高考数学函数与导数练习题

高考数学函数与导数练习题
高考数学函数与导数练习题

函数与导数

一、填空题

(2017·11)若2x =-是函数2

1`

()(1)x f x x ax e

-=+-的极值点,则()f x 的极小值为( )

A.1-

B.32e --

C.35e -

D.1 (2016·12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1

x y x

+=

与()y f x =图像的交点为11(,)x y ,22(,)x y ,…,(,)m m x y ,则1

()m

i i i x y =+=∑ ( )

A .0

B .m

C .2m

D .4m

(2015·5)设函数211log (2)(1)

()2

(1)x x x f x x -+-

A .3

B .6

C .9

D .12

(2015·10)如图,长方形ABCD 的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记∠BOP =x. 将动点P 到A ,B 两点距离之和表示为x 的函数f (x ),则f (x )的图像大致为 ( )

A .

B .

C .

D .

(2015·12)设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当x >0时,()()0xf x f x '-<,则使得f (x ) >0成立的x 的取值范围是( ) A .(,1)(0,1)-∞-U

B .(1,0)(1,)-+∞U

C .(,1)(1,0)-∞--U

D .(0,1)(1,)+∞U

(2014·8)设曲线y =ax -ln(x +1)在点(0,0)处的切线方程为y =2x ,则a =( )

A .0

B .1

C .2

D .3

(2014·12)设函数()3x f x m π=,若存在()f x 的极值点0x 满足22200[()]x f x m +<,则m 的取值范围

是( )

A .(,6)(6,+)-∞-∞U

B .(,4)(4,+)-∞-∞U

C .(,2)(2,+)-∞-∞U

D .(,1)(4,+)-∞-∞U (2013·8)设3log 6a =,5log 10b =,7log 14c =,则( )

A .c b a >>

B .b c a >>

C .a c b >>

D .a b c >>

(2013·10)已知函数32()f x x ax bx c =+++,下列结论中错误的是( )

A .00,()0x f x ?∈=R

B .函数()y f x =的图像是中心对称图形

C .若0x 是()f x 的极小值点,则()f x 在区间0(,)x -∞单调递减

D .若0x 是()f x 的极值点,则0()0f x '= (2012·10)已知函数x

x x f -+=

)1ln(1

)(,则)(x f y =的图像大致为( )

A. B. C. D.

(2012·12)设点P 在曲线x

e y 2

1=

上,点Q 在曲线)2ln(x y =上,则||PQ 的最小值为( ) A. 2ln 1-

B.

)2ln 1(2-

C. 2ln 1+

D.

)2ln 1(2+

(2011·2)下列函数中,既是偶函数又在+∞(0,)

单调递增的函数是( ) A .3y x = B .||1y x =+ C .21y x =-+ D .||

2x y -=

(2011·9

)由曲线y =

2y x =-及y 轴所围成的图形的面积为( )

A .

10

3

B .4

C .

163

D .6

(2011·12)函数1

1

y x =

-的图像与函数2sin ,(24)y x x π=-≤≤的图像所有交点的横坐标之和等于( ) A .2

B .4

C .6

D .8

二、填空题

(2014·15)已知偶函数f (x )在[0, +∞)单调递减,f (2)=0. 若f (x -1)>0,则x 的取值范围是_________. (2016·16)若直线y = kx +b 是曲线y = ln x +2的切线,也是曲线y = ln(x +1)的切线,则b = . 三、解答题

(2017·21)已知函数2

()ln ,f x ax ax x x =--且()0f x ≥.

(1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且2

20()2e f x --<<.

(2016·21)(Ⅰ)讨论函数2()2

x x f x e x -=

+ 的单调性,并证明当x >0时,(2)20x

x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2

()=(0)x e ax a

g x x x

-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域.

x

x

x

x

14.(2015·21)设函数2()mx f x e x mx =+-.

(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;

(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.

15.(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;

(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;

(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).

16.(2013·21)已知函数()ln()x f x e x m =-+.

(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >.

17.(2012·21)已知函数1

21

()(1)(0)2

x f x f e f x x -'=-+.

(Ⅰ)求)(x f 的解析式及单调区间; (Ⅱ)若b ax x x f ++≥

2

2

1)(,求b a )1(+的最大值.

18.(2011·21)已知函数ln ()1a x b

f x x x

=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;

(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k

f x x x

>

+-,求k 的取值范围.

2011年—2017年新课标全国卷Ⅱ理科数学试题分类汇编

7.函数与导数(解析版)

(2017·11)A 【解析】∵ ()()211x f x x ax e -=+- ∴ 导函数()()21

21x f x x a x a e -'??=+++-??,

∵ ()20f '-=,∴ 1a =-,∴ 导函数()()212x f x x x e -'=+-,令()0f x '=,∴ 12x =-,11x =, 当x 变化时,()f x ,()f x '随变化情况如下表:

从上表可知:极小值为()11f =-.故选A

(2016·

12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而11

1x y x x

+==+也关于()01,

对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111

022m m m

i i i i i i i m

x y x y m ===+=+=+?=∑∑∑,故选B .

(2016·

12)B 解析:由()()2f x f x =-得()f x 关于()01,对称,而11

1x y x x

+==+也关于()01,对称,∴对于每一组对称点'0i i x x +=, '=2i i y y +,∴()111

022m m m

i i i i i i i m

x y x y m ===+=+=+?=∑∑∑,故选B .

(2015·5)C 解析:由已知得2(2)1log 43f -=+=,又2log 121>,所以22log 121log 62(log 12)226f -===,故2(2)(log 12)9f f -+=.

(2015·10)B 解析:由已知得,当点P 在BC 边上运动时,即04

x π

≤≤时,tan PA PB x +;当点P 在CD 边上运动时,即34

4

x ππ≤≤

,2x π≠时,PA PB +=2x π=时,

PA PB +=P 在AD 边上运动时,即

34

x π

π≤≤时,PA PB +=tan x ,从点P

的运动过程可以看出,轨迹关于直线2x π

=

对称,且()()42f f ππ

>,且轨迹非线型,故选B . (2015·12)A 解析:记函数()()f x g x x =,则2()()

()x f x f x g x x '-'=,因为当x >0时,xf ′(x )-f (x )<0,故当x >0

时,g ′ (x )<0,所以g (x )在(0, +∞)单调递减;又因为函数f (x )(x ∈R )是奇函数,故函数g (x )是偶函数,所以g (x )在(-∞, 0)单调递增,且g (-1)=g (1)=0.当00,则f (x )>0;当x <-1时,g (x )<0,则f (x )>0,综上所述,使得f (x )>0成立的x 的取值范围是(-∞, -1)∪(0, 1),故选A .

(2014·8)D 解析:∵1'1y a x =-

+,且在点(0,0)处的切线的斜率为2,∴01

'|201

x y a ==-=+,即3a =.

(2014·12)C 解析:∵()x f x m π'=,令()0x f x m π'==得1

(),2

x m k k Z =+∈,

∴01(),2x m k k Z =+∈,即01|||||()|22m x m k =+≥

,m

x

x f πsin 3)(=Θ的极值为3±, ∴3)]([2

0=x f ,,34)]([22

02

0+≥+∴m x f x 222

00[()]x f x m +

∴m m <+, 即:2

4m >,故:2m <-或2m >. (2013·8)D 解析:根据公式变形,lg 6lg 21lg 3lg 3

a ==+,lg10lg 21lg 5lg 5

b ==+,lg14lg 2

1lg 7lg 7c ==+, 因为lg 7>lg 5>lg 3,所以

lg 2lg 2lg 2

lg 7lg 5lg 3

<<,即c <b <a . 故选D. (2013·10)C 解析:∵f ′(x )=3x 2+2ax +b ,∴y =f (x )的图像大致如右图所示,若x 0是f

(x )的极小值点,则则在(-∞,x 0)上不单调,故C 不正确.

(2012·10)B 解析:易知ln(1)0y x x =+-≤对(1,0)(0,)x ∈-+∞U 恒成立,当且仅当0x =时,取等号,故的值域是(-∞, 0). 所以其图像为B.

(2012·12)B 解析:因为12x y e =

与ln(2)y x =互为反函数,所以曲线1

2

x y e =与曲线ln(2)y x =关于直线y =x 对称,故要求|PQ |的最小值转化为求与直线y =x 平行且与曲线相切的直线间的距离,设切点为A ,则A 点到直线y =x 距离的最小值的2倍就是|PQ |的最小值. 则1

1()12

2

x

x

y e e ''==

=,2x e ∴=,即ln 2x =,故切点A 的坐标为(ln 2,1),因此,切点A 点到直线y =x

距离为d =

=,所

以||2ln 2)PQ d ==-.

(2011·2)B 解析:由各函数的图像知,故选B.

(2011·9)C 】解析:

用定积分求解3

4

24

20021162)(2)|323

S x dx x x x =+=-+=

?,故选C. (2011·12)D 解析:1

1

y x =-的对称中心是(1,0)也是2sin (24)y x x π=-≤≤的中心,24x -≤≤他们

的图像在x =1的左侧有4个交点,则x =1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x 1,x 2,x 3,x 4,x 5,x 6,x 7,x 8,则182736452x x x x x x x x +=+=+=+=,故选D .

二、填空题

(2014·15)(1,3)- 解析:∵()f x 是偶函数,∴(1)0(|1|)0(2)f x f x f ->?->=,又∵()f x 在

[0,)+∞单调递减,∴|1|2x -<,解得:13x -<<

(2016·

16)1ln2-解析:ln 2y x =+的切线为:11

1

ln 1y x x x =?++(设切点横坐标为1x ),()ln 1y x =+的切线为:()22

221ln 111x y x x x x =++-++,∴()122

12

2111ln 1ln 11x

x x x x x ?=?+???+=+-?+?

,解得112x = 212x =-,

1ln 11ln 2b x =+=-.

三、解答题

(2017·21)已知函数2

()ln ,f x ax ax x x =--且()0f x ≥.

(1)求a ;

(2)证明:()f x 存在唯一的极大值点0x ,且2

20()2e

f x --<<.

(2017·21)解析:(1)法一:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ , 所以()1ln 0a x x --≥,

即当()0,1x ∈时,ln 1x a x ≤-;当()1,x ∈+∞时,ln 1

x

a x ≥-;当1x =时,()1ln 0a x x --≥成立. 令()1ln g x x x =--,()11

'1x g x x x

-=-=,

当()0,1x ∈时,()'0g x <,()g x 递减,()()10g x g <=,所以:1ln x x ->,即:ln 11

x

x >-,

所以1a ≤; 当()1,x ∈+∞时,()'0g x >,()g x 递增,()()10g x g >=,所以:1ln x x ->,即:ln 11

x

x <-.

所以,1a ≥. 综上,1a =.

法二:洛必达法则:由题知:()()ln f x x ax a x =--()0x >,且()0f x ≥ ,所以:()1ln 0a x x --≥. 即当()0,1x ∈时,ln 1x a x ≤

-;当()1,x ∈+∞时,ln 1

x

a x ≥-; 当1x =时,()1ln 0a x x --≥成立.

令()ln 1x g x x =-,()()()()

22

11

1ln 1ln '11x x x x x g x x x ----==--. 令()11ln h x x x =-

-,()22111'x

h x x x x

-=-=. 当()0,1x ∈时,()'0h x >,()h x 递增,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()1

11ln 'ln 1lim

lim

lim 111'x x x x x

g x x x x

→→→>===--,所以:1a ≤; 当()1,x ∈+∞时,()'0h x <,()h x 递减,()()10h x h <=; 所以()'0g x <,()g x 递减,()()()1

11ln 'ln 1lim

lim

lim 111'x x x x x

g x x x x

→→→<===--,所以:1a ≥.

故1a =.

(2)由(1)知:()()1ln f x x x x =--,()'22ln f x x x =--,设()22ln x x x ?=--,则()1

'2x x ?=-

.

当10,2x ??∈ ???时,()'0x ?<;当

1,2x ??∈+∞ ???

时,()'0x ?>. 所以()x ?在10,2?? ???

递减,在1,2??

+∞ ???递增.

()2

0e ?->,102???

< ???,()10?=,所以()x ?在10,2?? ??

?有唯一零点0x ,在1,2??+∞ ???

有唯一零点1, 且当()00,x x ∈时,()0x ?>;当()0,1x x ∈时,()0x ?<; 当()1,x ∈+∞时,()0x ?>.

又()()'f x x ?=,所以0x x =是()f x 的唯一极大值点. 由()0'0f x =得()00ln 21x x =-,故()()0001f x x x =-. 由()00,1x ∈得()014f x <

.

因为0x x =是()f x 在()0,1的唯一极大值点,由()1

0,1e -∈,()10f e -≠得()()

120f x f e e -->=

所以2

20()2e

f x --<<.

(2016·21)(Ⅰ)讨论函数2()2

x x f x e x -=

+ 的单调性,并证明当x >0时,(2)20x

x e x -++>; (Ⅱ)证明:当[0,1)a ∈时,函数2

()=(0)x e ax a g x x x

-->有最小值.设g (x )的最小值为()h a ,求函数()h a 的值域. (2016·21)证明:⑴()()()22224e e 222x

x

x x f x x x x ??-' ?=+= ?+++??

,∵当x ∈()()22,-∞--+∞U ,

时,()0f x '>,∴()f x 在()()22,-∞--+∞,和上单调递增,∴0x >时,()2e 0=12

x

x f x ->-+,

∴()2e 20x x x -++>. ⑵ ()()()24e 2e x x a x x ax a g x x ----'=()4

e 2e 2x x x x ax a x -++=

32(2)(e )2x

x x a x x -+?++=,[)01a ∈,,由(1)知,当0x >时,()2e 2x x f x x -=?+的值域为()1-+∞,,只有一解.使得2e 2

t

t a t -?=-+,(]02t ∈,,当

(0,)x t ∈时,()0g x '<,()g x 单调减;当(,)x t ∈+∞时()0g x '>,()g x 单调增,

()()()222e 1e e 1e 22t

t t t t t a t t h a t t t -++?-++===+,记()e 2t k t t =+,在(]0,2t ∈时,()()()

2

e 102t t k t t +'=>+,

∴()k t 单调递增,∴()()21e 24h a k t ??

=∈ ???

,.

(2015·21)设函数2()mx f x e x mx =+-.

(Ⅰ)证明:f (x )在(-∞,0)单调递减,在(0,+∞)单调递增;

(Ⅱ)若对于任意x 1,,x 2∈[-1,1],都有|f (x 1)- f (x 2)|≤ e -1,求m 的取值范围.

(2015·21)解析:(Ⅰ)()(1)2mx f x m e x '=-+,若0m ≥,则当(,0)x ∈-∞时,10,()0mx e f x '-≤<;

当(0,)x ∈+∞时,10mx

e -≥,()0

f x '>. 若0m <,则当(,0)x ∈-∞时,10,()0mx e f x '-><;当(0,)x ∈+∞时,10mx

e

-<,()0f x '>,所以,()f x 在(,0)-∞单调递减,在(0,)+∞单调递增.

(Ⅱ)由(Ⅰ)知,对任意的m ,()f x 在[-1,0]单调递减,在[0,1]单调递增,故()f x 在0x =处取

得最小值,所以对于任意12,[1,1]x x ∈-,12|()()|1f x f x e -≤-的充要条件是(1)(0)1

(1)(0)1f f e f f e -≤-??--≤-?

即11m

m e m e e m e -?-≤-??+≤-??①. 设函数()1t g t e t e =--+,则()1t g t e '=-,当0t <时,()0g t '<;当0t >时,()0g t '>,故()g t 在(,0)-∞单调递减,在(0,)+∞单调递增.又(1)0g =,1(1)20g e e --=+-<,

故当[1,1]t ∈-时,()0g t ≤.当[1,1]m ∈-时,()0,()0g m g m ≤-≤,即①式成立;当1m >时,由()g t 的单调性,()0g m >,即1m

e m e ->-;当1m <-时,()0g m ->,即1m

e m e -+>-,综上,m 的

取值范围是[-1,1].

(2014·21)已知函数()2x x f x e e x -=--. (Ⅰ)讨论()f x 的单调性;

(Ⅱ)设()(2)4()g x f x bf x =-,当0x >时,()0g x >,求b 的最大值;

(Ⅲ)已知1.4142 1.4143<,估计ln2的近似值(精确到0.001).

(2014·21)解析:

(Ⅰ)1()2()2=220.x x x x x

x f x e e x x R f x e e e e --'=--∈∴=+-+-≥=Q ,,

∴当且

仅当x =0时等号成立,所以函数()f x 在R 上单调递增.

(Ⅱ)22()(2)4()44(2),x x x x

g x f x bf x e e x b e e x --=-=-----Q ∴当

x >0

时,

2244(2)0,x x x x e e x b e e x ------->22()2[2()(42)]x x x x g x e e b e e b --'∴=+-++- 2(2)[(22)]x x x x e e e e b --=+-+--

,2x x e e -+≥=Q ,2(2)0x x e e -∴+-≥,

(1) 当2b ≤时,()0g x '≥,当且仅当x =0时等号成立. 所以此时g (x )在R 上单调递增,而g (0)=0,所以对任意x >0,有g (x )>0.

(2) 当2b >时,若x 满足222x x e e b -<+<-时,

即0ln(1x b <<-时,()0g x '<,而g (0)=0,

因此当0ln(1x b <<-时,g (x )<0.

综上可知,当2b ≤时,才对任意的x >0,有g (x )>0,因此b 的最大值为2. (Ⅲ)由(Ⅱ)

知,3

2(21)ln 22

g b =

-+-,

当b =2

时,3

6ln 202

g =->

,ln 20.6928>

>;

当14b =

+

时,ln(1b -=

3

2)ln 202

g =--<,

18ln 20.693428

<

<,所以ln2的近似值为0.693.

(2013·21)已知函数()ln()x f x e x m =-+.

(Ⅰ)设0x =是()f x 的极值点,求m ,并讨论()f x 的单调性; (Ⅱ)当2m ≤时,证明()0f x >. (2013·21)解析:(Ⅰ)f ′(x )=1

x

e x m

-

+. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=11x e x -+.函数f ′(x )=11

x

e x -+在(-1,+∞)单调递增,且

f ′(0)

=0.因此当x ∈(-1,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增.

(Ⅱ)当m ≤2,x ∈(-m ,+∞)时,ln(x +m )≤ln(x +2),故只需证明当m =2时,f (x )>0.当m =2时,函数f ′(x )=1

2

x

e x -

+在(-2,+∞)单调递增.又f ′(-1)<0,f ′(0)>0,故f ′(x )=0在(-2,+∞)有唯一实根x 0,且x 0∈(-1,0).当x ∈(-2,x 0)时,f ′(x )<0;当x ∈(x 0,+∞)时,f ′(x )>0,从而当x =x 0时,f (x )取得最小

值.由f ′(x 0)=0得0

x e =012x +,ln(x 0+2)=-x 0,故f (x ) ≥ f (x 0)=01

2x ++x 0=20012

x x (+)+>0. 综上,当m ≤2

时,f (x )>0.

(2012·21)已知函数1

21

()(1)(0)2

x f x f e f x x -'=-+.

(Ⅰ)求)(x f 的解析式及单调区间;

(Ⅱ)若b ax x x f ++≥

2

2

1)(,求b a )1(+的最大值. (2012·21)解析:(Ⅰ) 1()(1)(0)x f x f e f x -''=-+,令x =1得,f (x )=1,再由121()(1)(0)2

x f x f e f x x -'=-+,令0x =得(1)f e '=. 所以)(x f 的解析式为2

1()2

x

f x e x x =-+

,∴()1x f x e x '=-+,易知()1x f x e x '=-+是R 上的增函数,且(0)0f '=.所以()00f x x '>?>,()00f x x '

函数)(x f 的增区间为(0,)+∞,减区间为(,0)-∞. (Ⅱ) 若b ax x x f ++≥

221)(恒成立,即21

()()(1)02

x h x f x x ax b e a x b =---=-+-≥ 恒成立,()(1)x h x e a '=-+Q .

(1)当10a +<时,()0h x '>恒成立,()h x 为R 上的增函数,且当x →-∞时, ()h x →-∞,不合题

意;

(2)当10a +=时,()0h x >恒成立,则0b ≤,(1)0a b +=;

(3)当10a +>时,()(1)x

h x e a '=-+为增函数,由()0h x '=得ln(1)x a =+,故

()0ln(1)f x x a '>?>+,()0ln(1)f x x a '

(ln(1))1(1)ln(1)h a a a a b +=+-++-. 依题意有(ln(1))1(1)ln(1)0h a a a a b +=+-++-≥,即

1(1)ln(1)b a a a ≤+-++,10a +>Q ,22(1)(1)(1)ln(1)a b a a a ∴+≤+-++,令22()ln 0u x x x x x =-> (),则()22ln (12ln )u x x x x x x x '=--=-

,()00()0u x x u x ''>?<<

x ?>

所以当x =()u x 取

最大值2

e

u =

.

故当1a b +==(1)a b +取最大值2e . 综上,若b ax x x f ++≥221)(,

则 b a )1(+的最大值为

2

e

. (2011·21)已知函数ln ()1a x b

f x x x

=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=. (Ⅰ)求a 、b 的值;

(Ⅱ)如果当0x >,且1x ≠时,ln ()1x k

f x x x

>

+-,求k 的取值范围. 解析:(Ⅰ)22

1

(

ln )

()(1)x x b x f x x x α+-'=

-+由于直线230x y +-=的斜率为12

-,且过点(1,1),故(1)11(1)2f f =???'=-??,即1

122

b a b =???-=-??,解得1a =,1b =. (Ⅱ)由(Ⅰ)知ln 1()1x f x x x =++,所以22

ln 1(1)(1)()()(2ln )11x k k x f x x x x x x ---+=+--.考虑函数2(1)(1)

()2ln k x h x x x --=+(0)x >,则22

(1)(1)2'()k x x h x x

-++=. (i)设0k ≤,由22

2

(1)(1)()k x x h x x

+--'=知,当1x ≠时,()0h x '<. 而(1)0h =,故当(0,1)x ∈时,()0h x >,可得2

1

()01h x x

>-;当x ∈(1,+∞)时,h (x )<0,可得21()01h x x >-,从而当x >0,且x ≠1时,ln ()01x k f x x x -+>-,即ln ()1x k

f x x x

>+-.

(ii )设00,故h ′(x )>0,而h (1)=0,故当x ∈(1,k

-11

)

时,h (x )>0,可得2

11

x

- h (x )<0,与题设矛盾. (iii )设k ≥1. 此时h ′(x )>0,而h (1)=0,故当x ∈(1,+∞)时,h (x)>0,可得2

11

x -h (x )<0,与题设矛

盾.

综上可得,k 的取值范围为(-∞,0].

2008年高考数学试题分类汇编——函数与导数

2008年高考数学试题分类汇编 函数与导数 一. 选择题: 1.(全国一1 )函数y = C ) A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥ D .{}|01x x ≤≤ 2.(全国一2)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( A ) 3.(全国一6)若函数(1)y f x =- 的图像与函数1y =的图像关于直线y x =对称,则()f x =( B ) A .21x e - B .2x e C .21x e + D .22x e + 4.(全国一7)设曲线11x y x += -在点(32),处的切线与直线10ax y ++=垂直,则a =( D ) A .2 B .12 C .12- D .2- 5.(全国一9)设奇函数()f x 在(0)+∞, 上为增函数,且(1)0f =,则不等式()()0f x f x x --<的解集为( D ) A .(10)(1)-+∞ ,, B .(1)(01)-∞- , , C .(1)(1)-∞-+∞ ,, D .(10)(01)- , , 6.(全国二3)函数1()f x x x = -的图像关于( C ) A .y 轴对称 B . 直线x y -=对称 A . B . C . D .

C . 坐标原点对称 D . 直线x y =对称 8.(全国二4)若13(1)ln 2ln ln x e a x b x c x -∈===,,,,,则( C ) A .a > B .b a c >> C .c a b >> D .b c a >> 10.(北京卷3)“函数()()f x x ∈R 存在反函数”是“函数()f x 在R 上为增函数”的( B ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件 11.(四川卷10)设()()sin f x x ω?=+,其中0ω>,则()f x 是偶函数的充要条件是( D ) (A)()01f = (B)()00f = (C)()'01f = (D)()'00f = 12.(四川卷11)设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( C ) (A)13 (B)2 (C)132 (D)213 13.(天津卷3)函数1y =04x ≤≤)的反函数是A (A )2(1)y x =-(13x ≤≤) (B )2(1)y x =-(04x ≤≤) (C )21y x =-(13x ≤≤) (D )21y x =-(04x ≤≤) 14.(天津卷10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时 a 的取值集合为B (A )2{|1}a a <≤ (B ){|}2a a ≥ (C )3|}2{a a ≤≤ (D ){2,3} 15.(安徽卷7)0a <是方程2210ax x ++=至少有一个负数根的( B ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件 16.(安徽卷9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称。而函数()y f x =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,

高考数学导数与三角函数压轴题综合归纳总结教师版

导数与三角函数压轴题归纳总结 近几年的高考数学试题中频频出现含导数与三角函数零点问题,内容主要包括函数零点个数的确定、根据函数零点个数求参数范围、隐零点问题及零点存在性赋值理论.其形式逐渐多样化、综合化. 一、零点存在定理 例1.【2019全国Ⅰ理20】函数()sin ln(1)f x x x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2 π -存在唯一极大值点; (2)()f x 有且仅有2个零点. 【解析】(1)设()()g x f x '=,则()()() 2 11 cos ,sin 11g x x g x x x x '=- =-+++. 当1,2x π??∈- ?? ?时,()g'x 单调递减,而()00,02g g π?? ''>< ???, 可得()g'x 在1,2π?? - ?? ?有唯一零点,设为α. 则当()1,x α∈-时,()0g x '>;当,2x πα?? ∈ ??? 时,()0g'x <. 所以()g x 在()1,α-单调递增,在,2πα?? ???单调递减,故()g x 在1,2π?? - ???存在唯一极大 值点,即()f x '在1,2π?? - ?? ?存在唯一极大值点. (2)()f x 的定义域为(1,)-+∞. (i )由(1)知, ()f x '在()1,0-单调递增,而()00f '=,所以当(1,0)x ∈-时,()0f 'x <,故()f x 在(1,0)-单调递减,又(0)=0f ,从而0x =是()f x 在(1,0]-的唯一零点. (ii )当0,2x π?? ∈ ???时,由(1)知,()f 'x 在(0,)α单调递增,在,2απ?? ??? 单调递减,而

函数与导数历年高考真题

函数与导数高考真题 1.2log 510+log 50.25= A 、0 B 、1 C 、2 D 、4 2.2 2 (1cos )x dx π π-+?等于( ) A.π B.2 C.π-2 D.π+2 3.设f(x)为定义在R 上的奇函数,当x ≥0时,f(x)=2x +2x+b(b 为常数),则f(-1)= (A) 3 (B) 1 (C)-1 (D)-3 4.设定义在R 上的函数()f x 满足()()213f x f x ?+=,若()12f =,则()99f =( ) (A)13 (B)2 (C) 132 (D)213 75.已知函数3()2x f x +=,1()f x -是()f x 的反函数,若16mn =(m n ∈+R ,),则11()()f m f n --+的值为( ) A .2- B .1 C .4 D .10 6.设正数a,b 满足4)(22lim =-+→b ax x x , 则=++--+∞ →n n n n n b a ab a 211 1lim ( ) A .0 B . 41 C .21 D .1 7.已知函数y =13x x -++的最大值为M ,最小值为m ,则m M 的值为 (A)14 (B)12 (C)22 (D)32 8.已知函数y =x 2-3x+c 的图像与x 恰有两个公共点,则c = (A )-2或2 (B )-9或3 (C )-1或1 (D )-3或1 9.已知以4T =为周期的函数21,(1,1]()12,(1,3] m x x f x x x ?-∈-?=?--∈??,其中0m >。若方程 3()f x x =恰有5个实数解,则m 的取值范围为( ) A .158(,)33 B .15(,7)3 C .48(,)33 D .4(,7)3 10.已知函数2()22(4)1f x mx m x =--+,()g x mx =,若对于任一实数x ,()f x 与 ()g x 至少有一个为正数,则实数m 的取值范围是 A . (0,2) B .(0,8) C .(2,8) D . (,0)-∞

2007——2014高考数学新课标卷(理)函数与导数压轴题汇总

2007——2014高考数学新课标卷(理)函数与导数综合大题 【2007新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数2()ln()f x x a x =++ (I )若当1x =-时,()f x 取得极值,求a 的值,并讨论()f x 的单调性; (II )若()f x 存在极值,求a 的取值范围,并证明所有极值之和大于e ln 2 . 【解析】(Ⅰ)1()2f x x x a '= ++,依题意有(1)0f '-=,故32a =. 从而2231(21)(1) ()3322 x x x x f x x x ++++'==++. ()f x 的定义域为32?? -+ ??? ,∞,当312x -<<-时,()0f x '>; 当1 12 x -<<-时,()0f x '<; 当1 2 x >- 时,()0f x '>. 从而,()f x 分别在区间3 1122????---+ ? ?????,,, ∞单调增加,在区间112?? -- ??? ,单调减少. (Ⅱ)()f x 的定义域为()a -+,∞,2221 ()x ax f x x a ++'=+. 方程2 2210x ax ++=的判别式2 48a ?=-. (ⅰ)若0?< ,即a << ()f x 的定义域内()0f x '>,故()f x 的极值. (ⅱ)若0?= ,则a a = 若a = ()x ∈+ ,2 ()f x '= . 当x =时,()0f x '=,

当2 x ? ??∈-+ ? ????? ,∞时, ()0f x '>,所以()f x 无极值. 若a =)x ∈+,()0f x '= >,()f x 也无极值. (ⅲ)若0?>,即a > a <22210x ax ++=有两个不同的实根 1x = 2x = 当a <12x a x a <-<-,,从而()f x '有()f x 的定义域内没有零点, 故()f x 无极值. 当a > 1x a >-,2x a >-,()f x '在()f x 的定义域内有两个不同的零点, 由根值判别方法知()f x 在12x x x x ==,取得极值. 综上,()f x 存在极值时,a 的取值范围为)+. ()f x 的极值之和为 2221211221()()ln()ln()ln 11ln 2ln 22 e f x f x x a x x a x a +=+++++=+->-=. 【2008新课标卷(海南宁夏卷)】 21.(本小题满分12分) 设函数1 ()()f x ax a b x b =+ ∈+Z ,,曲线()y f x =在点(2(2))f ,处的切线方程为y =3. (Ⅰ)求()f x 的解析式: (Ⅱ)证明:函数()y f x =的图像是一个中心对称图形,并求其对称中心; (Ⅲ)证明:曲线()y f x =上任一点的切线与直线x =1和直线y =x 所围三角形的面积为定值,并求出此定值. 21.解:(Ⅰ)2 1 ()() f x a x b '=- +,

全国卷历年高考函数与导数真题归类分析(含答案)

全国卷历年高考函数与导数真题归类分析(含答案) (2015年-2018年共11套) 函数与导数小题(共23小题) 一、函数奇偶性与周期性 1.(2015年1卷13)若函数f (x ) =ln(x x +为偶函数,则a= 【解析】由题知ln(y x = 是奇函数,所以ln(ln(x x ++- =22ln()ln 0a x x a +-==,解得a =1.考点:函数的奇偶性 2.(2018年2卷11)已知是定义域为的奇函数,满足 .若 , 则 A. B. 0 C. 2 D. 50 解:因为是定义域为 的奇函数,且 , 所以, 因此, 因为 ,所以, ,从而 ,选C. 3.(2016年2卷12)已知函数()()R f x x ∈满足()()2f x f x -=-,若函数1 x y x += 与()y f x =图像的交点为()11x y ,,()22x y ,,?,()m m x y ,,则()1 m i i i x y =+=∑( ) (A )0 (B )m (C )2m (D )4m 【解析】由()()2f x f x =-得()f x 关于()01, 对称,而11 1x y x x +==+也关于()01,对称, ∴对于每一组对称点'0i i x x += '=2i i y y +,∴()1 1 1 022 m m m i i i i i i i m x y x y m ===+=+=+? =∑∑∑,故选B . 二、函数、方程与不等式 4.(2015年2卷5)设函数211log (2),1, ()2,1,x x x f x x -+-

高考数学真题汇编——函数与导数

高考数学真题汇编——函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为A. B. C. D. 【答案】D

【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,, , 据此可得:.本题选择D选项. 点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C.

点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D. 【答案】D 点睛:该题考查的是有关曲线在某个点处的切线方程的问题,在求解的过程中,首先需要确定函数解析式,此时利用到结论多项式函数中,奇函数不存在偶次项,偶函数不存在奇次项,从而求得相应的参数值,之后利用求导公式求得,借助于导数的几何意义,结合直线方程的点斜式求得结果. 5.【2018年全国卷Ⅲ理】设,,则

(完整版)专题05导数与函数的极值、最值—三年高考(2015-2017)数学(文)真题汇编.doc

1. 【 2016 高考四川文科】已知函数的极小值点,则=( ) (A)-4 (B) -2 (C)4 (D)2 【答案】 D 考点:函数导数与极值. 【名师点睛】本题考查函数的极值.在可导函数中函数的极值点是方程但是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在 的解,附近,如 果时,,时,则是极小值点,如果时,,时,,则是极大值点, 2. 【 2015 高考福建,文A.充分而不必要条 件12】“对任意 B.必要而不充分条件 ,”是“ C .充分必要条件 D ”的() .既不充分也不必 要条件 【答案】 B 【解析】当时,,构造函数,则 .故在单调递增,故,则;当时,不等式等价于,构造函数 ,则,故在递增,故 ”是“,则.综上 ”的必要不充分条件,选 所述,“ 对任 意B. ,

【考点定位】导数的应用. 【名师点睛】 本题以充分条件和必要条件为载体考查三角函数和导数在单调性上的应用, 根 据已知条件构造函数,进而研究其图象与性质,是函数思想的体现,属于难题. 3. (2014 课标全国Ⅰ,文 12) 已知函数 f ( x ) = ax 3 - 3 2 + 1,若 f ( ) 存在唯一的零点 x 0 ,且 x x x 0>0,则 a 的取值范围是 ( ) . A . (2 ,+∞ ) B . (1 ,+∞) C . ( -∞,- 2) D .( -∞,- 1) 答案: C 解析:当 a = 0 时, f ( x ) =- 3x 2+ 1 存在两个零点,不合题意; 当 a >0 时, f ′(x ) = 3ax 2- 6x = , 令 ′( ) = 0,得 x 1 = 0, , fx 所以 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一的零点,需 ,但这时零点 x 0 一定小于 0,不合题意; 当 a <0 时, f ′(x ) = 3ax 2- 6x = , 令 f ′(x ) = 0,得 x 1=0, ,这时 f ( x ) 在 x =0 处取得极大值 f (0) = 1,在 处取得极小值 , 要使 f ( x ) 有唯一零点,应满足 ,解得 a <- 2( a > 2 舍去 ) ,且这时 零点 x 0 一定大于 0,满足题意,故 a 的取值范围是 ( -∞,- 2) . 名师点睛:本题考查导数法求函数的单调性与极值,函数的零点,考查分析转化能力,分类讨论思想, 较难题 . 注意区别函数的零点与极值点 . 4. 【 2014 辽宁文 12】当 时,不等式 恒成立,则实数 a 的取 值范围是()

高考理科数学全国卷三导数压轴题解析

2018年高考理科数学全国卷三导数压轴题解析 已知函数2()(2)ln(1)2f x x ax x x =+++- (1) 若0a =,证明:当10x -<<时,()0f x <;当0x >时,()0f x >; (2) 若0x =是()f x 的极大值点,求a . 考点分析 综合历年试题来看,全国卷理科数学题目中,全国卷三的题目相对容易。但在2018年全国卷三的考察中,很多考生反应其中的导数压轴题并不是非常容易上手。第1小问,主要通过函数的单调性证明不等式,第2小问以函数极值点的判断为切入点,综合考察复杂含参变量函数的单调性以及零点问题,对思维能力(化归思想与分类讨论)的要求较高。 具体而言,第1问,给定参数a 的值,证明函数值与0这一特殊值的大小关系,结合函数以及其导函数的单调性,比较容易证明,这也是大多数考生拿到题目的第一思维方式,比较常规。如果能结合给定函数中20x +>这一隐藏特点,把ln(1)x +前面的系数化为1,判断ln(1)x +与2/(2)x x +之间的大小关系,仅通过一次求导即可把超越函数化为求解零点比较容易的代数函数,解法更加容易,思维比较巧妙。总体来讲,题目设置比较灵活,不同能力层次的学生皆可上手。 理解什么是函数的极值点是解决第2问的关键。极值点与导数为0点之间有什么关系:对于任意函数,在极值点,导函数一定等于0么(存在不存在)?导函数等于0的点一定是函数的极值点么?因此,任何不结合函数的单调性而去空谈函数极值点的行为都是莽撞与武断的。在本题目中,0x =是()f x 的极大值点的充要条件是存在10δ<和20δ>使得对于任意1(,0)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递增),对于任意2(0,)x δ∈都满足()(0)=0f x f <( 或者()f x 单调递减),因此解答本题的关键是讨论函数()f x 在0x =附近的单调性或者判断()f x 与(0)f 的大小关系。题目中并没有限定参数a 的取值范围,所以要对实数范围内不同a 取值时的情况都进行分类讨论。在第1小问的基础上,可以很容易判断0a =以及0a >时并不能满足极大值点的要求,难点是在于判断0a <时的情况。官方标准答案中将问题等价转化为讨论函数2 ()ln(1)/(2)h x x x x =+++在0x =点的极值情况,非常巧妙,但是思维跨度比较大,在时间相对紧张的选拔性考试中大多数考生很难想到。需要说明的是,官方答案中的函数命题等价转化思想需要引起大家的重视,这种思想在2018年全国卷2以及2011年新课标卷1的压轴题中均有体现,这可能是今后导数压轴题型的重要命题趋势,对学生概念理解以及思维变通的能力要求更高,符合高考命题的思想。 下面就a 值变化对函数()f x 本身在0x =附近的单调性以及极值点变化情况进行详细讨论。

(完整版)函数与导数专题(含高考试题)

函数与导数专题1.在解题中常用的有关结论(需要熟记):

考点一:导数几何意义: 角度一 求切线方程 1.(2014·洛阳统考)已知函数f (x )=3x +cos 2x +sin 2x ,a =f ′? ?? ?? π4,f ′(x )是f (x ) 的导函数,则过曲线y =x 3上一点P (a ,b )的切线方程为( ) A .3x -y -2=0 B .4x -3y +1=0 C .3x -y -2=0或3x -4y +1=0 D .3x -y -2=0或4x -3y +1=0 解析:选A 由f (x )=3x +cos 2x +sin 2x 得f ′(x )=3-2sin 2x +2cos 2x ,则a = f ′? ?? ??π4=3-2sin π2+2cos π2=1.由y =x 3得y ′=3x 2,过曲线y =x 3上一点P (a ,b )的切线的斜率k =3a 2=3×12=3.又b =a 3,则b =1,所以切点P 的坐标为(1,1),故过曲线y =x 3上的点P 的切线方程为y -1=3(x -1),即3x -y -2=0. 角度二 求切点坐标 2.(2013·辽宁五校第二次联考)曲线y =3ln x +x +2在点P 0处的切线方程为4x -y -1=0,则点P 0的坐标是( ) A .(0,1) B .(1,-1) C .(1,3) D .(1,0) 解析:选C 由题意知y ′=3 x +1=4,解得x =1,此时4×1-y -1=0,解得y =3,∴点P 0的坐标是(1,3). 角度三 求参数的值 3.已知f (x )=ln x ,g (x )=12x 2+mx +7 2(m <0),直线l 与函数f (x ),g (x )的图像都相切,且与f (x )图像的切点为(1,f (1)),则m 等于( )

2020北京各区一模数学试题分类汇编--函数与导数(学生版)

2020北京各区一模数学试题分类汇编--函数与导数 (2020海淀一模)已知函数f (x )=|x -m |与函数g (x )的图象关于y 轴对称.若g (x )在区间(1,2)内单调递减,则m 的取值范围为( ) A. [-1,+∞) B. (-∞,-1] C. [-2,+∞) D. (-∞,-2] (2020西城一模)设函数()21010 0x x x f x lgx x ?++≤?=?>??,,若关于x 的方程()()f x a a R =∈有四个实数解()1234i x i =,,,,其中1234x x x x <<<,则()()1234x x x x +-的取值范围是( ) A. (]0101 , B. (]099, C. (]0100, D. ()0+∞, (2020西城一模)下列函数中,值域为R 且为奇函数的是( ) A. 2y x =+ B. y sinx = C. 3y x x =- D. 2x y = (2020东城一模)设函数()()120f x x x x =+ -<,则()f x ( ) A. 有最大值 B. 有最小值 C. 是增函数 D. 是减函数 (2020丰台一模)已知函数()e 1,0,,0. x x f x kx x ?-≥=?

(2020丰台一模)已知132a =,123b =,3 1log 2c =,则( ) A. a b c >> B. a c b >> C. b a c >> D. b c a >> (2020朝阳区一模)下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A. 3y x = B. 21y x =-+ C. 2log y x = D. ||2x y = (2020朝阳区一模)已知函数222,1,()2ln , 1.x ax a x f x x a x x ?-+≤=?->?若关于x 的不等式()2a f x ≥在R 上恒成立,则实数a 的取值范围为( ) A. (-∞ B. 3[0,]2 C. [0,2] D. (2020石景山一模)下列函数中,既是奇函数又在区间()0,∞+上单调递减的是( ) A. 22y x =-+ B. 2x y -= C. ln y x = D. 1y x = (2020石景山一模)设()f x 是定义在R 上的函数,若存在两个不等实数12,x x R ∈,使得 ()()121222f x f x x x f ++??= ??? ,则称函数()f x 具有性质P ,那么下列函数: ①()1,00,0 x f x x x ?≠?=??=?; ②()2 f x x =;

函数与导数经典例题高考压轴题含答案

函数与导数经典例题-高考压轴 1. 已知函数3 2 ()4361,f x x tx tx t x R =+-+-∈,其中t R ∈. (Ⅰ)当1t =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (Ⅱ)当0t ≠时,求()f x 的单调区间; (Ⅲ)证明:对任意的(0,),()t f x ∈+∞在区间(0,1)内均存在零点. 2. 已知函数21 ()32 f x x = +,()h x = (Ⅰ)设函数F (x )=18f (x )-x 2[h (x )]2,求F (x )的单调区间与极值; (Ⅱ)设a ∈R ,解关于x 的方程33 lg[(1)]2lg ()2lg (4)24 f x h a x h x --=---; (Ⅲ)设*n ∈N ,证明:1 ()()[(1)(2)()]6 f n h n h h h n -+++≥L . 3. 设函数ax x x a x f +-=2 2ln )(,0>a (Ⅰ)求)(x f 的单调区间; (Ⅱ)求所有实数a ,使2 )(1e x f e ≤≤-对],1[e x ∈恒成立. 注:e 为自然对数的底数. 4. 设2 1)(ax e x f x +=,其中a 为正实数. (Ⅰ)当3 4 = a 时,求()f x 的极值点;(Ⅱ)若()f x 为R 上的单调函数,求a 的取值范围. 5. 已知a , b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f (e )=2(e=2.71828…是自然对数 的底数)。 (I )求实数b 的值; (II )求函数f (x )的单调区间; (III )当a=1时,是否同时存在实数m 和M (m

高考真题汇编(函数与导数)

函数与导数 1.【2018年浙江卷】函数y=sin2x的图象可能是 A. B. C. D. 【答案】D 点睛:有关函数图象的识别问题的常见题型及解题思路:(1)由函数的定义域,判断图象的左、右位置,由函数的值域,判断图象的上、下位置;(2)由函数的单调性,判断图象的变化趋势;(3)由函数的奇偶性,判断图象的对称性;(4)由函数的周期性,判断图象的循环往复. 2.【2018年理天津卷】已知,,,则a,b,c的大小关系为 A. B. C. D. 【答案】D 【解析】分析:由题意结合对数函数的性质整理计算即可求得最终结果. 详解:由题意结合对数函数的性质可知:,,,据此可得:.本题选择D选项.

点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确. 3.【2018年理新课标I卷】已知函数.若g(x)存在2个零点,则a的取值范围是 A. [–1,0) B. [0,+∞) C. [–1,+∞) D. [1,+∞) 【答案】C 详解:画出函数的图像,在y轴右侧的去掉,再画出直线,之后上下移动,可以发现当直线过点A时,直线与函数图像有两个交点,并且向下可以无限移动,都可以保证直线与函数的图像有两个交点,即方程有两个解,也就是函数有两个零点,此时满足,即,故选C. 点睛:该题考查的是有关已知函数零点个数求有关参数的取值范围问题,在求解的过程中,解题的思路是将函数零点个数问题转化为方程解的个数问题,将式子移项变形,转化为两条曲线交点的问题,画出函数的图像以及相应的直线,在直线移动的过程中,利用数形结合思想,求得相应的结果. 4.【2018年理新课标I卷】设函数,若为奇函数,则曲线在点处的切线方程为 A. B. C. D.

高考导数大题汇编理科答案

高考导数大题汇编理科 答案 YUKI was compiled on the morning of December 16, 2020

一、解答题 1. 解:(Ⅰ) 函数()f x 的定义域为(0,)+∞,' 112()e ln e e e .x x x x a b b f x a x x x x --=+-+ 由题意可得' (1)2,(1) e.f f ==故1,2a b ==. (Ⅱ)由(Ⅰ)知12e ()e ln ,x x f x x x -=+从而()1f x >等价于2 ln e .e x x x x ->- 设函数()ln g x x x =,则()1ln g x x '=+,所以当1 (0,)e x ∈时,' ()0g x <; 当1(,)e x ∈+∞时,' ()0g x >,故()g x 在1(0,)e 单调递减,在1(,)e +∞单调递增, 从而()g x 在(0,)+∞的最小值为11().e e g =-. 设函数2 ()e e x h x x -=-,则'()e (1)x h x x -=-,所以当(0,1)x ∈时,'()0h x >; 当(1,)x ∈+∞时,' ()0h x <,故()h x 在(0,1)上单调递增,在(1,)+∞上单调递减,从而()h x 在(0,)+∞的最大值为1(1)e h =- . 综上,当0x >时,()()g x h x >,即()1f x >. 2. 解题指南(1)根据导数公式求出函数的导数,利用分类讨论思想求解;(2)根据函数的单调性以及函数极值与导数的关系式确定函数的极值点,代入函数中求解. 解析(1)2/ 2 2 2(2)24(1) ()1(2)(1)(2)a x x ax a f x ax x ax x +-+-=-=++++ (*) 当1a ≥时,/ ()0f x >,此时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,由/ ()0f x = 得1 x = ,(2x =-舍去). 当1(0,)x x ∈时,/()0f x <;当1(,)x x ∈+∞时,/ ()0f x >. 故()f x 在区间1(0,)x 上单调递减,在区间1(,)x +∞上单调递增. 综上所述,当1a ≥时,()f x 在区间(0,)+∞上单调递增. 当01a <<时,()f x 在区间(0, 上单调递减,在区间)+∞上单调递增. 由(*)式知,当1a ≥时,/ ()0f x >,此时()f x 不存在极值点,因而要使得()f x 有两个极值点, 必有01a <<.又()f x 的极值点只可能是1 x = 2x =-,且由定义可知,1 x a >- 且2x ≠- ,所以1a ->- 且2-≠-,解得1 2 a ≠- 此时,由(*)式易知,12,x x 分别是()f x 的极小值和极大值点,而 令2a - 01x <<. 记(g x (Ⅰ)当1 - 因此,g 1()( f x f +(Ⅱ)当0 因此,(g x 1()( f x f + 综上所 3. (1)证明函数. (2)解:由条 令t = 因为 当且 因此 (3)解:令函 当x ≥1时, 因此g (x )在 由于存在x 0故1 e+e 2 --令函数() h x

2015-2018年高考全国卷文科数学--函数与导数大题汇编

2015年~2018年高考全国卷数学(文科)—函数与导数汇编 1.(2015年全国乙卷第21题)已知函数()ln (1)f x x a x =+-﹒ (1)讨论函数()f x 的单调性; (2)当()f x 有最大值,且最大值大于22a -时,求a 的取值范围﹒ 2.(2015年全国甲卷第21题)设函数2()ln x f x e a x =-﹒ (1)讨论()f x 的导函数()f x '零点的个数; (2)证明:当0a >时,2()2ln f x a a a ≥+﹒ 3.(2016年全国丙卷第21题)设函数()ln 1f x x x =-+﹒ (1)讨论函数()f x 的单调性; (2)证明:当(1,)x ∈+∞时,11ln x x x -<<; (3)设1c >,证明:当(0,1)x ∈时,1(1)x c x c +->﹒ 4.(2016年全国乙卷第20题)已知函数()(1)ln (1)f x x x a x =+--﹒ (1)当4a =时,求曲线()y f x =在(1,(1))f 处的切线方程; (2)若当(1,)x ∈+∞时,()0f x >,求a 的取值范围﹒ 5.(2016年全国甲卷第21题)已知函数2()(2)(1)x f x x e a x =-+-﹒ (1)讨论函数()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围﹒ 6. (2017年全国丙卷第21题)已知函数2()ln (21)f x x ax a x =+++﹒ (1)讨论函数()f x 的单调性; (2)当0a <时,证明:3()24f x a ≤- -﹒

高考导数压轴题题型(精选.)

高考导数压轴题题型 李远敬整理 2018.4.11 一.求函数的单调区间,函数的单调性 1.【2012新课标】21. 已知函数()f x 满足满足12 1()(1)(0)2 x f x f e f x x -'=-+; (1)求()f x 的解析式及单调区间; 【解析】 (1)12 11()(1)(0)()(1)(0)2 x x f x f e f x x f x f e f x --'''=-+?=-+ 令1x =得:(0)1f = 1211 ()(1)(0)(1)1(1)2 x f x f e x x f f e f e --'''=-+?==?= 得:21 ()()()12 x x f x e x x g x f x e x '=-+?==-+ ()10()x g x e y g x '=+>?=在x R ∈上单调递增 ()0(0)0,()0(0)0f x f x f x f x ''''>=?><=?< 得:()f x 的解析式为21()2 x f x e x x =-+ 且单调递增区间为(0,)+∞,单调递减区间为(,0)-∞ 2.【2013新课标2】21.已知函数f (x )=e x -ln(x +m ). (1)设x =0是f (x )的极值点,求m ,并讨论f (x )的单调性; 【解析】 (1)f ′(x )=1 e x x m - +. 由x =0是f (x )的极值点得f ′(0)=0,所以m =1. 于是f (x )=e x -ln(x +1),定义域为(-1,+∞),f ′(x )=1 e 1 x x -+. 函数f ′(x )=1 e 1 x x -+在(-1,+∞)单调递增,且f ′(0)=0. 因此当x ∈(-1,0)时,f ′(x )<0; 当x ∈(0,+∞)时,f ′(x )>0. 所以f (x )在(-1,0)单调递减,在(0,+∞)单调递增. 3.【2014新课标2】21. 已知函数()f x =2x x e e x --- (1)讨论()f x 的单调性; 【解析】 (1)+ -2≥0,等号仅当x=0时成立,所以f (x )在(—∞,+∞)单调递 增 【2015新课标2】21. 设函数 f (x )=e mx +x 2-mx 。 (1)证明: f (x )在 (-¥,0)单调递减,在 (0,+¥)单调递增; (2)若对于任意 x 1,x 2?[-1,1],都有 |f (x 1)-f (x 2)|£e -1,求m 的取值范围。

2015高考复习专题五 函数与导数 含近年高考试题

2015专题五:函数与导数 在解题中常用的有关结论(需要熟记): (1)曲线()y f x =在0x x =处的切线的斜率等于0()f x ',切线方程为000()()()y f x x x f x '=-+ (2)若可导函数()y f x =在0x x =处取得极值,则0()0f x '=。反之,不成立。 (3)对于可导函数()f x ,不等式()f x '0>0<()的解集决定函数()f x 的递增(减)区间。 (4)函数()f x 在区间I 上递增(减)的充要条件是:x I ?∈()f x '0≥(0)≤恒成立 (5)函数()f x 在区间I 上不单调等价于()f x 在区间I 上有极值,则可等价转化为方程 ()0f x '=在区间I 上有实根且为非二重根。 (若()f x '为二次函数且I=R ,则有0?>)。 (6)()f x 在区间I 上无极值等价于()f x 在区间在上是单调函数,进而得到()f x '0≥或 ()f x '0≤在I 上恒成立 (7)若x I ?∈,()f x 0>恒成立,则min ()f x 0>; 若x I ?∈,()f x 0<恒成立,则max ()f x 0< (8)若0x I ?∈,使得0()f x 0>,则max ()f x 0>;若0x I ?∈,使得0()f x 0<,则min ()f x 0<. (9)设()f x 与()g x 的定义域的交集为D 若x ?∈D ()()f x g x >恒成立则有[]min ()()0f x g x -> (10)若对11x I ?∈、22x I ∈,12()()f x g x >恒成立,则min max ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x >,则min min ()()f x g x >. 若对11x I ?∈,22x I ?∈,使得12()()f x g x <,则max max ()()f x g x <. (11)已知()f x 在区间1I 上的值域为A,,()g x 在区间2I 上值域为B , 若对11x I ?∈,22x I ?∈,使得1()f x =2()g x 成立,则A B ?。 (12)若三次函数f(x)有三个零点,则方程()0f x '=有两个不等实根12x x 、,且极大值大 于0,极小值小于0. (13)证题中常用的不等式: ① ln 1(0)x x x ≤->② ln +1(1)x x x ≤>-()③ 1x e x ≥+ ④ 1x e x -≥-⑤ ln 1 (1)12 x x x x -<>+⑥ 22 ln 11(0)22x x x x <->

高考数学压轴专题(易错题)备战高考《函数与导数》难题汇编及答案

新数学《函数与导数》复习知识点 一、选择题 1.已知函数()ln x f x x =,则使ln ()()()f x g x a f x = -有2个零点的a 的取值范围( ) A .(0,1) B .10, e ? ? ??? C .1,1e ?? ??? D .1,e ??-∞ ??? 【答案】B 【解析】 【分析】 令()ln x t f x x ==,利用导数研究其图象和值域,再将 ln ()()()f x g x a f x =-有2个零点,转化为ln t a t =在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x == ,当01x <<时,()0ln x t f x x == <, 当1x >时,() 2 ln 1 ()ln x t f x x -''== , 当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示: 所以ln ()()()f x g x a f x =-有2个零点,转化为ln t a t =在[),e +∞上只有一解, 令ln t m t = ,2 1ln 0t m t -'=≤,所以ln t m t =在[),e +∞上递减, 所以1 0m e <≤ , 所以10a e <≤,当1 a e =时,x e =,只有一个零点,不合题意,

所以10a e << 故选:B 【点睛】 本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题. 2.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7 B .4 C .0 D .﹣4 【答案】A 【解析】 ()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处 的切线方程是1y x =--,所以()()23,'21f f =-=-, ()()()()2'2221'27g g f f ∴+=-+-=,故选A . 3.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1 C .1ln2- D .1ln2+ 【答案】D 【解析】 由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,00000 2 ln y kx y x x =-?? =?, 0002ln kx x x ∴-=,00 2 ln k x x ∴=+ ,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D. 4.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A . 16 B . 13 C . 12 D . 56 【答案】A 【解析】 曲线2 y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2 y x =与直线y x =所围成的封闭图形的面积为 ()1 2 2 3100 1 11 |2 36 x x dx x x ??-=-= ???? ,故选A. 5.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为

相关文档
最新文档