6汽车驱动桥桥壳的有限元分析(牟建宏)

6汽车驱动桥桥壳的有限元分析(牟建宏)
6汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析

牟建宏

(西南大学工程技术学院,重庆北碚400715)

摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS

0引言

驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介

1.1有限元法的定义

有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。

1.2有限元法的基本原理

将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。

1.3有限元分析的基本步骤

第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。

第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。

第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

第四步:单元推导:对单元构造一个适合的近似解,即推导有限单元的列式,其中包括选择合理的单元坐标系,建立单元试函数,以某种方法给出单元各状态变量的离散关系,从而形成单元矩阵(结构力学中称刚度阵或柔度阵)。为保证问题求解的收敛性,单元推导有许多原则要遵循。对工程应用而言,重要的是应注意每一种单元的解题性能与约束。例如,单元形状应以规则为好,畸形时不仅精度低,而且有缺秩的危险,将导致无法求解。

第五步:总装求解:将单元总装形成离散域的总矩阵方程(联合方程组),反映对近似求解域的离散域的要求,即单元函数的连续性要满足一定的连续条件。总装是在相邻单元结点进行,状态变量及其导数(可能的话)连续性建立在结点处。

第六步:联立方程组求解和结果解释:有限元法最终导致联立方程组。联立方程组的求解可用直接法、迭代法和随机法。求解结果是单元结点处状态变量的近似值。对于计算结果的质量,将通过与设计准则提供的允许值比较来评价并确定是否需要重复计算。

1.4有限元法分析的优点

驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种

典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性[4]。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。

2对驱动桥桥壳的有限元分析

桥壳材料为B510L1,弹性模量为2*105MPa,泊松比为0.3,

屈服强度为355MPa,断裂强度为610MPa.后桥单侧最大负荷30000N,轴距为1700mm,弹簧板座距为1232mm.

根据QC/T533-1999《汽车驱动桥台架试验方法》,要求驱动桥壳满载1m轮距最大变形量不超过1.5mm,垂直弯曲后备系数大于6.

2.1启动ANSYS Workbench建立后桥分析项目

2.2导入几何模型

2.3添加材料信息

2.4进行网格划分

2.5施加载荷及约束

2.6设定求解结果

单击Solve进行求解2.7结果分析

变形结果如下

轮距1.7m,最大变形量为1.1174mm,所以每m变形量为

1.1174÷1.7=0.66mm,小于1.5mm,满足标准要求。

应力分析结果如下

材料的断裂强度为610MPa,后备系数Kn=610÷202=3.02<6,从强度上

分析结果不满足标准要求。

3结论

利用CAE软件进行仿真分析和计算,可以降低设计开发成本,减少试验次数,缩短设计开发周期,提高产品质量,使得汽车在轻量化、舒适性和操纵稳定性方面得到改进和提高,具有非

常重要的实际意义。

参考文献:

[1]刘维信.汽车设计[M].北京:清华大学出版社,200l

[2]杨波,罗金桥.基于ANSYS的汽车驱动桥壳的有限元分析[J].CAD/CAM与制造业信息化,1999

[3]车辆结构有限元分析/王国军等编著.—北京:机械工业出版社,2013.10

[4]高卫明,王红雁。汽车结构分析有限元法[J],汽车研究与开发,2000(6)

驱动桥壳有限元分析

驱动桥壳有限元分析 汽车驱动桥壳的功用是支承并保护主减速器,差速器和半轴等,使左右驱动车轮的轴向相对位置固定,并且支承车架及其上的各总成质量。 1 驱动桥壳设计要求 在设计选用驱动桥壳时,要满足以下设计要求: (1)应该具有足够的强度和刚度,以保证主减速器齿轮啮合正常,并不使半轴产生附加弯曲应力。 (2)在保证强度和刚度的情况下,尽量减小质量以提高汽车行驶的平顺性。 (3)保证足够的离地间隙。 (4)结构工艺性好,成本低。 (5)保护装于其中的传动系统部件和防止泥水浸入。 (6)拆装,调整,维修方便。 2 驱动桥壳类型确定和材料选择 驱动桥壳通常分为整体式桥壳、分段式桥壳,前者强度和钢度较大,便于主减速的装配、调整和维修。普遍用于各类汽车上;多段式桥壳较整体式易于铸造,加工简便,但维修保养不便,汽车较少采用。 本设计选用整体式桥壳。后桥壳体为整体铸造,半轴套管从两端压入桥壳中。后桥壳前部和主减速器连接,后部为可拆式后盖,后桥壳上装有通气塞。 图1 驱动桥壳结构尺寸 1 1

2 本设计中的驱动桥壳总长为1800mm ,簧板距为970mm ,桥壳厚度为8mm ,选用材料为可锻铸铁,牌号为KT350-10,弹性模量为Mpa 61055.1 ,泊松比为0.23,密度为3/7200m kg ,抗拉强度为350Mpa ,屈服强度为200Mpa 。 这种材料有着较高的强度、塑性和冲击韧度,可用于承受较高的冲击,振动及扭转载荷下工作的零件。 3 对驱动桥壳进行有限元分析 ABAQUS 是一套功能强大的有限元分析软件,特别是在非线性分析领域,其技术和特点更是突出,它融结构、流体、传热学、声学、电学及热固耦合、流固耦合等于一体,由于其功能强大,再加上其操作界面人性化,越来越受到人们的欢迎。 在对桥壳进行有限元分析,首先将CATIA 软件设计的驱动桥壳模型导入ABAQUS 软件中,并将上述材料属性添加到模型。 图2 将模型导入ABAQUS 并赋予属性 由于本设计的桥壳为整体式桥壳,整体式桥壳与轮辋在凸缘盘外侧位置通过轴承相连接,因此可以将此处位置的约束看成全自由度约束。桥壳通过板簧座位置与车体相连接,此处位置承受车体载荷。 本设计中车体满轴载荷(后)为6910kg ,考虑到车满载状况下行驶通过不平路面,将受冲击载荷,所以取2.5倍满轴载荷加于板簧座上,即总质量为17275kg ,每个板簧座承受86375kg 。

五十铃轻型货车驱动桥的设计

摘要 驱动桥位于传动系末端,其基本功用是增矩、降速,承受作用于路面和车架或车身之间的作用力。它的性能好坏直接影响整车性能,而对于载重汽车显得尤为重要。当采用大功率发动机输出大的转矩以满足目前载重汽车的快速、重载的高效率、高效益的需要时,必须搭配一个高效、可靠的驱动桥,所以采用传动效率高的单级减速驱动桥已经成为未来载重汽车的发展方向。驱动桥设计应主要保证汽车在给定的条件下具有最佳的动力性和燃油经济性。本设计根据给定的参数,按照传统设计方法并参考同类型车确定汽车总体参数,再确定主减速器、差速器、半轴和桥壳的结构类型,最后进行参数设计并对主减速器主、从动齿轮、半轴齿轮和行星齿轮进行强度以及寿命的校核。驱动桥设计过程中基本保证结构合理,符合实际应用,总成及零部件的设计能尽量满足零件的标准化、部件的通用化和产品的系列化及汽车变型的要求,修理、保养方便,机件工艺性好,制造容易。 关键字:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT Drive axle is at the end of the powertrain, and its basic function is increasing the torque and reducing the speed,bearing the force between the road and the frame or body.Its performance will have a direct impact on automobile performance .Because using the big power engine with the big driving torque satisfied the need of high speed,heavy-loaded,high efficiency,high benefit today’ heavy truck,must exploiting the high driven efficiency single reduction final drive axle is becoming the heavy truck’ developing tendency. Drive axle should be designed to ensure the best dynamic and fuel economy on given condition. According to the design parameters given ,firstly determine the overall vehicle parametres in accordance with the traditional design methods and reference the same vehicle parameters, then identify the main reducer, differential, axle and axle housing structure type, finally design the parameters of the main gear,the driven gear of the final drive, axle gears and spiral bevel gear and check the strength and life of them. In design process of the drive axle,we should ensure a reasonable structure, practical applications, the design of assembly and parts as much as possible meeting requirements of the standardization of parts, components and products’ univertiality and the serialization and change , convenience of repair and maintenance, good mechanical technology, being easy to manufacture. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

4吨轻型载货汽车驱动桥设计-开题报告

毕业设计开题报告 学生姓名系部汽车工程系专业、班级 指导教师姓名职称教授从事 专业 车辆工程是否外聘□是■否 题目名称4吨轻型载货汽车驱动桥设计 一﹑课题研究现状、选题目的和意义 1、研究现状 国外发达国家如美国、德国等,载货汽车中轻型货车占有较大比重,一般在70%~80%,轻型汽车大多为私人用车,用于短途小件物品的运营。国外轻型货车驱动桥开发技术已经非常的成熟,建立新的驱动桥开发模式成为国内外驱动桥开发团体的新目标。驱动桥设计新方法的应用使得其开发周期缩短,成本降低,可靠性增加。随着不断的进步与更新其成熟的程度已经开始迈向新能源的过程,国外的最新开发模式和驱动桥新技术包括:并行工程开发模式、模态分析、驱动桥壳的有限元分析方法、高性能制动器技术、电子智能控制技术进入驱动桥产品;相应的这些先进的开发模式和新技术在国内也逐渐的受到重视并发展起来。 在我国轻型货车同样占有较大市场,据中国汽车工业协会统计,截至2007年底,国内轻型货车(1.8吨<总质量≤6吨)共销售100.53万辆,同比增长了17.64%。2008年,国家对“三农”的投入不断加大,同时随着铁路不断提速也为短途运输提供了机会,受此影响,轻型货车在以后几年也会呈现明显增长。例如曙光车桥公司拥有34条国内一流水平的车桥及零部件专业生产线,年车桥产能70万套,齿轮、半轴等车桥核心零部件产能300万件。轻型汽车车桥也连续五年在全国轻型车桥市场占有率排名第一;公司生产的汽车制动器、齿轮、半轴、轴套类等汽车零部件也都在国内市场占据比较重要的地位,并同时面向国内和国际两个市场。尽管数量上有可人的成色,但是其开发和制造的具体过程还是要更陈旧复杂一些的,我国的技术层面还应该继续钻研,不断创新才可以更加进步。 在新政策《汽车产业发展政策》中,在2010年前,我国就要成为世界主要汽车制造国,汽车产品满足国内市场大部分需求并批量进入国际市场;2010汽车生产企业要形成若干驰名的汽车摩托车和零部件产品品牌;通过市场竞争形成几家具有国际竞争力的大型汽车企业集团,力争到2010年跨入世界500强企业之列,等等。同时,在这个新的汽车产业政策描绘的蓝图中,还包括许多涉及产业素质提高和市场环境改善的综合目标,着实令人鼓舞。然而,不可否认的事,国内汽车产业的现状离产业政策的目的 还有相当的距离。自1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显的改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散乱和低水平重复建设问题,还没有从根本上得到解决。

汽车驱动桥的详细结构与分类

驱动桥的详细结构及分类 我爱车网类型:转载来源:腾讯汽车时间:2011-03-02 作者: 驱动桥主要由主减速器、差速器、半轴和驱动桥壳等组成。它的作用是将万向传动装置传来的动力折过90°角,改变力的传递方向,并由主减速器降低转速,增大转矩后,经差速器分配给左右半轴和驱动轮。 驱动桥的结构型式按工作特性分,可以归并为两大类,即非断开式驱动桥和断开式驱动桥。当驱动车轮采用非独立悬架时,应该选用非断开式驱动桥;当驱动车轮采用独立悬架时,则应该选用断开式驱动桥。因此,前者又称为非独立悬架驱动桥;后者称为独立悬架驱动桥。独立悬架驱动桥结构较复杂,但可以大大提高汽车在不平路面上的行驶平顺性。 (1)非断开式驱动桥 普通非断开式驱动桥,由于结构简单、造价低廉、工作可靠,广泛用在各种载货汽车、客车和公共汽车上,在多数的越野汽车和部分轿车上也采用这种结构。他们的具体结构、特别是桥壳结构虽然各不相同,但是有一个共同特点,即桥壳是一根支承在左右驱动车轮上的刚性空心梁,齿轮及半轴等传动部件安装在其中。这时整个驱动桥、驱动车轮及部分传动轴均属于簧下质量,汽车簧下质量较大,这是它的一个缺点。 整体式驱动桥即非断开式驱动桥组成 驱动桥的轮廓尺寸主要取决于主减速器的型式。在汽车轮胎尺寸和驱动桥下的最小离地间隙已经确定的情况下,也就限定了主减速器从动齿轮直径的尺寸。在给定速比的条件下,如果单级主减速器不能满足离地间隙要求,可该用双级结构。在双级主减速器中,通常把两级减速器齿轮放在一个主减速器壳体内,也可以将第二级减速齿轮作为轮边减速器。对于轮边减速器:越野汽车为了提高离地间隙,可以将一对圆柱齿轮构成的轮边减速器的主动齿轮置于其从动齿轮的垂直上方;公共汽车为了降低汽车的质心高度和车厢地板高度,以提高稳定性和乘客上下车的方便,可将轮边减速器的主动齿轮置于其从动齿轮的垂直下方;有些双层公共汽车为了进一步降低车厢地板高度,在采用圆柱齿轮轮边减速器的同时,将主减速器及差速器总成也移到一个驱动车轮的旁边。 在少数具有高速发动机的大型公共汽车、多桥驱动汽车和超重型载货汽车上,有时采用蜗轮式主减速器,它不仅具有在质量小、尺寸紧凑的情况下可以得到大的传动比以及工作平滑无声的优点,而且对汽车的总体布置很方便。

基于ANSYS的汽车驱动桥壳的有限元分析

基于ANSYS的汽车驱动桥壳的有限元分析 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重力之差,受力如图1所示。

驱动桥有限元分析(1)

基于ANSYS的汽车驱动桥壳的有限元分 析 武汉理工…-icad 有限元法是一种在工程分析中常用的解决复杂问题的近似数值分析方法,以其在机械结构强度和刚度分析方面具有较高的计算精度而得到普遍应用,特别是在材料应力、应变的线性范围更是如此。在汽车设计领域,无论是车身、车架的计算仿真,还是发动机的曲轴以及传动系统的计算均 使用到该方法。 有限元分析最基本的研究方法就是“结构离散→单元分析→整体求解”的过程。经过近50年的发展,有限元法的理论日趋完善,已经开发出了一批通用和专用的有限元软件。ANSYS是当前国际上流行的有限元分析软件,广泛地应用于各行各业,是一种通用程序,可以用它进行所有行业的几乎任何类型的有限元分析,如汽车、宇航、铁路、机械和电子等行业。ANSYS软件将实体建模、系统组装、有限元前后处理、有限元求解和系统动态分析等集成一体,最大限度地满足工程设计分析的需要。通过结合ANSYS软件,能高效准确地建立分析构件的三维实体模型,自动生成有限元网格,建立相应的约束及载荷工况,并自动进行有限元求解,对模态分析计算结果进行图形显示和结果输出,对结构的动态特性作出评价。它包括结构分析、模态分析、磁场分析、热分析和多物理场分析等众多功能模块。 汽车驱动桥壳是汽车上的主要承载构件之一,其作用主要有:支撑并保护主减速器、差速器和半轴等,使左右驱动车轮的轴向相对位置固定;同从动桥一起支撑车架及其上的各总成质量;汽车行驶时,承受由车轮传来的路面反作用力和力矩并经悬架传给车架等。驱动桥壳应有足够的强度和刚度且质量小,并便于主减速器的拆装和调整。由于桥壳的尺寸和质量比较大,制造较困难,故其结构型式应在满足使用要求的前提下应尽可能便于制造。驱动桥壳分为整体式桥壳,分段式桥壳和组合式桥壳三类。整体式桥壳具有较大的强度和刚度,且便于主减速器的装配、调整和维修,因此普遍应用于各类汽车上。但是由于其形状复杂,因此应力计算比较困难。根据汽车设计理论,驱动桥壳的常规设计方法是将桥壳看成一个简支梁并校核几种典型计算工况下某些特定断面的最大应力值,然后考虑一个安全系数来确定工作应力,这种设计方法有很多局限性。因此近年来,许多研究人员利用有限元方法对驱动桥壳进行了计算和分析。本文中所研究的对象是在某型号货车上使用的整体式桥壳。 一、驱动桥壳强度分析计算 可将桥壳视为一空心横梁,两端经轮毂轴承支撑于车轮上,在钢板弹簧座处桥壳承受汽车的簧上载荷,而沿左右轮胎中心线,地面给轮胎以反力(双胎时则沿双胎中心),桥壳承受此力与车轮重 力之差,受力如图1所示。

驱动桥壳毕业设计

驱动桥壳毕业设计 【篇一:驱动桥毕业设计111】 某型重卡驱动桥设计 摘要 驱动桥是构成汽车的四大总成之一,一般由主减速器、差速器、车 轮传动装置和驱动桥壳等组成,它位于传动系末端,其基本作用是 增矩、降速,承受作用于路面和车架或车身之间的力。它的性能好 坏直接影响整车性能,而对于载重汽车显得尤为重要,采用传动效 率高的单级减速驱动桥已经成为未来载重汽车的发展方向。 本文参照传统驱动桥的设计方法进行了载重汽车驱动桥的设计本次 设计首先对驱动桥的特点进行了说明,根据给定的数据确定汽车总 体参数,再确定主减速器、差速器、半轴和桥壳的结构类型及参数,并对其强度进行校核。数据确定后,利用autocad建立二维图,再 用catia软件建立三维模型,最后用caita中的分析模块对驱动桥壳 进行有限元分析。 关键词:驱动桥;cad;catia;有限元分析 abstract drivie axle is one of the four parts of a car, it is generally constituted by the main gear box, the differential device, the wheel transmission device and the driving axle shell and so on it is at the end of the powertrain.its basic function is increasing the torque and reducing speed and bearing the force between the road and the frame or body.its performance will have a direct impact on automobile performance,and it is particularly important for the truck. using single stage and high transmission efficiency of the drive axle has become the development direction of the future trucks. this article referred to the traditional driving axles design method to carry on the truck driving axles design.in this design,first part is the introduction of the characteristics of the drive axle,according to the given date to calculate the parameters of the automobile,then confirm the structure types and parameters of the main reducer, differential mechanism,half shaft and axle housing,then check the strength and life of them.after confirming the

轻型货车驱动桥的毕业设计

摘要 轻型汽车在商用汽车生产中占有很大的比重,而且驱动桥在整车中十分重要。驱动桥作为汽车四大总成之一,它的性能的好坏直接影响整车性能,而对于载货汽车显得尤为重要。为满足目前当前载货汽车的快速、高效率、高效益的需要时,必须要搭配一个高效、可靠的驱动桥。设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展,并且通过对汽车驱动桥的学习和设计实践,可以更好的学习并掌握现代汽车设计与机械设计的全面知识和技能,所以本题设计一款结构优良的轻型货车驱动桥具有一定的实际意义。 本文首先确定主要部件的结构型式和主要设计参数,在分析驱动桥各部分结构形式、发展过程及其以往形式的优缺点的基础上,确定了总体设计方案,采用传统设计方法对驱动桥各部件主减速器、差速器、半轴、桥壳进行设计计算并完成校核。最后运用AUTOCAD完成装配图和主要零件图的绘制。 关键词:轻型货车;驱动桥;单级主减速器;差速器;半轴;桥壳

ABSTRACT . Pickup trucks take a large proportion of commercial vehicles production, and the drive axle is one of the most important structure. Drive axle is the one of automobile four important assemblies, Its performance directly influence on the entire automobile, especially for the truck .Because using the big power engine with the big driving torque satisfied the need of high speed, heavy-loaded, high efficiency, high benefit today` truck, must exploiting the high driven efficiency single reduction final drive axle is becoming the trucks’ developing tendency. Design a simple, reliable, low cost of the drive axle, can greatly reduce the total cost of vehicle production, and promote the economic development of automobile and automotive drive axle of the study and design practice, can better learn and to master modern automotive design and mechanical design of a comprehensive knowledge and skills, so the title of the fine structure of the design of a pickup vehicle drive axle has a certain practical significance. In this paper, first of all determine the structure of major components and the main design parameters, the analysis of the various parts of the structure of the bridge drive type, the form of the development process and its advantages and disadvantages of the past, determined on the basis of the design program, using the traditional design method of various parts of the drive axle Main reducer, differential, axle, axle housing was designed to calculate and complete the check. Finally complete the final assembly drawing by using AUTOCAD and mapping the main components. Keywords: Pickup truck; Drive axle; Single reduction final drive; Differential; Axle; Drive Axle housing

汽车驱动桥开题报告.doc

本科毕业设计开题报告 题目基于Pro/E小型商用车后桥总成设计 院(系):__________ 机械工程学院_______________ 班级:__________ 机械电子工程08-3班___________ 姓名:_________________ 赫会宝 _________________ 学号:080514010323 ___________________________ 指导教师:______________ 李胜波 _________________ 教师职称:______________ 副教授 _________________

黑龙江科技学院本科毕业设计开题报告

策的目标还有相当的距离。目―1994年《汽车工业产业政策》颁布并执行以来,国内汽车产业结构有了显著变化,企业规模效益有了明显改善,产业集中度有了一定程度提高。但是,长期以来困扰中国汽车产业发展的散、乱和低水平重复建设问题,还没有从根本上得到解决。多数企业家预计,在新的汽车产业政策的鼓励下,将会有越来越多的汽车生产企业按照市场规律组成企业联盟,实现优势互补和资源共享。 独立悬架早期只单纯用于轿车上,目前大部分轻型货车和越野汽车为了提高舒适性也开始采用独立悬架,同时一些中型卡车及客车为了提高驾乘的舒适性和行驶性也开始采用独立悬架,在国外甚至一些轮式工程机械如吊车和重型卡车也开始采用独立悬架。因此对于独立悬架的设计技术,国内外都进行了研究,这些研究主要集中在以下几个方面:独立悬架设计方法,独立悬架参数对汽车行驶平顺性的影响;独立悬架对汽车操纵稳定性的影响。国内的研究主要表现为:独立悬架和转向系的匹配;独立悬架与转向横拉杆长度和断开点的确定;悬架弹性元件的设计分析;独立悬架的优化设计等。国外除上述研究外还进入了微观领域的研究,如用原子力学显微镜观察悬架材料内部聚合体的电子转化情况,研究悬架作为弹性介质的流变特性等,从而使得独立悬架向着智能化,轻量化,小型化,通用化方向发展。同时由于电子,微机技术的发展,使得独立悬架技术向着半主动、主动悬架方向发展。 非独立悬架早期广泛应用于除了轿车以外的其它车型中,由于其可靠性和简单的特性,现在还被广泛的用于轿车的后桥,轻型货车和越野汽车的后桥,重型货车的前后桥都采用非独立悬架。 由于汽车行驶的平顺性和操纵稳定性的要求,具有安全、智能和清洁的绿色智能悬架将是今后汽车后桥的发展趋势。 3、研究/设计的目标 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车 轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁, 它要求有足够的强度和刚度,同时还要尽量的减轻其重量。所选择的减速器比应能满足汽车在给定使用条件下具有最佳的动力性和燃料经济性。对载货汽车,由于它们有时会遇到坎坷不平的坏路面,要求它们的驱动桥有足够的离地间隙,以满足汽车在通过性方面的要求。驱动桥的噪声主要来自齿轮及其他传动机件。提高它们的加工精度、 装配精度,增强齿轮的支撑刚度是降低驱动桥工作噪声的有效措施。驱动桥各零部件在保证其强度、刚度、可靠性及寿命的前提下应力求减小簧下质量,以减小不平路面对驱动桥的冲击载荷,从而改善汽车行驶的平顺性。 4、设计方案 4.1设计方案选型与分析 方案一:非断开式驱动桥。由于结构简单,制造工艺性好,成本低,可靠性好,维修调整容易,广泛应用于货车的和部分桥车上。但是,其悬挂质量较大,对降低动载荷和提高平顺性不利。如下图所示:

汽车驱动桥桥壳的有限元分析(牟建宏)

汽车驱动桥桥壳的有限元分析 牟建宏 (西南大学工程技术学院,北碚 400715) 摘要:用任意三维软件建立了驱动桥壳的三维实体模型。通过对驱动桥壳进行有限元分析(在此仅进行静力学分析)。通过有限元进行应力计算,判断驱动桥壳每m轮距最大变形量和垂直弯曲后背系数是否符合要求。为驱动桥壳的结构改进及优化设计提供了理论依据。关键词:驱动桥壳;有限元分析;ANSYS 0引言 驱动桥壳是汽车上重要的承载件和传力件。非断开式驱动桥壳支承汽车重量,并将载荷传给车轮。作用在驱动车轮上的牵引力、制动力、侧向力、垂向力也是经过桥壳传到悬挂及车架或车厢上[1]。因此,驱动桥壳的使用寿命直接影响汽车的有效使用寿命。合理地设计驱动桥壳,使其具有足够的强度、刚度和良好的动态特性,减少桥壳的质量,有利于降低动载荷,提高汽车行驶的平顺性和舒适性。而驱动桥壳形状复杂,应力计算比较困难,所以有限元法是理想的计算工具。1有限元法的简介 1.1有限元法的定义 有限元法(finite element method)是一种高效能、常用的数值计算方法。科学计算领域,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理

为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。自从1969年以来,某些学者在流体力学中应用加权余数法中的迦辽金法(Galerkin)或最小二乘法等同样获得了有限元方程,因而有限元法可应用于以任何微分方程所描述的各类物理场中,而不再要求这类物理场和泛函的极值问题有所联系[2]。 1.2有限元法的基本原理 将连续的求解域离散为一组单元的组合体,用在每个单元假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。从而使一个连续的无限自由度问题变成离散的有限自由度问题[3]。 1.3有限元分析的基本步骤 第一步:问题及求解域定义:根据实际问题近似确定求解域的物理性质和几何区域。 第二步:求解域离散化:将求解域近似为具有不同有限大小和形状且彼此相连的有限个单元组成的离散域,习惯上称为有限元网络划分。显然单元越小(网格越细)则离散域的近似程度越好,计算结果也越精确,但计算量将增大,因此求解域的离散化是有限元法的核心技术之一。 第三步:确定状态变量及控制方法:一个具体的物理问题通常可以用一组包含问题状态变量边界条件的微分方程式表示,为适合有限元求解,通常将微分方程化为等价的泛函形式。

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析

毕业设计(论文)汽车驱动桥壳UG建模及有限元分析毕业设计(论文)汽车驱动桥壳UG建模及有限元分析 JIU JIANG UNIVERSITY 毕业论文 题目汽车驱动桥壳UG建模及有限元分析英文题目 Modeling by UG and Finite Element Analyzing of Automobile Drive Axle Housing 院系机械与材料工程学院 专业车辆工程 姓名 班级 指导教师 摘要 本篇毕业设计(论文)题目是《汽车驱动桥壳建模UG及有限元分析》。作为汽车的主要承载件和传力件,驱动桥壳承受了载货汽车满载时的大部分载荷,而且还承受由驱动车轮传递过来的驱动力、制动力、侧向力等,并经过悬架系统传递给车架和车身。因此,驱动桥壳的研究对于整车性能的控制是很重要的。 本课题以重型货车驱动桥壳为对象,详细论述了从UG软件中的参数化建模,到ANSYS中有限元模型的建立、边界条件的施加等研究。并且通过对桥壳在不同工况下的静力分析和模态分析,直观地得到了驱动桥壳在各对应工况的应力分布及变形情况。从而在保证驱动桥壳强度、刚度与动态性能要求的前提下,为 桥壳设计提出可行的措施和建议。 【关键词】有限元法,UG,ANSYS ,驱动桥壳,静力分析,模态分析

Abstract This graduation project entitled “Modeling and Finite Element Analyzing of Automobile Drive Axle Housing”. As the mainly carrying and passing components of the vehicle, the automobile drive axle housing supports the weight of vehicle, and transfer the weight to the wheel. Through the drive axle housing, the driving force, braking force and lateral force act on the wheel transfer to the suspension system, frame and carriage. The article studies based on heavy truck driver axle ,discusses in detail from the UG software parametric modeling, establish of ANSYS FEM model, and the boundary conditions imposed, etc. And through drive axle housing of the different main conditions of static analysis and modal analysis, it can access the stress distribution and deformation in the corresponding status of drive axle directly. Thus, under the premise of ensuring the strength of drive axle housing, stiffness and dynamic performance requirements, the analysis can raise feasible measures and recommendations in drive axle housing design.Plans to establish thet hree---dimensional model by UG, to make all kinds of emulation analysis by Ansys. 【Key words】 Finite element method,UG,ANSYS,Drive axle housing,Static analysis,Modal analysis 目录 前言 1 第一章绪论 2

汽车设计课设驱动桥设计

汽车设计课程设计说明书 题目:BJ130驱动桥部分设计验算与校核 姓名: 学号: 专业名称:车辆工程 指导教师: 目录 一、课程设计任务书 (1) 二、总体结构设计 (2) 三、主减速器部分设计 (2) 1、主减速器齿轮计算载荷的确定 (2) 2、锥齿轮主要参数选择 (4) 3、主减速器强度计算 (5) 四、差速器部分设计 (6) 1、差速器主参数选择 (6) 2、差速器齿轮强度计算 (7) 五、半轴部分设计 (8) 1、半轴计算转矩Tφ及杆部直径 (8) 2、受最大牵引力时强度计算 (9) 3、制动时强度计算 (9) 4、半轴花键计算 (9) 六、驱动桥壳设计 (10) 1、桥壳的静弯曲应力计算 (10) 2、在不平路面冲击载荷作用下的桥壳强度计算 (11) 3、汽车以最大牵引力行驶时的桥壳强度计算 (11) 4、汽车紧急制动时的桥壳强度计算 (12)

5、汽车受最大侧向力时的桥壳强度计算 (12) 七、参考书目 (14) 八、课程设计感想 (15)

一、课程设计任务书 1、题目 《BJ130驱动桥部分设计验算与校核》 2、设计内容及要求 (1)主减速器部分包括:主减速器齿轮的受载情况;锥齿轮主要参数选择;主减速器强度计算;齿轮的弯曲强度、接触强度计算。 (2)差速器:齿轮的主要参数;差速器齿轮强度的校核;行星齿轮齿数和半轴齿轮齿数的确定。 (3)半轴部分强度计算:当受最大牵引力时的强度;制动时强度计算。 (4)驱动桥强度计算:①桥壳的静弯曲应力 ②不平路载下的桥壳强度 ③最大牵引力时的桥壳强度 ④紧急制动时的桥壳强度 ⑤最大侧向力时的桥壳强度 3、主要技术参数 轴距L=2800mm 轴荷分配:满载时前后轴载1340/2735(kg) 发动机最大功率:80ps n:3800-4000n/min 发动机最大转矩17.5kg﹒m n:2200-2500n/min 传动比:i1=7.00; i0=5.833 轮毂总成和制动器总成的总重:g k=274kg

驱动桥壳设计

驱动桥壳设计 驱动桥壳的主要功用是支撑汽车质量,并承受由车轮传来的路面的反力和反力矩,并经悬架传给车架(或车身);它又是主减速器、差速器、半轴的装配基体驱动桥壳应满足如下设计要求: 1)应具有足够的强度和刚度,以保证主减速器齿轮啮合正常并不使半轴产生附加弯曲应力. 2)在保证强度和刚度的前提下,尽量减小质量以提高汽车行驶平顺性. 3)保证足够的离地间隙. 4)结构工艺性好,成本低. 5)保护装于其上的传动部件和防止泥水浸入. 6)拆装,调整,维修方便. 一.驱动桥壳结构方案分析 驱动桥壳大致可分为可分式、整体式 和组合式三种形式。 1.可分式桥壳 可分式桥壳(图5—29)由一个垂直接 合面分为左右两部分,两部分通过螺栓联 接成一体。每一部分均由一铸造壳体和一 个压入其外端的半轴套管组成,轴管与壳 体用铆钉连接。 这种桥壳结构简单,制造工艺性好,主减速器支承刚度好。但拆装、调整、维修很不方便,桥壳的强度和刚度受结构的限制,曾用于轻型汽车上,现已较少使用。 2.整体式桥壳

整体式桥壳(图5—30) 的特点是整个桥壳是一根空 心梁,桥壳和主减速器壳为两 体。它具有强度和刚度较大, 主减速器拆装、调整方便等优 点。 按制造工艺不同,整体式 桥壳可分为铸造式(图5— 30a)、钢板冲压焊接式(图5 —30b)和扩张成形式三种。铸 造式桥壳的强度和刚度较大, 但质量大,加:上面多,制造 工艺复杂,主要用于中、·重型货车上。钢板冲压焊接式和扩张成形式桥壳质量小,材料利用率高,制造成本低,适于大量生产,广泛应用于轿车和中、小型货车及部分重型货车上。 3)组合式桥壳 组合式桥壳(图5—31)是将主 减速器壳与部分桥壳铸为一体,而 后用无缝钢管分别压入壳体两端, 两者间用塞焊或销钉固定。它的优 点是从动齿轮轴承的支承刚度较 好,主减速器的装配、调整比可分 式桥壳方便,然而要求有较高的加 工精度,常用于轿车、轻型货车中。 二.驱动桥壳强度计算

轻型货车驱动桥设计

目录 1 前言 (1) 本课题的来源、基本前提条件和技术要求 (1) 本课题要解决的主要问题和设计总体思路 (1) 预期的成果 (2) 2 国内外发展状况及现状的介绍 (3) 3 总体方案论证 (4) 4 具体设计说明 (7) 主减速器的设计 (7) 主减速器的结构型式 (7) 主减速器主动锥齿轮的支承型式及安装方法 (10) 主减速器从动锥齿轮的支承型式及安装方法 (11) 主减速器的基本参数的选择及计算 (11) 差速器的设计 (14) 差速器的结构型式 (14) 差速器的基本参数的选择及计算 (16) 半轴的设计 (17) 半轴的结构型式 (17) 半轴的设计与计算 (17) 驱动桥壳结构选择 (20) 5 结论 (22) 参考文献 (23)

1 前言 本课题是进行轻型货车汽车后驱动桥的设计。设计出小型轻型货车汽车后驱动桥,包括主减速器、差速器、驱动车轮的传动装置及桥壳等部件,协调设计车辆的全局。 本课题的来源、基本前提条件和技术要求 a.本课题的来源:轻型载货汽车在汽车生产中占有大的比重。驱动桥在整车中十分重要,设计出结构简单、工作可靠、造价低廉的驱动桥,能大大降低整车生产的总成本,推动汽车经济的发展。 b.要完成本课题的基本前提条件是:在主要参数确定的情况下,设计选用驱动桥的各个部件,选出最佳的方案。 c.技术要求:设计出的驱动桥符合国家各项轻型货车的标准[1],运行稳定可靠,成本降低,适合本国路面的行驶状况和国情。 本课题要解决的主要问题和设计总体思路 a. 本课题解决的主要问题:设计出适合本课题的驱动桥。汽车传动系的总任务是传递发动机的动力,使之适应于汽车行驶的需要。在一般汽车的机械式传动中,有了变速器还不能完全解决发动机特性与汽车行驶要求间的矛盾和结构布置上的问题。首先是因为绝大多数的发动机在汽车上的纵向安置的,为使其转矩能传给左、右驱动车轮,必须由驱动桥的主减速器来改变转矩的传递方向,同时还得由驱动桥的差速器来解决左、右驱动车轮间的转矩分配问题和差速要求。其次,需将经过变速器、传动轴传来的动力,通过驱动桥的主减速器,进行进一步增大转矩、降低转速的变化。因此,要想使汽车驱动桥的设计合理,首先必须选好传动系的总传动比,并恰当地将它分配给变速器和驱动桥。 b. 本课题的设计总体思路:非断开式驱动桥的桥壳,相当于受力复杂的空心梁,它要求有足够的强度和刚度,同时还要尽量的减轻

相关文档
最新文档