能静止在空中,由平衡条件可知表演者及空中装备受到水的作用力为Mg ,由牛顿第三定律可知,装备对水的作用力大小也为

Mg ,取向下为正方向,对时间t 内的水,由动量定理可得

22()()Mgt mv m v v Sv t S t ρρ--=--=

解得

2Mg

v S

ρ=

故C 正确,A 、B 、D 错误; 故选C 。

4.如图所示,有一条长为2m L =的均匀金属链条,有一半长度在光滑的足够高的斜面上,斜面顶端是一个很小的圆弧,斜面倾角为30,另一半长度竖直下垂在空中,链条由静止释放后开始滑动,则链条刚好全部滑出斜面时的速度为(g 取210m /s )( )

A .2.5m /s

B .

52

m /s 2

C 5m /s

D .

35

m /s 2

【答案】B 【解析】 【分析】 【详解】

设链条的质量为2m ,以开始时链条的最高点为零势能面,链条的机械能为

113

2sin 302024248

p k L L E E E mg mg mgL =+=-???-??+=-

链条全部滑出后,动能为

21

22

k E mv '=?

重力势能为

22

p L

E mg '=-?

由机械能守恒定律可得

k p E E E ''=+

23

8

mgL mv mgL -=- 解得

52

m /2

v s =

故B 正确,ACD 错误。 故选B 。

5.如图所示,某力10N F =,作用于半径1m R =的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为( )

A .0J

B .20J π

C .10J

D .20J

【答案】B 【解析】 【详解】

把圆周分成无限个微元,每个微元可认为与力F 在同一直线上,故

W F s ?=?

则转一周中做功的代数和为

2π20πJ F R W ?==

故选B 正确。 故选B 。

6.位于光滑水平面上的小车受到水平向右的拉力作用从静止开始运动,已知这一过程中拉力大小由F 1随时间均匀增大到F 2,所用时间为t ,小车的位移为s ,小车末速度为v 。则下列判断正确的是( ) A .小车增加的动能等于()121

2

F F s + B .小车增加的动能大于

()121

2

F F s +

C .小车增加的动量等于()121

2

F F t + D .小车的位移小于12

vt 【答案】BCD 【解析】 【详解】

AB .因为拉力大小由F 1随时间均匀增大到F 2,而小车做加速运动,位移在单位时间内增加的越来越大,所以若将位移s 均分为无数小段,则在每一小段位移内F 增加的越来越慢,如图所示(曲线表示题所示情况,直线表示拉力随s 均匀变化情况),而图像的面积表示拉力做的功。

其中拉力随s 均匀变化时,拉力做功为:

()121

2

W F F s =

+, 故当拉力大小由F 1随时间均匀增大到F 2时(曲线情况),做功大于

()121

2

F F s +,根据动能定理可知小车增加的动能大于

()121

2

F F s +,A 错误B 正确; C .因为拉力是随时间均匀增大,故在t 时间内拉力的平均值为:

()121

2

F F F +=

, 所以物体动量增加量为:

()121

2

p F F t ?=

+, C 正确;

D .根据牛顿第二定律可知在力随时间均匀增大的过程中物体运动的加速度逐渐增大,即

v t -图像的斜率增大(图中红线所示,而黑线表示做匀加速直线运动情况)。

根据v t 图像的面积表示位移可知小车的位移小于1

2

vt,D正确。

故选BCD。

7.如图1所示,一端封闭的两条平行光滑长导轨相距L,距左端L处的右侧一段被弯成半径为的四分之一圆弧,圆弧导轨的左、右两段处于高度相差的水平面上.以弧形导轨的末端点O为坐标原点,水平向右为x轴正方向,建立Ox坐标轴.圆弧导轨所在区域无磁场;左段区域存在空间上均匀分布,但随时间t均匀变化的磁场B(t),如图2所示;右段区域存在磁感应强度大小不随时间变化,只沿x方向均匀变化的磁场B(x),如图3所示;磁场B(t)和B(x)的方向均竖直向上.在圆弧导轨最上端,放置一质量为m的金属棒ab,与导轨左段形成闭合回路,金属棒由静止开始下滑时左段磁场B(t)开始变化,金属棒与导轨始终接触良好,经过时间t0金属棒恰好滑到圆弧导轨底端.已知金属棒在回路中的电阻为R,导轨电阻不计,重力加速度为g.

(1)求金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E;

(2)如果根据已知条件,金属棒能离开右段磁场B(x)区域,离开时的速度为v,求金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q;

(3)如果根据已知条件,金属棒滑行到x=x1位置时停下来,

a.求金属棒在水平轨道上滑动过程中通过导体棒的电荷量q;

b.通过计算,确定金属棒在全部运动过程中感应电流最大时的位置.

【答案】(1)L2B0/t0(2)+ mgL/2-mv2(3)金属棒在x=0处,感应电流最大

【解析】

试题分析:(1)由图看出,左段区域中磁感应强度随时间线性变化,其变化率一定,由法

拉第电磁感应定律得知,回路中磁通量的变化率相同,由法拉第电磁感应定律求出回路中感应电动势.

(2)根据欧姆定律和焦耳定律结合求解金属棒在弧形轨道上滑行过程中产生的焦耳热.再根据能量守恒求出金属棒在水平轨道上滑行的过程中产生的焦耳热,即可得到总焦耳热.(3)在金属棒滑到圆弧底端进入匀强磁场B0的一瞬间,在很短的时间△t内,根据法拉第电磁感应定律和感应电流的表达式,求出感应电荷量q.再进行讨论.

解:(1)由图2可:=

根据法拉第电磁感应定律得感应电动势为:E==L2=L2

(2)金属棒在弧形轨道上滑行过程中,产生的焦耳热为:Q1==

金属棒在弧形轨道上滑行过程中,根据机械能守恒定律得:mg=

金属棒在水平轨道上滑行的过程中,产生的焦耳热为Q2,根据能量守恒定律得:

Q2=﹣=mg﹣

所以,金属棒在全部运动过程中产生的焦耳热为:Q=Q1+Q2=+mg﹣

(3)a.根据图3,x=x1(x1<x)处磁场的磁感应强度为:B1=.

设金属棒在水平轨道上滑行时间为△t.由于磁场B(x)沿x方向均匀变化,根据法拉第电磁感应定律△t时间内的平均感应电动势为:===

所以,通过金属棒电荷量为:q=△t=△t=

b.金属棒在弧形轨道上滑行过程中,感应电流为:I1==

金属棒在水平轨道上滑行过程中,由于滑行速度和磁场的磁感应强度都在减小,所以,此过程中,金属棒刚进入磁场时,感应电流最大.刚进入水平轨道时,金属棒的速度为:

v=

所以,水平轨道上滑行过程中的最大电流为:I2==

若金属棒自由下落高度,经历时间t=,显然t>t

所以,I1=<==I2.

综上所述,金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大. 答:(1)金属棒在圆弧轨道上滑动过程中,回路中产生的感应电动势E 是L 2

(2)金属棒从开始滑动到离开右段磁场过程中产生的焦耳热Q 为+mg ﹣. (3)a .金属棒在水平轨道上滑动过程中通过导体棒的电荷量q 为

b .金属棒在全部运动过程中金属棒刚进入水平轨道时,即金属棒在x=0处,感应电流最大.

【点评】本题中(1)(2)问,磁通量均匀变化,回路中产生的感应电动势和感应电流均恒定,由法拉第电磁感应定律研究感应电动势是关键.对于感应电荷量,要能熟练地应用法拉第定律和欧姆定律进行推导.

8.光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子除了具有能量之外还具有动量.由狭义相对论可知,一定的质量m 与一定的能量E 相对应:E =m 2 c ,其中c 为真空中光速.

(1)已知某单色光的频率为v ,波长为λ,该单色光光子的能量E =hv ,其中h 为普朗克常量.试借用质子、电子等粒子动量的定义:动量=质量×速度,推导该单色光光子的动量

p = h

λ

.

(2)光照射到物体表面时,如同大量气体分子与器壁的频繁碰撞一样,将产生持续均匀的压力,这种压力会对物体表面产生压强,这就是“光压”,用I 表示.

一台发光功率为O P 的激光器发出一束某频率的激光,光束的横截面积为S .如图所示,真空中,有一被固定的“∞”字形装置,其中左边是圆形黑色的大纸片,右边是与左边大小、质量均相同的圆形白色大纸片.

①当该激光束垂直照射到黑色纸片中心上,假设光全部被黑纸片吸收,试写出该激光在黑色纸片的表面产生的光压1I 的表达式.

②当该激光束垂直坪射到白色纸片中心上,假设其中被白纸反射的光占入射光的比例为η,其余的入射光被白纸片吸收,试写出该激光在白色纸片的光压2I 的表达式. 【答案】(1)见解析;(2)1I =02P I cS ;= ()0

1P CS

η+ 【解析】 【分析】

(1)根据能量与质量的关系,结合光子能量与频率的关系以及动量的表达式推导单色光光

子的动量h

p λ

(2)根据一小段时间

△t 内激光器发射的光子数,结合动量定理求出其在物体表面引起的光压的表达式. 【详解】

(1)光子的能量为 E=mc 2 根据光子说有 E=hν=c

h

λ

光子的动量 p=mc 可得 E h p c λ

=

=. (2)①一小段时间△t 内激光器发射的光子数 0P t n hc λ

=

光照射物体表面,由动量定理得-F △t=0-np 产生的光压 I 1=F S

解得 0

1P I cS

=

②假设其中被白纸反射的光占入射光的比例为η,这些光对物体产生的压力为F 1,(1-η)被黑纸片吸收,对物体产生的压力为F 2. 根据动量定理得 -F 1△t=0-(1-η)np -F 2△t=-ηnp -ηnp 产生的光压 12

2F F I S

+= 联立解得 ()021P I cS

η+=

【点睛】

本题要抓住光子的能量与动量区别与联系,掌握动量定理的应用,注意建立正确的模型是解题的关键.

9.我们一般认为,飞船在远离星球的宇宙深处航行时,其它星体对飞船的万有引力作用很微弱,可忽略不计.此时飞船将不受外力作用而做匀速直线运动.

设想有一质量为M 的宇宙飞船,正以速度0v 在宇宙中飞行.飞船可视为横截面积为S 的圆柱体(如图所示).某时刻飞船监测到前面有一片尘埃云.

(1)已知在开始进入尘埃云的一段很短的时间t ?内,飞船的速度减小了v ?,求这段时间内飞船受到的阻力大小.

(2)已知尘埃云公布均匀,密度为ρ.

a .假设尘埃碰到飞船时,立即吸附在飞船表面.若不采取任何措施,飞船将不断减速.通过监测得到飞船速度的倒数“1/v ”与飞行距离“x ”的关系如图所示.求飞船的速度由

0v 减小1%的过程中发生的位移及所用的时间.

b .假设尘埃与飞船发生的是弹性碰撞,且不考虑尘埃间的相互作用.为了保证飞船能以速度0v 匀速穿过尘埃云,在刚进入尘埃云时,飞船立即开启内置的离子加速器.已知该离子加速器是利用电场加速带电粒子,形成向外发射的高速(远远大于飞船速度)粒子流,从而对飞行器产生推力的.若发射的是一价阳离子,每个阳离子的质量为m ,加速电压为

U ,元电荷为e .在加速过程中飞行器质量的变化可忽略.求单位时间内射出的阳离子数.

【答案】(1)v M t ??(2)a .019919602M v S ρ b 2

2Sv eum

ρ 【解析】 (1)飞船的加速度?=

?v

a t

,根据牛顿第二定律有:=f Ma 则飞船受到的阻力v f M

t

?=? (2)a .对飞船和尘埃,设飞船的方向为正方向,根据动量守恒定律有:

0099

()

100

Mv M Sx v ρ=+,解得99M x S ρ=

由1

x v

-图象可得:0011100299t x v v ??=+ ??? 解得:019919602M

t v S

ρ=

b .设在很短时间t ?内,与飞船碰撞的尘埃的质量为m ',所受飞船的作用力为f ',飞船与尘埃发生弹性碰撞,

由动量守恒定律可知:012Mv Mv m v =+' 由机械能守恒定律可知:222012111222

Mv Mv m v '=+ 解得202M

v v M m

'=

+

由于M m >',所以碰撞后尘埃的速度202v v =

对尘埃,根据动量定理可得:2f t m v ?='',其中0m Sv t ρ'=?

则飞船所受到的阻力2

02f Sv ρ'=

设一个离子在电场中加速后获得的速度为v

根据动能定理可能得:e 212

mv = 设单位时间内射出的离子数为n ,在很短的时间t ?内,

根据动量定理可得:F t n tmv ?=?

则飞船所受动车=F nmv ,飞船做匀速运动,F f '=,

解得:2

0n Sv =

10.从微观角度看,气体对容器的压强是大量气体分子对容器壁的频繁撞击引起的.正方体密闭容器中有大量运动的粒子,每个粒子质量为m ,单位体积内的粒子数量为n .为简化问题,我们假定:粒子大小可以忽略;速率均为v ,且与容器壁各面碰撞的机会均等;与容器壁碰撞前后瞬间,粒子速度方向都与容器壁垂直,且速率不变. ①利用所学力学知识,推导容器壁受到的压强p 与m 、n 和v 的关系;

②我们知道,理想气体的热力学温度T 与分子的平均动能E 1成正比,即1T E α=,式中α为比例常数.请从微观角度解释说明:一定质量的理想气体,体积一定时,其压强与热力学温度成正比.

【答案】①2

13p nmv = ②见解析

【解析】 【分析】 【详解】

①在容器壁附近,取面积为S ,高度为v t ?的体积内的粒子为所究对象,该体积中粒子个数2N Sv tn =?

可以撞击任一容器壁的粒子数为

21

6

N , 一个撞击容器壁的气体分子对其产生的压力用F 来表示,根据牛顿第三定律容器壁对气体分子的力大小也为F , 由

2F t mv ?=

2mv

F t

=

? 容器壁受到的压强

22

1163

N F

p nmv S == ②由

21

3p nmv =,k T aE =,212

k E mv = 解得

23n

p T a

=

所以一定质量的理想气体,体积一定时,其压强与热力学温度成正比.

11.光电效应和康普顿效应深入地揭示了光的粒子性的一面.前者表明光子具有能量,后者表明光子除了具有能量之外还具有动量.由狭义相对论可知,一定的质量m 与一定的能量E 相对应:2E mc =,其中c 为真空中光速.

(1)已知某单色光的频率为ν,波长为λ,该单色光光子的能量E h ν=,其中h 为普朗克常量.试借用质子、电子等粒子动量的定义:动量=质量×速度,推导该单色光光子的动量

h

p λ

=

(2)光照射到物体表面时,如同大量气体分子与器壁的频繁碰撞一样,将产生持续均匀的压力,这种压力会对物体表面产生压强,这就是“光压”,用I 表示.

一台发光功率为P 0的激光器发出一束某频率的激光,光束的横截面积为S .当该激光束垂照射到某物体表面时,假设光全部被吸收,试写出其在物体表面引起的光压的表达式. 【答案】(1)见解析(2)0

P cS

【解析】

试题分析:(1)根据能量与质量的关系,结合光子能量与频率的关系以及动量的表达式推导单色光光子的动量h

p λ

=

;(2)根据一小段时间t ?内激光器发射的光子数,结合动量

定理求出其在物体表面引起的光压的表达式. (1)光子的能量2E mc =,c

E h h

νλ

==

光子的动量

p mc =,可得E h

p c λ

== (2)一小段时间t ?内激光器发射的光子数

0P t n c h

λ

?=

光照射物体表面,由动量定理

F t np ?= 产生的光压F

I S =

解得:0P I cS

=

12.如图所示,在光滑的水平桌面上放置一根长为l 的链条,链条沿桌边挂在桌外的长度为a ,链条由静止开始释放,求链条全部离开桌面时的速度。

【答案】22()l a g

v l

-=

【解析】 【分析】 【详解】

链条从图示位置到全部离开桌面的过程中,原来桌面上的那段链条下降的距离为

2

l a

-,挂在桌边的那段链条下降的距离为l a -,设链条单位长度的质量为m ',链条总的质量为

m lm '=,由机械能守恒定律得:

21

()()22l a m l a g

m ag l a lm v -'''-+-= 解

22()l a g

v l

-=

点评:根据重力势能的减少量等于链条动能的增加量列方程,不需要选取参考平面。

13.根据量子理论,光子不但有动能,还有动量,其计算式为/p h λ=,其中h 是普朗克常量,λ是光子的波长. 既然光子有动量,那么光照到物体表面,光子被物体吸收或反射时,光都会对物体产生压强,这就是“光压”.既然光照射物体会对物体产生光压,有人设想在遥远的宇宙探测中用光压为动力推动航天器加速. 给探测器安上面积极大,反射率极高的薄膜,并让它正对太阳.已知在地球绕日轨道上,每平方米面积上得到的太阳光能为

0 1.35kW P =,探测器质量为50kg M =,薄膜面积为42410m ?,那么探测器得到的加

速度为多大?

【答案】424.1.810m /s -? 【解析】 【分析】 【详解】

由E hv =和/p h λ=以及真空中光速c v λ=,不难得出光子的能量和动量之间的关系:

E pc =.

设时间t 内激光器射出的光子个数为n ,每个光子的能量为E ,动量为p ,激光照到物体上后全部被反射,

这时激光对物体的光压最大. 设这个压强为P ,则有0n P E t =,2n F p t

=?,F P S =.

将E pc =代入得0

2P P cS

=

. 所以,72.2510Pa P -=?.

再由牛顿第二定律,得42/ 1.810m /s a PS M -==?.

本题是光子与物体相互作用产生光压的典型示例,也是连续作用问题在光子与物体间相互作用的典型示例,阅读本题能理解光压产生的原因.

本题中航天器得到的加速度虽然很小,但长时间加速后也能得到可观的速度增量. 这对远距离的太空探测来说是可行的,作为科学设想,本题的构思是有其积极意义的.

14.如图所示,有两根足够长的平行光滑导轨水平放置,右侧用一小段光滑圆弧和另一对竖直光滑导轨平滑连接,导轨间距1m L =。细金属棒ab 和cd 垂直于导轨静止放置,它们的质量m 均为1kg ,电阻R 均为0.25Ω。cd 棒右侧1m 处有一垂直于导轨平面向下的矩形匀强磁场区域,磁感应强度1T B =,磁场区域长为s 。以cd 棒的初始位置为原点,向右为正方向建立坐标系。现用向右的水平变力F 作用于ab 棒上,力随时间变化的规律为

(0.51)N F t =+,作用4s 后撤去F 。撤去F 之后ab 棒与cd 棒发生弹性碰撞,cd 棒向右

运动。金属棒与导轨始终接触良好,导轨电阻不计,空气阻力不计,重力加速度

210m/s g =,求:

(1)撤去力F 的瞬间,ab 棒的速度大小;

(2)若1m s =,求cd 棒滑上右侧竖直导轨,距离水平导轨的最大高度h ;

(3)若可以通过调节磁场右边界的位置来改变s 的大小,求cd 棒最后静止时的位移x 与s 的关系。

【答案】(1)8m/s ;(2)1.8m ;(3)见解析 【解析】 【分析】 【详解】

(1)4 s 内的平均作用力

(0)(4)

2N 2

F F F +=

= 由动量定理得

F t =mv 1

所以

v 1=8 m/s

(2)ab 棒与cd 棒质量相等,发生弹性碰撞后,ab 棒静止,cd 棒速度为v 1,设cd 棒离开磁场时的速度为v 2,由动量定理得

21BIL t mv mv -?=-

2BLs

q I t R

=?=

所以

22126m/s 2B L s

v v mR

=-=

上升的高度

22 1.8m 2v h g

==

(3)分三种情况:如果s 足够大,cd 棒在磁场内运动的距离为d ,则

10BIL t mv -?=-

2BLd

q I t R

=?=

1

22

24m mRv d B L

=

= ①s ≥4m 时,cd 棒不能穿出磁场,停在磁场内,位移为

x =d +1m=5 m

②当2m ≤s <4 m 时,cd 棒穿过磁场后经竖直轨道返回,若仍没有穿过磁场,cd 棒的位移为

x =2s -d +1 m =2s -3 m

③当0

x =0 m

15.物理问题的研究首先要确定研究对象。当我们研究水流,气流等流体问题时,经常会选取流体中的一小段来进行研究,通过分析能够得出一些有关流体的重要结论。 (1)水刀应用高压水流切割技术,相比于激光切割有切割材料范围广,效率高,安全环保等优势。某型号水刀工作过程中,将水从面积S =0.1mm 2的细喷嘴高速喷出,直接打在被切割材料表面,从而产生极大压强,实现切割。已知该水刀每分钟用水600g ,水的密度为ρ=1.0×103kg/m 3

a .求从喷嘴喷出水的流度v 的大小

b .高速水流垂直打在材料表面上后,水速几乎减为0,求水对材料表面的压强p 约为多大。

(2)某同学应用压力传感器完成以下实验,如图所示,他将一根均匀的细铁链上端用细线悬挂在铁架台上,调整高度使铁链的下端刚好与压力传感器的探测面接触。剪断细线,铁链逐渐落在探测面上。传感器得到了探测面所受压力随时间的变化图象。通过对图线分析发现铁链最上端落到探测面前后瞬间的压力大小之比大约是N 1:N 2=3:1,后来他换用不同长度和粗细的铁链重复该实验,都得到相同结果。请你通过理论推理来说明实验测得的结果是

正确的。(推理过程中需要用到的物理量的字母请自行设定)

【答案】(1)a .100m/s ;b .7

1.010pa p =?;(2)推导过程见解析

【解析】 【分析】 【详解】

(1)a .一分钟喷出的水的质量为

m Svt ρ=

所以水的流速

m v St

ρ=

代入数据得v =100m/s

b .选取t ?时间内打在材料表面质量为m ?水为研究对象,由动量定理得

0F t mv -?=-?

其中

=m Sv t ρ??

解得

2F Sv ρ=

根据牛顿第三定律,材料表面受到的压力

'F F =

则根据压强公式

'F p S

=

解得

27=1.010pa p v ρ=?

(2)设单位长度的铁链质量为b ,铁链的长度为L ,当铁链的最上端落在探测面上时,选取铁链最上端的一小段为研究对象,其质量

m bv t ?=?

根据自由落体运动公式

22v gL =

可知速度

2v gL

设向下方向为正,根据动量定理

0F t mv -?=-?

解得

2F bgL =

则探测面受到铁链最上端的压力为

'2F F bgL ==

此时除最上端外,其余部分的铁链已经落在探测面上,对探测面的压力

N mg =

其中

m bL =

则探测面受到的总压力为

1'3N N F bgL =+=

当铁链的最上端落在探测面上后,探测面受到的压力大小

2N mg bgL ==

由此可得

1231

N N = 实验结果是正确的。

微元法在几何与物理中的一些应用_邓智维

微元法在几何与物理中的一些应用 摘要:微元法在几何、物理、力学和工程技术等方面都有着极其广泛的应用,是解决定积分应用问题的重要思想方法。本文特别阐述了微元法的原理及其过程,对微元法在几何问题和物理问题中的应用进行了研究。分析了微元法在定积分的应用中如何确定所求量的微元,在解决实际问题时,应先将实际问题合理转化为适合的数学模型,设定积分变量,然后运用微元法建立积分表达式。因此使用微元法的关键是在局部上建立微元表达式,从而可将讨论问题表示为定积分。 关键词:微元法;微元;几何应用;物理应用 Micro Element Method In Geometrical And Physical Abstract:Micro element method has widely application in geometry, physics, and mechanics and engineering technology, it is an important method to solve the definite integral problem .This paper expounds the principle and process of micro element method, to discuses the application problems of geometrical problems and physics. It is analyzed that how a solid is divided into some microelements when definite integral is applied to calculating its volume, when solving practical problems, firstly let the actual problem turn into suitable mathematical model rationally and set the integral variable, and then apply the micro elements method to establish the integral expression. The key point of using micro element is established the micro elements expression in local, thus, to discuss problems expressed as definite integral. Keywords:Micro element method; Micro element; Geometric applications; Physics application

高考物理图示法图像法解决物理试题解题技巧及练习题

高考物理图示法图像法解决物理试题解题技巧及练习题 一、图示法图像法解决物理试题 1.甲乙两图中,某时刻绳子AB 与水平方向的夹角均为θ,绳子上端以速度v 0匀速拉动,在两车运动过程中,下列说法正确的是( ) A .甲、乙两车运动速度大小之比cos 1cos θ θ + B .甲车运动速度大小为 cos v θ C .相同时间t ?内乙车速度增量大于甲车速度增量 D .此刻若将速度v 0改成拉力F ,则两车加速度大小之比1:1 【答案】AC 【解析】 【详解】 ABC .由甲图可知,甲车的速度 11cos v v θ = + 乙车的速度 2cos v v θ = 所以,甲、乙两车运动速度大小之比cos 11cos θ θ <+,相同时间t ?内乙车速度增量大于甲车 速度增量.故AC 正确,B 错误; D .改成拉力F ,甲车所绳子合力沿两绳子夹角的角平分线上,汽车甲的合力大小为 22cos 2 F θ ,汽车乙的合力大小为cos F θ,因此合力不相等,加速度不相等,故D 错误. 2.如图所示,将一劲度系数为k 的轻弹簧一端固定在内壁光滑的半球形容器底部O ′处(O 为球心),弹簧另一端与质量为m 的小球相连,小球静止于P 点。已知容器半径为R ,与水平面间的动摩擦因数为μ,OP 与水平方向的夹角为θ=30°。下列说法正确的是 A .容器相对于水平面有向左运动的趋势

B.轻弹簧对小球的作用力大小为 mg C.容器对小球的作用力竖直向上 D.弹簧原长为R+ 【答案】BD 【解析】 【分析】 对容器和小球整体研究,分析受力可求得半球形容器受到的摩擦力.对小球进行受力分析可知,小球受重力、支持力及弹簧的弹力而处于静止,由共点力的平衡条件可求得小球受到的轻弹簧的弹力及小球受到的支持力,由胡克定律求出弹簧的压缩量,即可求得原长.【详解】 由于容器和小球组成的系统处于平衡状态,容器相对于水平面没有向左运动的趋势,故A 错误;容器对小球的作用力是弹力,指向球心O,故B正确;对小球受力分析,如图所示 由可知,支持力和弹簧的弹力之间的夹角为120°,则由几何关系可知,小球受到容器的支持力和弹簧对小球的弹力大小均为mg,故C错误;图中弹簧长度为R,压缩量 为,故原长为,故D正确。故选BD。 【点睛】 本题考查共点力的平衡条件应用,要注意明确共点力平衡问题重点在于正确选择研究对象,本题运用隔离法和整体法两种方法进行受力分析得出结论.同时注意几何关系的正确应用. 3.一快艇从离岸边100m远的河流中央向岸边行驶.已知快艇在静水中的速度图象如(图甲)所示;河中各处水流速度相同,且速度图象如(图乙)所示.则() A.快艇的运动轨迹一定为直线 B.快艇的运动轨迹一定为曲线 C.快艇最快到达岸边,所用的时间为20s D.快艇最快到达岸边,经过的位移为100m 【答案】BC 【解析】

高考物理微元法解决物理试题及其解题技巧及练习题

高考物理微元法解决物理试题及其解题技巧及练习题 一、微元法解决物理试题 1.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( ) A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=1 2 ρsv2 【答案】B 【解析】 【分析】 【详解】 设t时间内吹到建筑物上的空气质量为m,则有: m=ρsvt 根据动量定理有: -Ft=0-mv=0-ρsv2t 得: F=ρsv2 A.F =ρsv,与结论不相符,选项A错误; B.F =ρsv2,与结论相符,选项B正确; C.F =ρsv3,与结论不相符,选项C错误; D.F=1 2 ρsv2,与结论不相符,选项D错误; 故选B。 2.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm。查询得知,当时雨滴竖直下落速度约为12m/s。据此估算该压强约为()(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3) A.0.15Pa B.0.54Pa C.1.5Pa D.5.1Pa 【答案】A 【解析】 【分析】 【详解】 由于是估算压强,所以不计雨滴的重力。设雨滴受到支持面的平均作用力为F。设在△t时间内有质量为△m的雨水的速度由v=12m/s减为零。以向上为正方向,对这部分雨水应用动量定理有 () F t mv mv ?=--?=?

高中物理磁场专题讲解经典例题

磁场专题 7.【东北师大附中2011届高三第三次模底】如图所示,MN 是一荧光屏,当带电粒子打到荧光屏上时,荧光屏能够发光。MN 的上方有磁感应强度为B 的匀强磁场,磁场方向垂直纸面向里。P 为屏上的一小孔,PQ 与MN 垂直。一群质量为m 、带电荷量q 的粒子(不计重力),以相同的速率v ,从P 处沿垂直于磁场方向射入磁场区域,且分布在与PQ 夹角为θ的范围内,不计粒子间的相互作用。则以下说法正确的是( ) A .在荧光屏上将出现一个圆形亮斑,其半径为mv q B B .在荧光屏上将出现一个条形亮线,其长度为 ()21cos mv qB θ- C .在荧光屏上将出现一个半圆形亮斑,其半径为mv qB D .在荧光屏上将出现一个条形亮线,其长度为()21sin mv qB θ- 10.【东北师大附中2011届高三第三次模底】如图,电源电 动势为E ,内阻为r ,滑动变阻器电阻为R ,开关闭合。 两平行极板间有匀强磁场,一带电粒子正好以速度v 匀速 穿过两板。以下说法正确的是(忽略带电粒子的重力)( ) A .保持开关闭合,将滑片P 向上滑动一点,粒子将可能从下极板边缘射出 B .保持开关闭合,将滑片P 向下滑动一点,粒子将可能从下极板边缘射出 C .保持开关闭合,将a 极板向下移动一点,粒子将继续沿直线穿出 D .如果将开关断开,粒子将继续沿直线穿出 4.【辽宁省丹东市四校协作体2011届高三第二次联合考试】如图所示,一粒子源位于一边长为a 的正三角形ABC 的中点O 处,可以在三角形所在的平面内向各个方向发射出速度大小为v 、质量为m 、电荷量为q 的带电粒子,整个三角形位于垂直于△ABC 的匀强磁场中,若使任意方向射出的带电粒子均不能射出三角形区域,则磁感应强度的最小值为 ( ) A .mv qa B .2mv qa Q

高中物理解题技巧:图像法2

高物理解题技巧:图像法2 图象法能简明形象地反映某物理量随另一物理量变化的规律,故图象法在物理有广泛的应用,在定性或定量讨论分析某些物理问题时,应用图象比例解析方程求解,会容易、简明得多 不论是解图象问题或利用图象求解物理问题,都要求: 1 认识坐标轴的意义(包括其正、负号的意义),这是认识图象的开始,是区别图象性质的关键 2 会写图象所表示的函数(如:正比例函数、一次函数、二次函数等),会画已知函数的图象,这是解答图象问题或利用图象求解物理问题的关键 3 清楚图象斜率的意义 4 知道图象在坐标轴上截距的意义 5 理解图线下所围“面积”的意义 全面理解物理图象的意义,熟练应用图象处理物理问题,是同们应该掌握的一个基本技能 一、利用图象解题 例1 某物体从静止开始匀加速直线运动,一段时间后做匀速直线运动直至停止,已知物体共用时间10s,总位移为20m,求物体在运动过程的最大速度 解析:作物体运动的图象,如图1所示,根据图线下所围“面积”表示 位移,可得

图1 即 点评:本题还可以运用求解,若引入加速度分析求解会更麻烦, 借助图象,使物体运动过程更形象、直观地表现了,简捷明快,有着曲径通幽之妙 二、利用图象解题 例2 质量为2g的物体在恒力F作用下,从静止开始运动,已知物体所受恒力F与 位移s的关系是,那么,当位移为2m时,物体的速度多大? 解析:作物体的图象,如图2所示,根据图线下所围“面积”表示F做的功, 可知 由动能定理得 图2 点评:本题物体受力及运动加速度都是变化的,可以利用平均力计算F的功,也可以利用平均加速度求解,但显然没有利用图象求解得直接、直观 三、利用图象解题

(完整)高中物理解题(微元法)

高中奥林匹克物理竞赛解题方法 微元法 方法简介 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。用该方法可以使一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化。在使用微元法处理问题时,需将其分解为众多微小的“元过程”,而且每个“元过程”所遵循的规律是相同的,这样,我们只需分析这些“元过程”,然后再将“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法会加强我们对已知规律的再思考,从而引起巩固知识、加深认识和提高能力的作用。 赛题精讲 例1:如图3—1所示,一个身高为h 的人在灯以悟空速度v 沿水平直线行走。设灯距地面高为H ,求证人影的顶端C 点是做匀速直线运动。 解析:该题不能用速度分解求解,考虑采用“微元法”。 设某一时间人经过AB 处,再经过一微小过程 △t (△t →0),则人由AB 到达A ′B ′,人影顶端 C 点到达C ′点,由于△S AA ′=v △t 则人影顶端的 移动速度h H Hv t S h H H t S v A A t C C t C -=??-=??='→?' →?00lim lim 可见v c 与所取时间△t 的长短无关,所以人影的顶 端C 点做匀速直线运动. 例2:如图3—2所示,一个半径为R 的四分之一光滑球 面放在水平桌面上,球面上放置一光滑均匀铁链,其A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不能 忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=?

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

微元法在物理习题中的应用(全)

电磁感应中的“微元法”和“牛顿第四定律” 江苏省特级教师,江苏省丰县中学——戴儒京 所谓:“微元法” 所谓“微元法”,又叫“微小变量法”,是解物理题的一种方法。 1.什么情况下用微元法解题?在变力作用下做变变速运动(非匀变速运动)时,可考虑用微元法解题。 2. 关于微元法。在时间t ?很短或位移x ?很小时,非匀变速运动可以看作匀变速运动,运动图象中的梯形可以看作矩形,所以x t v ?=?,s x l t lv ?=?=?。微元法体现了微分思想。 3. 关于求和 ∑ 。许多小的梯形加起来为大的梯形,即 ∑?=?S s , (注意:前面的s 为小写,后面的S 为大写),并且0v v v -=?∑,当末速度 0=v 时,有∑=?0v v ,或初 速度00=v 时,有 ∑=?v v ,这个求和的方法体现了积分思想。 4. 无论物理规律用牛顿定律,还是动量定理或动能定理,都可以用微元法. 如果既可以用动量定理也可以用动能定理解。对于使用老教科书的地区,这两种解法用哪一种都行,但对于使用课程标准教科书的地区就不同了,因为课程标准教科书把动量的内容移到了选修3-5,如果不选修3-5,则不能用动量定理解,只能用动能定理解。 微元法解题,体现了微分和积分的思想,考查学生学习的潜能和独创能力。 电磁感应中的微元法 一些以“电磁感应”为题材的题目。可以用微元法解,因为在电磁感应中,如导体切割磁感线运动,产生感应电动势为BL v E =,感应电流为R B L v I = ,受安培力为v R L B B I L F 2 2==,因为是变力问题,所以可以用微元法. 1.只受安培力的情况 例1. 如图所示,宽度为L 的光滑金属导轨一端封闭,电阻不计,足够长,水平部分有竖直向上、磁感应强度为B 的匀强磁场。质量为m 、电阻为r 的导体棒从高度为h 的斜轨上从静止开始滑下,由于在磁场中受安培力的作用,在水平导轨上滑行的距离为S 而停下。 (1) 求导体棒刚滑到水平面时的速度0v ; (2) 写出导体棒在水平导轨上滑行的速度v 与在水平导轨上滑行的距离x 的函数关 系,并画出x v -关系草图。 (3)求出导体棒在水平导轨上滑行的距离分别为S/4、S/2时的速度1v 、2v ;

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

微元法在高中物理中的应用

微元法在高中物理中的应用 江苏省靖江市斜桥中学夏桂钱 微元法是分析、解决物理问题中的常用方法,也是从部分到整体的思维方法。它是将研究对象(物体或物理过程)进行无限细分,从其中抽取某一微小单元即“元过程”,进行讨论,每个“元过程”所遵循的规律是相同的。对这些“元过程”进行必要的数学方法或物理思想处理,进而使问题求解。使用此方法可以把一些复杂的物理过程用我们熟悉的物理规律迅速地加以解决,使所求的问题简单化,从而起到巩固知识、加深认识和提高能力的作用。 一、挖掘教材中微元素材,认知微元思想 微元法思想在新课标教材(人教版)上时有渗透。如在引入瞬时速度的概念时,教材从平均速度出发,提出从t到t+△t这段时间间隔内,△t越小运动快慢的差异也就越小,运动的描述就越精确。在此基础上,再提出若△t趋向于零时,就可以认为△t的平均速度就是t时刻的瞬时速度。正是这种无限分割的方法,可以使原来较为复杂的过程转化为较简单的过程。再如,我们要推导匀变速直线运动的位移公式,显然不能直接用s=vt,原因就在于速度本身是变化的,不能直接套用匀速直线运动的公式。但是我们可以想象,如果我们把整个过程的时间分成无数微小的时间间隔,我们分得愈密,每一份的时间间隔也就愈小,此间隔内,速度的变化亦就愈小,如果分得足够细,就可以认为速度几乎不变,此时就可将每一份按匀速直线运动来处理,完毕之后,再累加即可。 必修2第五章第四节《重力势能》中,计算物体沿任意路径向下运动时重力所做的功时,先将物体运动的整个路径分成许多很短的间隔,由于每一段都很小很小,就可以将每一段近似地看做一段倾斜的直线,从而就能利用功的定义式计算出每一小段内重力的功,再累加得到整个过程重力的总功。第五节《弹性势能》中关于在求弹簧弹力所做的功时,先将弹簧拉伸的整个过程分成很多小段,在足够小的情况下,每一小段位移中可以认为拉力是不变的,从而也能直接利用功的定义式来计算每一小段内拉力所做的功,再累加得到整个过程拉力的总功。这两个功的计算,前者的难点在于物体运动的路径是曲线,后者的难点在于力的大小在变化。教材中的处理方法是前者采用了“化曲为直”的思想,后者采用了“化变为恒”的思想。

高中物理解题技巧:图像法

高物理解题技巧:图像法1 物理规律可以用文字描述,也可以用数函数式表示,还可以用图象描述。图象作为表示物理规律的方法之一,可以直观地反映某一物理量随另一物理量变化的函数关系,形象地描述物理规律。在进行抽象思维的同时,利用图象视觉感知,有助于对物理知识的理解和记忆,准确把握物理量之间的定性和定量关系,深刻理解问题的物理意义。应用图象不仅可以直接求或读某些待求物理量,还可以用探究某些物理规律,测定某些物理量,分析或解决某些复杂的物理过程。 图象的物理意义主要通过“点”、“线”、“面”、“形”四个方面体现,应从这四方面入手,予以明确。 1、物理图象“点”的物理意义:“点”是认识图象的基础。物理图象上的“点”代表某一物理状态,它包含着该物理状态的特征和特性。从“点”着手分析时应注意从以下几个特殊“点”入手分析其物理意义。 (1)截距点。它反映了当一个物理量为零时,另一个物理的值是多少,也就是说明确表明了研究对象的一个状态。如图1,图象与纵轴的交点反映当I=0时,U=E即电的 电动势;而图象与横轴的交点反映电的短路电流。这可通过图象的数表达式 得。 (2)交点。即图线与图线相交的点,它反映了两个不同的研究对象此时有相同的物理量。如图2的P点表示电阻A接在电B两端时的A两端的电压和通过A的电流。

(3)极值点。它可表明该点附近物理量的变化趋势。如图3的D点表明当电流等于时,电有最大的输功率。 (4) 拐 点。通常反映物理过程在该点发生突变,物理量由量变到质变的转折点。拐点分明拐点和暗拐点,对明拐点,生能一眼看其物理量发生了突变。如图4的P点反映了加速度方向发生了变化而不是速度方向发生了变化。而暗拐点,生往往察觉不到物理量的突变。如图5P点看起是一条直线,实际上在该点速度方向发生了变化而加速度没有发生变化。 2、物理图象“线”的物理意义:“线”:主要指图象的直线或曲线的切线,其斜率通常 具有明确的物理意义。物理图象的斜率代表两个物理量增量之比值,其大小往往 代表另一物理量值。如-t图象的斜率为速度,v-t图象的斜率为加速度,Φ-t图象的斜率为感应电动势(n=1的情况下),电U-I图象(如图1)的斜率 为电的内阻(从图象的数表达式也一目了然)等。 3、物理图象“面”的物理意义:“面”:是指图线与坐标轴所围的面积。有些物理图象的图线与横轴所围的面积的值常代表另一个物理量的大小.习图象时,有意识地利用求面积的方法,计算有关问题,可使有些物理问题的解答变得简便,如v-t图象所围面积 代表位移,F-图象所围面积为力做的功,P-V图象所围面积为 气体压强做的功等。 4、物理图象“形”的物理意义:“形”:指图象的形状。由图线的形状结合其斜率找其隐含的物理意义。例如在v-t图象,如果是一条与时间轴平行的直线,说明物体做匀速直线运动;若是一条斜的直线,说明物体做匀变速直线运动;若是一条曲线,则可根据其斜率变化情况,判断加速度的变化情况。在波的图象,可通过微小的平移能够判断各质点在该时刻的振动方向;在研究小电珠两端的电压U与电流I关系时,通过实验测在

高中物理解题方法---微元法

高中物理解题方法----微元法 一、什么是微元法: 在所研究是物理问题中,往往是针对研究对象经历某一过程或处于某一状态来进行研究,而此过程或状态中,描述此对象的物理量可能是不变的,而更多则可能是变化的。对于那些变化的物理量的研究,有一种方法是把全过程分割成很多短暂的小过程或把研究对象整体分解为很多的微小局部的研究而归纳出适用于全过程或整体的结论。这些微小的过程或微小的局部常被称为“微元”,此法也被称为:“微元法”。 二、对微元的理解:简单地说,微元就是时间、空间或其它物理量上的无穷小量,(注:在数学上我们把极限为“零”的物理量,叫着无穷小量)。当某一连续变化的事物被分割成无数“微元”(无穷小量)以后,在某一微元段内,该事物也就可以看出不变的恒量了。所以,微元法又叫小量分析法,它是微积分的理论基础。 三、微元法解题思想: 在中学物理解题中,利用微元法可将非理想模型转化为理想模型(如把物体分割成质点);将曲面转化为平面,将一般的曲线转化为圆弧甚至直线段;将变量转化成恒量。从而将复杂问题转化为简单问题,使中学阶段常规方法难以解决的问题迎刃而解。 微元法的灵魂是无限分割与逼近。用其解决物理问题的两要诀就是取微元----无限分割和对微元做细节描述----数学逼近。所谓取微元就是对整体对象作无限分割,分割的对象可以是各种几何体,得到“体元”、“面元”、“线元”、“角元”等;分割的对象可以是一段时间或过程,得到“时间元”、“元过程”;也可以对某一物理量分割,得到诸如“元功”、“元电荷”、“电流元”、“质元”等相应元物理量,它们是被分割成的要多么小就有多么小的无穷小量,而要解决整体的问题,就得从它们下手,对微元作细节描述即通过对微元的性质做合理的近似逼近,从而在微元取无穷小量的前提下,达到向精确描述的逼近。 例1、如图所示,岸高为h ,人用不可伸长的绳经滑轮拉船靠岸,若当绳与水平方向为θ时,人收绳速率为υ,则该位置船的速率为多大? 例2、如图所示,长为L 的船静止在平静的水面上,立于船头的人质量为m ,船的质量为M ,不计水的阻力,人从船头走到船尾的过程中,问:船的位移为多大? 例3、如图所示,半径为R ,质量为m 的匀质细圆环,置于光滑水平面上,若圆环以角 速度ω绕环心O 转动,试证明:(1)圆环的张力π ω22R m T = (2)圆环的动能2)(2 1 R m E k ω= 例4、一根质量为M ,长度为L 的匀质铁链条,被竖直地悬挂起来,其最低端刚好与水平接触,今将链条由静止释放,让它落到地面上,如图所示,求链条下落了长度x 时,链条对地面的压力为多大? 例5、如图所示,半径为R 的半圆形绝缘细线上、下1/4圆弧上分别均匀带电+q 和-q ,求圆心处的场强. 例6、如图所示,在离水平地面h 高的平台上有一相距L 的光滑轨道,左端接有已充电的电容器,电容为C ,充电后两端电压为U 1.轨道平面处于垂直向上的磁感应强度为B 的匀强磁场中.在轨道右端放一质量为m 的金属棒,当闭合S ,棒离开轨道后电容器的两极电压变为U 2,求棒落在离平台多远的位置. 例7、(1)试证明:质量为M 的匀质球壳,对放置在空腔内任意一点的质量为m 的质点的万有引力为零。 (2)若将上述质点移至球壳外距球心O 距离为r 处,求此时系统具有的引力势能为多少?规定∞→r 时,系统引力势能为零

最新微元法在几何与物理中的一些应用邓智维

微元法在几何与物理中的一些应用邓智维

微元法在几何与物理中的一些应用 摘要:微元法在几何、物理、力学和工程技术等方面都有着极其广泛的应用,是解决定积分应用问题的重要思想方法。本文特别阐述了微元法的原理及其过程,对微元法在几何问题和物理问题中的应用进行了研究。分析了微元法在定积分的应用中如何确定所求量的微元,在解决实际问题时,应先将实际问题合理转化为适合的数学模型,设定积分变量,然后运用微元法建立积分表达式。因此使用微元法的关键是在局部上建立微元表达式,从而可将讨论问题表示为定积分。 关键词:微元法;微元;几何应用;物理应用 Micro Element Method In Geometrical And Physical Abstract:Micro element method has widely application in geometry, physics, and mechanics and engineering technology, it is an important method to solve the definite integral problem .This paper expounds the principle and process of micro element method, to discuses the application problems of geometrical problems and physics. It is analyzed that how a solid is divided into some microelements when definite integral is applied to calculating its volume, when solving practical problems, firstly let the actual problem turn into suitable mathematical model rationally and set the integral variable, and then apply the micro elements method to establish the integral expression. The key point of using micro element is established the micro elements expression in local, thus, to discuss problems expressed as definite integral. Keywords:Micro element method; Micro element; Geometric applications; Physics application

高中物理图像法解决物理试题解题技巧(超强)及练习题

高中物理图像法解决物理试题解题技巧(超强)及练习题 一、图像法解决物理试题 1.如图所示,分别为汽车甲的位移-时间图象和汽车乙的速度-时间图象,则( ) A .甲的加速度大小为25/m s B .乙的加速度大小为25/m s C .甲在4s 内的位移大小为40 m D .乙在4 s 内的位移大小为20 m 【答案】B 【解析】 A 、在x t -图象中,斜率表示速度,由图象可知:甲做匀速直线运动,加速度为0,故A 错误; B 、在速度-时间图象中,斜率表示加速度,乙的加速度大小为 a 2220/5/4 v a m s m s t = ==,故B 正确; C 、甲在4s 内的位移大小为20020x m m =-=,故C 错误; D 、由v t -图象与时间轴围成的面积表示位移可知:乙在4s 内的位移大小为 204 402 x m m ?= =,故D 错误. 点睛:本题的关键要明确x t -图象与v t -图象的区别,知道v-t 图象的斜率表示加速度, x t -图象的斜率表示速度,两种图象不能混淆. 2.一质点t =0时刻从原点开始沿x 轴正方向做直线运动,其运动的v -t 图象如图所示.下列说法正确的是( ) A .t =4s 时,质点在x =1m 处 B .t =3s 时,质点运动方向改变 C .第3s 内和第4s 内,合力对质点做的功相同 D .0~2s 内和0~4s 内,质点的平均速度相同 【答案】B

【解析】 【详解】 A 、0?4s 内质点的位移等于0?2s 的位移,为12 2m 3m 2 x += ?=,0t =时质点位于0x =处,则4s t =时,质点在3m x =处,故选项A 错误; B 、在2s-3s 内速度图象都在时间轴的上方,在3s-4s 内速度图象都在时间轴的下方,所以 3s t =时,质点运动方向改变,故选项B 正确; C 、第3s 内质点的速度减小,动能减小,合力做负功;第4s 内速度增大,动能增加,合力做正功,由动能定理知第3s 内和第4s 内,合力对质点做的功不等,故选项C 错误; D 、根据图象与坐标轴围成的面积表示位移,在时间轴上方的位移为正,下方的面积表示位移为负,则知0~2s 内和0~4s 内,质点的位移相同,但所用时间不同,则平均速度不同,故选项D 错误。 3.两个质点A 、B 放在同一水平面上,从同一位置沿相同方向做直线运动,其运动的v-t 图象如图所示.对A 、B 运动情况的分析,下列结论正确的是 A .在6s 末,质点A 的加速度大于质点 B 的加速度 B .在0-12s 时间内,质点A 的平均速度为 7 6 ms C .质点A 在0-9s 时间内的位移大小等于质点B 在0-3s 时间内的位移大小 D .在12s 末,A 、B 两质点相遇 【答案】A 【解析】 【详解】 A 、根据v-t 图象中图线的斜率表示加速度,斜率绝对值越大,加速度越大,可知质点A 在 6 s 末的加速度是 13 m/s 2,质点B 在6 s 时末的加速度是2431 a /1239B m s -= =-,所以A 的加速度较大,故A 正确; B 、在0~12s 时间内,质点A 的位移为1614 310.522 x m m m ?+= +?=,平均速度为10.57 //128 x v m s m s t = ==,故B 错误; C 、质点A 在0-9s 时间内的位移大小16 32 A x m m ?= =,质点B 在0-3s 时间内的位移

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

微元法及其在物理中的应用(大 整理好)

三、举例 例2:如图3—2所示,一个半径为R 的四分之一光 滑球面放在水平桌面上,球面上放臵一光滑均匀铁链,其 A 端固定在球面的顶点,B 端恰与桌面不接触,铁链单位 长度的质量为ρ.试求铁链A 端受的拉力T. 解析:以铁链为研究对象,由由于整条铁链的长度不 能忽略不计,所以整条铁链不能看成质点,要分析铁链的受 力情况,须考虑将铁链分割,使每一小段铁链可以看成质 点,分析每一小段铁边的受力,根据物体的平衡条件得出 整条铁链的受力情况. 在铁链上任取长为△L 的一小段(微元)为研究对象, 其受力分析如图3—2—甲所示.由于该元处于静止状态, 所以受力平衡,在切线方向上应满足: θθθθT G T T +?=?+cos θρθθcos cos Lg G T ?=?=? 由于每段铁链沿切线向上的拉力比沿切线向下的拉力大 △T θ,所以整个铁链对A 端的拉力是各段上△T θ的和, 即 ∑∑∑?=?=?= θρθρθcos cos L g Lg T T 观察 θcos L ?的意义,见图3—2—乙,由于△θ很小, 所以CD ⊥OC ,∠OCE=θ△Lcos θ表示△L 在竖直方向上的投影△R , 所以 ∑=?R L θcos 可得铁链A 端受的拉力 ∑=?=gR L g T ρθρcos 例5:半径为R 的光滑球固定在水平桌面上,有一质量 为M 的圆环状均匀弹性绳圈,原长为πR ,且弹性绳圈 的劲度系数为k ,将弹性绳圈从球的正上方轻放到球上, 使弹性绳圈水平停留在平衡位臵上,如图3—5所示,若 平衡时弹性绳圈长为R π2,求弹性绳圈的劲度系数k. 解析:由于整个弹性绳圈的大小不能忽略不计,弹性绳圈不能看成质点,所以应将弹性绳圈分割成许多小段,其中每一小段△m 两端受的拉力就是弹性绳圈内部的弹力F.在弹性绳圈上任取一小段质量为△m 作为研究对象,进行受力分析.但是△m 受的力不在同一平面内,可以从一个合适的角度观察.选取一个合适的平面进行受力分析,这样可以看清楚各个力之间的关系.从正面和上面观察,分别画出正视图的俯视图,如图3—5—甲和2—3—5—乙. 先看俯视图3—5—甲,设在弹性绳圈的平面上,△m 所对的圆心角 是△θ,则每一小段的质量 M m π θ 2?=? △m 在该平面上受 拉力F 的作用,合力为 2 sin 2)2 cos( 2θθ π?=?-=F F T 因为当θ很小时,θθ≈sin 所以θθ ?=?=F F T 2 2 再看正视图3—5—乙,△m 受重力△mg ,支持力N ,

高考物理图示法图像法解决物理试题解题技巧及练习题含解析

高考物理图示法图像法解决物理试题解题技巧及练习题含解析 一、图示法图像法解决物理试题 1.如图所示,质量相同的小球A 、B 通过质量不计的细杆相连接,紧靠竖直墙壁放置。由于轻微扰动,小球A 、B 分别沿水平地面和竖直墙面滑动,滑动过程中小球和杆始终在同一竖直平面内,当细杆与水平方向成37°角时,小球B 的速度大小为v ,重力加速度为g ,忽略一切摩擦和阻力,sin37°=0.6,cos37°=0.8。则 A .小球A 的速度为 34 v B .小球A 的速度为 43 v C .细杆的长度为2 12564v g D .细杆的长度为2 12536v g 【答案】AC 【解析】 【详解】 小球B 的速度为v 时,设小球A 的速度大小为v ',则有5337vcos v cos ?='?,解得: 3 4 v v '= ,A 正确,B 错误;两球下滑过程中系统的机械能守恒,即:()22 111sin 3722 mgL mv mv '-=+o ,解得:212564v L g =,C 正确,D 错误。 2.如图所示,将质量为2m 的重物悬挂在轻绳的一端,轻绳的另一端系一质量为m 的小环,小环套在竖直固定的光滑直杆上,光滑定滑轮与直杆的距离为d.现将小环从与定滑轮等高的A 处由静止释放,当小环沿直杆下滑距离也为d 时(图中B 处),下列说法正确的是 A .小环刚释放时轻绳中的张力一定大于2mg B .小环到达B 处时,重物上升的高度也为d

C .小环在B 处的速度与重物上升的速度大小之比等于 D .小环在B 处的速度与重物上升的速度大小之比等于 【答案】AC 【解析】 【分析】 【详解】 由题意,释放时小环向下加速运动,则重物将加速上升,对重物由牛顿第二定律可知绳中张力一定大于重力2mg ,所以A 正确;小环到达B 处时,重物上升的高度应为绳子缩短的长度,即2h d d ?= -,所以B 错误;根据题意,沿绳子方向的速度大小相等,将小环A 速度沿绳子方向与垂直于绳子方向正交分解应满足: A B v cos v θ=,即1 2A B v v cos θ ==,所以C 正确,D 错误. 【点睛】 应明确:①对与绳子牵连有关的问题,物体上的高度应等于绳子缩短的长度;②物体的实际速度即为合速度,应将物体速度沿绳子和垂直于绳子的方向正交分解,然后列出沿绳子方向速度相等的表达式即可求解. 3.如图所示,水平光滑长杆上套有一物块Q ,跨过悬挂于O 点的轻小光滑圆环的细线一端连接Q ,另一端悬挂一物块P .设细线的左边部分与水平方向的夹角为θ,初始时θ很小.现将P 、Q 由静止同时释放.关于P 、Q 以后的运动下列说法正确的是 A .当θ =60o时,P 、Q 的速度之比1:2 B .当θ =90o时,Q 的速度最大 C .当θ =90o时,Q 的速度为零 D .当θ向90o增大的过程中Q 的合力一直增大 【答案】AB 【解析】 【分析】 【详解】 A 、则Q 物块沿水平杆的速度为合速度对其按沿绳方向和垂直绳方向分解,P 、Q 用同一根绳连接,则Q 沿绳子方向的速度与P 的速度相等,则当θ =60°时,Q 的速度

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

相关文档
最新文档