河海大学海岸动力学实验报告.

河海大学海岸动力学实验报告.
河海大学海岸动力学实验报告.

海岸动力学实验报告专业年级:港航2班

姓名:薛辉

学号: 1014020135

二〇一三年五月

中国南京

目录

实验一:波浪数据采集与波高统计实验 (3)

一、实验目的 (3)

二、实验要求 (3)

三、实验过程 (3)

四、结果分析 (4)

五、实验结论 (8)

实验二:波压力测量实验 (9)

一、实验目的 (9)

二、实验要求 (9)

三、实验水文要素 (10)

四、实验仪器 (10)

五、实验过程 (10)

六、结果分析 (11)

七、实验结论 (13)

实验一:波浪数据采集与波高统计实验

一、试验目的

了解波浪中规则波及不规则波的区别,波浪模型实验的一般方法,规则波波高、周期、不规则波高的统计方法。

二、试验要求

1、规则波及不规则波的测量与特征值统计。

2、明确实验的目的,掌握实验原理,掌握基本仪器的使用,包括波浪数据采集系统及水槽造波机的使用方法,通过自己设计出不同波长波高的规则波和不规则波,参与造波数据及数据采集的全过程,了解波浪物理模型实验的最基本方法,正确处理实验数据,能通过处理采样数据文件系统各种累积频率波高,发现规律,得出实验结论。分析实验误差,提出减少误差方法

3、试验报告的编写,要求报告能准确的反映试验目的、方法、过程及结论。

三、试验过程

试验中共设置四根波高传感器,四个同学为一组,每人采用其中一根传感器的数据计算波高,规则波采样时间为20s,不规则波采样时间为80s左右。

规则波试验结果主要统计平均波高。波峰减波谷即为波高,将采集到的所有波高进行算术平均,得到规则波的平均波高。不规则波试

验结果主要统计有效波高。波峰减波谷即为波高,将采集到的所有波高进行排序,取前1/3大波进行算术平均,得到不规则波的有效波高。

四、结果分析:

本次实验使用fortran90语言编写计算程序。

程序截图(上部为运行程序,下部为运行结果)规则波的具体代码:

program main

implicit none

real::m,e,f,t

integer::i,j,k,p

real,dimension(2000)::a

real,dimension(20)::b,c

real,dimension(9)::h

open(1,file='1.txt')

do i=1,2000

read(1,*) a(i)

end do

close(1)

b(1)=1

j=1

do i=1,1999

if(a(i)*a(i+1)<0) then

j=j+1

b(j)=i

end if

end do

do i=1,19

do j=b(i)+1,b(i+1)-1

if(abs(a(j))>abs(a(j-1)).and.abs(a(j))>abs(a(j+1))) then

c(i)=a(j)

end if

end do

end do

e=0

do i=1,9

h(i)=c(2*i)-c(2*i-1)

e=e+h(i)

end do

t=e/9

do i=1,9

print'(1x,f7.3)',h(i)

end do

print*,'规则波的平均波高为:'

print'(1x,f7.3)',t

end program

规则波运行结果如下:

波高依次为:15.675 16.037 9.030 0.000 5.760 14.200

9.942 13.261 5.102

规则波的平均波高:9.884

结果修正:运行结果中出现0.000,所以要对结果进行修正,修正后的规则波的平均波高为:11.126

规则波的波形图

不规则波的程序及结果截屏如下

不规则波的程序代码:

program main

implicit none

real,dimension(8000)::a

real,dimension(114)::b,c

real,dimension(56)::h

integer::i,j

real::e,t

open(2,file='2.txt')

do i=1,8000

read(2,*)a(i)

end do

close(2)

b(1)=1

j=1

do i=1,7999

if(a(i)*a(i+1)<0) then

j=j+1

b(j)=i

end if

end do

do i=1,113

do j=b(i)+1,b(i+1)-1

if(abs(a(j))>abs(a(j-1)).and.abs(a(j))>abs(a(j+1))) then

c(i)=a(j)

end if

end do

end do

do i=1,56

h(i)=c(2*i-1)-c(2*i)

end do

print*,'不规则波的波高分别为:'

do i=1,14

print'(1x,4f8.3)',h(4*i-3),h(4*i-2),h(4*i-1),h(4*i) end do

do i=1,55

do j=i+1,56

if(h(i)

t=h(i);h(i)=h(j);h(j)=t

end if

end do

end do

e=0

do i=1,19

e=e+h(i)

end do

print*,'不规则波的有效波高:'

print'(1x,f7.3)',e/19

end program

不规则波的波形图

五、实验结论:

本次实验本人采用的数据为1通道

规则波: 1通道该波列的平均波高H=11.126

不规则波: 1通道该波列的有效波高H1/3=9.226

实验二:波压力测量实验

一、试验目的

海岸和近海工程的设计和建设,波浪与建筑物相互作用的研究是前提。波浪与建筑物的相互作用,决定工程目标的实现和建筑物的稳定与安全。

在海岸和近海工程中,如海上平台,离岸式码头,防波堤,挡土墙

等建筑物,这类建筑物的主要外力之一就是作用在其上的波浪力,因此,波浪与建筑物相互作用研究中,波浪作用力的研究显得非常重要。

二、试验要求

试验采用规则波进行。

(1)、模型比尺的确定。模型比尺1:27

(2)、波要素的率定。

(3)、模型上压力分布的测量,要求测点不少与5个。

(4)、试验报告的编写,要求报告能准确的反映试验目的、方法、过程及结果,能总结出压力在建筑物上分布的规律性,包含压力分布图,压力实测波形并给出最终压力的原型值。

三、试验水文条件

四、试验仪器

本次试验使用的主要仪器为DJ800型多功能监测系统。 DJ800

型多功能监测系统是由计算机、多功能监测仪和各种传感器组成的数据采集和数据处理系统。它能对多种物理量的数据,进行准同步采集。例如水位、波高、点脉动压力、面脉动压力、拉力、三维总力、二维流速、护舷、位移、温度、应变以及模拟电压等。本次试验用其进行点脉动压力的同步采集。

五、试验过程

试验成员分为2组,一组成员进行波浪要素的率定,另外一组成员同时进行波压力传感器的安装,在斜坡中选取10个测点装入压力传感器,待率定结束后再将建筑物防入试验水槽,进行波浪压力的量测。

试验采用规则波,试验结果主要统计平均正向波压力。零线以上波峰的峰值即为试验得出的正向波压力,每个波峰得到一个正向波压力值,将采集到的所有正向波压力值进行算术平均,得到平均正向波压力值。

六、结果分析

本次实验采用fortran90语言编程

程序截图程序代码

program main

implicit none

real::pressure,b1,b2,max,z

integer::i,j,k,l,m

real,dimension(6,2000)::a

real,dimension(2000)::b,h

open(1,file='G202A.txt')

read(1,*) a

close(1)

do m=1,6

do i=1,2000

end do

j=0

do i=1,1999

if (a(m,i)<0 .and. a(m,i+1)>0) then

j=j+1

b(j)=i

end if

end do

l=0

pressure=0

do i=1,j-1

b1=b(i);b2=b(i+1)

max=0

do k=b1,b2

if (max

max=a(m,k)

end if

end do

l=l+1

h(l)=max

pressure=pressure+h(l)

end do

z=pressure/(j-1)

print *,m,'平均正向波压力为',z

end do

end program

程序运行结果

A组: 1 平均正向波压力为0.2214210

2 平均正向波压力为0.3273215

3 平均正向波压力为0.4459000

4 平均正向波压力为0.3313514

5 平均正向波压力为9.0983026E-02

6 平均正向波压力为8.8866666E-02 B组: 1 平均正向波压力为0.2107368

2 平均正向波压力为0.1427073

3 平均正向波压力为0.4481000

4 平均正向波压力为0.4574000

5 平均正向波压力为0.1671316

6 平均正向波压力为 3.7428569E-02 C组: 1 平均正向波压力为0.1983000

2 平均正向波压力为0.1828636

3 平均正向波压力为0.5073685

4 平均正向波压力为0.3776400

5 平均正向波压力为0.1434783

6 平均正向波压力为 5.4069769E-02

附加说明:本实验共有7个通道,其中21通道数据有问题,故在算时,将去舍去。1——51通道,2——18通道,3——9通道,4——60通道,5——57通道,6——53通道。

附注:18通道三组数据误差较大,从B组和C组的波形图看出,调0时有误差,使得有些正值波高很小,平均下来后平均波高就偏小,故可取前1/3正波高求平均值,修正后的结果如下所示:

七、实验说明

1、对于采用的模型,由于比尺的问题,在最后程序算出的波压力中要乘以30

2、由于实验数据的误差,我们测得的三组数据中A组数据差距比较大所以不予考虑,对于B组数据最后一个测点测得的波压力有问题,

在求平均值时最后一个测点的波压力平均值就是C测点的波压力值

乙酸乙酯实验报告

乙酸乙酯皂化反应速率常数测定 实验日期: 提交报告日期: 带实验的老师 一、 引言 1. 实验目的 1.学习测定化学反应动力学参数的一种物理化学分析方法——电导法。 2.了解二级反应的特点,学习反应动力学参数的求解方法,加深理解反应动力学特征。 3.进一步认识电导测定的应用,熟练掌握电导率仪的使用方法。 2. 实验原理 反应速率与反应物浓度的二次方成正比的反应为二级反应,其速率方程式可以表示为 22dc - =k c dt (1) 将(1)积分可得动力学方程: c t 22c 0dc -=k dt c ?? (2) 20 11-=k t c c (3) 式中:0c 为反应物的初始浓度;c 为t 时刻反应物的浓度;2k 为二级反应的反应速率常数。将1/c 对t 作图应得到一条直线,直线的斜率即为2k 。 对于大多数反应,反应速率与温度的关系可以用阿累尼乌斯经验方程式来表示: a E ln k=lnA-RT (4) 式中:a E 为阿累尼乌斯活化能或反应活化能;A 为指前因子;k 为速率常数。 实验中若测得两个不同温度下的速率常数,就很容易得到 21T a 21T 12k E T -T ln =k R T T ?? ??? (5) 由(5)就可以求出活化能a E 。 乙酸乙酯皂化反应是一个典型的二级反应,

325325CH COOC H +NaOH CH COONa+C H OH → t=0时, 0c 0c 0 0 t=t 时, 0c -x 0c -x x x t=∞时, 0 0 0x c → 0x c → 设在时间t 内生成物的浓度为x ,则反应的动力学方程为 220dx =k (c -x)dt (6) 2001x k =t c (c -x) (7) 本实验使用电导法测量皂化反应进程中电导率随时间的变化。设0κ、t κ和κ∞分别代表时间为0、t 和∞(反应完毕)时溶液的电导率,则在稀溶液中有: 010=A c κ 20=A c κ∞ t 102=A (c -x)+A x κ 式中A 1和A 2是与温度、溶剂和电解质的性质有关的比例常数,由上面的三式可得 0t 00-x= -c -κκκκ∞ (8) 将(8)式代入(7)式得: 0t 20t -1k = t c -κκκκ∞ (9) 整理上式得到 t 20t 0=-k c (-)t+κκκκ∞ (10) 以t κ对t (-)t κκ∞作图可得一直线,直线的斜率为20-k c ,由此可以得到反应速率系数2k 。 溶液中的电导(对应于某一电导池)与电导率成正比,因此以电导代替电导率,(10)式也成立。本实验既可采用电导率仪,也可采用电导仪。 3实验操作 3.1 实验用品

空气动力学实验之二元翼型测压实验

空气动力学实验之 二元翼型测压实验 班级 姓名 实验日期 指导教师

一、实验目的 1.了解低速风动的基本结构和熟悉风洞实验的基本原理。 2.熟悉测定物体表面压强分布的方法。 3.复习巩固空气动力学的相关知识。 3.测定NACA0012翼型的压力分布并计算其升力系数Cy ,掌握获得机翼气动特性曲线的实验方法。 二、实验设备及工作原理简介 1.测定翼型表面压力 在翼型表面上各测点垂直钻一小孔,各孔成锯齿状分布,小孔底与埋置在模型内部的细金属管相通,小管的一伸出物体外,然后再通过细橡皮管与多管压力计上各支管相接,各测压孔与多管压力计上各支管都编有号码,上表面为1号-14号,下表面为15号-27号,于是根据各支管内的液面升降高度,立刻就可判断出各测点的压强分布。 2.压力系数的计算 通过测压,可以得到翼型在给定迎角下的压力分布,(采用无黏流理论)根据伯努利方程: 2 22 121∞∞+=+v p v p i ρρ 可得压力系数q p p C p ∞-= ,其中2 2 1∞∞=v q ρ 本实验利用水排测压得 h g p p p ?=-=?∞ρ

3.升力系数计算 根据计算得出压力系数Cp,利用Matlab做出压力系数Cp与测压点分布位移X的图像,并分别拟合上下表面的压力分布曲线,通过对上下表面的压力分布曲线的所夹面积进行积分,其值除以弦长L可得出翼型的升力系数Cy。在不同的迎角α下,可分别求出翼型的升力系数,由此绘制翼型NACA0012的升力系数分布图,再与标准升力系数图比较,分析实验结果。 三.实验步骤 1.检查实验设备并进行人员分工。 2.记录实验环境下的温度与大气压。 3.安装翼型模型,并调整迎角为 ?0。 4.调整多管压力计液柱的高低,记下初读数0 h。 5.开风洞调到所需的风速,本实验对应的来流风速为25m/s。 6.当多管压力计稳定后,记下液柱末读数i h。 7.关闭风机等待测压液柱回复,依次将翼型迎角调整到 ? 1? 3? 5和? 7重复实验。 8. 关闭风洞,整理实验场地,将记录交老师检查。 9. 整理实验数据,写好实验报告。 四.实验数据及处理 1.实验环境数据: 实验室温度(C?)大气压强(Pa)空气密度(kg/3m) 12 98010 1.225

分子动力学的模拟过程

分子动力学的模拟过程 分子动力学模拟作为一种应用广泛的模拟计算方法有其自身特定的模拟步骤,程序流程也相对固定。本节主要就分子动力学的模拟步骤和计算程序流程做一些简单介绍。 1. 分子动力学模拟步驟 分子动力学模拟是一种在微观尺度上进行的数值模拟方法。这种方法既可以得到一些使用传统方法,热力学分析法等无法获得的微观信息,又能够将实际实验研究中遇到的不利影响因素回避掉,从而达到实验研宄难以实现的控制条件。 分子动力学模拟的步骤为: (1)选取所要研究的系统并建立适当的模拟模型。 (2)设定模拟区域的边界条件,选取粒子间作用势模型。 (3)设定系统所有粒子的初始位置和初始速度。 (4)计算粒子间的相互作用力和势能,以及各个粒子的位置和速度。 (5)待体系达到平衡,统计获得体系的宏观特性。 分子动力学模拟的主要对象就是将实际物理模型抽象后的物理系统模型。因此,物理建模也是分子动力学模拟的一个重要的环节。而对于分子动力学模拟,主要还是势函数的选取,势函数是分子动力学模拟计算的核心。这是因为分子动力学模拟主要是计算分子间作用力,计算粒子的势能、位置及速度都离不开势函数的作用。系统中粒子初始位置的设定最好与实际模拟模型相符,这样可以使系统尽快达到平衡。另外,粒子的初始速度也最好与实际系统中分子的速度相当,这样可以减少计算机的模拟时间。 要想求解粒子的运动状态就必须把运动方程离散化,离散化的方法有经典Verlet算法、蛙跳算法(Leap-frog)、速度Veriet算法、Gear预估-校正法等。这些算法有其各自的优势,选取时可按照计算要求选择最合适的算法。 统计系统各物理量时,便又涉及到系统是选取了什么系综。只有知道了模拟系统采用的系综才能釆用相对应的统计方法更加准确,有效地进行统计计算,减少信息损失。 2. 分子动力学模拟程序流程 具体到分子动力学模拟程序的具体流程,主要包括: (1)设定和模拟相关的参数。 (2)模拟体系初始化。 (3)计算粒子间的作用力。 (4)求解运动方程。 (5)循环计算,待稳定后输出结果。 分子动力学模拟程序流程图如2.3所示。

气相色谱法实验报告记录

气相色谱法实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

实验五—气相色谱法实验 姓名:张瑞芳 学号:2013E8003561147 班级:化院413班 培养单位:上海高等研究院 指导教师:李向军 组别:2013年12月30日第二组

气相色谱法实验 一、实验目的 1.了解气相色谱仪的各部件的功能。 2.加深理解气相色谱的原理和应用。 3.掌握气相色谱分析的一般实验方法。 4.学会使用FID气相色谱对未知物进行分析。 二、实验原理 1.气相色谱法基本原理 气相色谱的流动向为惰性气体,气-固色谱法中以表面积大且具有一定活性的吸附剂作为固定相。当多组分的混合样品进入色谱柱后,由于吸附剂对每个组分的吸附力不同,经过一定时间后,各组分在色谱柱中的运行速度也就不同。吸附力弱的组分容易被解吸下来,最先离开色谱柱进入检测器,而吸附力最强的组分最不容易被解吸下来,因此最后离开色谱柱。如此,各组分得以在色谱柱中彼此分离,顺序进入检测器中被检测、记录下来。气相色谱仪器框图如图1所示: 图1.气相色谱仪器框图 仪器均由以下五个系统组成:气路、进样、分离、温度控制、检测和记录系统。 2.气相色谱法定性和定量分析原理 在这种吸附色谱中常用流出曲线来描述样品中各组分的浓度。也就是说,让

分离后的各组分谱带的浓度变化输入换能装置中,转变成电信号的变化。然后将电信号的变化输入记录器记录下来,便得到如图2的曲线。它表示组分进入检测器后,检测器所给出的信号随时间变化的规律。它是柱内组分分离结果的反映,是研究色谱分离过程机理的依据,也是定性和定量的依据。 图2.典型的色谱流动曲线 3.FID的原理 本次试验所用的为氢火焰离子化检测器(FID),它是以氢气和空气燃烧的火焰作为能源,利用含碳有机物在火焰中燃烧产生离子,在外加的电场作用下,使离子形成离子流,根据离子流产生的电信号强度,检测被色谱柱分离出的组分。 三.实验试剂和仪器 (1)试剂:甲醇、异丙醇、异丁醇 (2)仪器:气相色谱仪带氢火焰离子化检测器(GC-2014气相色谱仪); 氢-空发生器(SPH-300氢气发生器)、氮气钢瓶; 色谱柱; 微量注射器。 四.实验步骤 1.打开稳定电源。 2.打开N2钢瓶(减压阀),以N2为载气,开始通气,检漏;调整柱前压约为 0.12MPa。

实验5气体绝热指数实验报告大全

实验5气体绝热指数测量 【预习提示】 1、熟悉气体的定压比热容、定容比热容、绝热指数、热力学过程等基本概念。 2、理解热力学第一定律和理想气体的状态方程。 3、了解绝热膨胀法测量空气的绝热指数的基本原理和方法。 4、了解用传感器精确测量气体压强和温度的基本原理和方法。 【实验目的】 1、学习绝热膨胀法测量气体绝热指数的原理和方法。 2、观察和分析热力学系统的状态和过程特征,掌握实现等值过程的方法。 3、初步了解半导体气体压力传感器和电流型集成温度传感器的工作原理和使用方法。 【实验原理】 1、测量绝热指数的原理 根据热力学第一定律,Q= .E A ,系统自外界吸收的热量Q等于系统内能的增加:E 和对外界所做的功A之和。压强、温度、体积是研究气体状态的三个基本参量。 设想一储气瓶,上面有充气阀、放气阀,用打气球向瓶内 打气,瓶内空气被压缩,也强增大,温度升高。等瓶内气 体稳定后,空气分子分布均匀,瓶内气体温度与室温相 同,此时气体状态记录为 (p1 V1,T0);迅速打开放气阀,使瓶,内气体与大气相 通,则瓶内气体将有喷出,当压强降为大气压P o时,关闭 放气阀,根据热力学第一定律,气体对外界做功,内能减 少,气体温度下降为「,,由于放 气较快,瓶内保留气体可视作为未与外界进行热量交换, 视为绝热膨胀过程;瓶内气体低于外界温度,气体将会从外界吸热直到达到室温为止,压强也会 增加为P2,这个过程视作为等容吸热过程。 将绝热膨胀后瓶内剩余气体作为一定质量的热力学系统来研究。剩余气体放气前处于状态 I (p,y,T o),经过绝热膨胀后气体由状态I变为状态II (P),V2,T1 κV是瓶内剩余气体 在状态I的体积,V是储气瓶的体积。再经过等容吸热的过程由状态II P0,V2,T1变为状 态III P2,V2,T0。气体的状态变化过程如图所示。由于状态I和状态III的温度均为T o,因此,由状态I到状态III可视为等温过程。 I-II绝热过程状态变化方程: P1V1 = P0V2 (泊松方程)

河海大学海岸动力学第五次作业答案

Homework (5) Standing waves often occur when incoming waves are completely reflected by vertical wall. At which phase would the wall be located ? 解:设正向波波形函数为:)cos(1 t kx a ση?= 势函数为:()t kx kh h z k ga σσφ?+=sin cosh )(cosh 1 反向波波形函数为:)cos(2 t kx a ση+= 势函数为:)sin(cosh )(cosh 2t kx kh h z k ga σσφ++?= 则两个波叠加后有 t kx a σηηηcos cos 22 1=+= 势函数为:t kx kh h z k ga σσφφφsin cos cosh )(cosh 221+? =+= 从而可以得到:t kx kh h z k a x u σσφsin sin cosh )(cosh 2+=??= 由于在防波堤(墙)的表面垂向速度必须为零,从而防波堤的位置在波腹处,由u 的表达式有 0sin =kx ? πn kx =即k n x π= (K ,4,3,2,1,0=n ). As far as the water surface ,the particle velocity and the particle orbit are concerned,what are the differences between linear waves and second order Stokes waves ? 解: (1) 波形不同:二阶Stokes 波的波峰相比微幅波抬高,变尖变陡;波谷相比微幅波 也抬高,变得平坦; 波峰波谷不再关于静水面对称。 (2) 速度不同:二阶Stokes 波的水平速度在一周期内不对称。波峰时,水平速度增 加而历时变小;波谷时,水平速度变小而历时边长;随水深变浅现象尤为明显。 (3) 水质点轨迹不同:二阶Stokes 波的水质点轨迹不封闭,水质点运动一个周期后 有一个净水平位移;而微幅波的水质点运动轨迹封闭 。

流体力学及气体动力学综合实验报告册(二)

流体力学及气体动力学综合实验实验报告册(二) 班级 姓名 学号 成绩 西北工业大学动力与能源学院 2015年11月

实验三沿程损失实验 一、实验目的 1、验证沿程水头损失与平均流速的关系。 2、掌握管道沿程阻力系数λ的测量方法。 二、实验设备 实验设备为沿程损失实验装置,其主要由恒压水箱、进水阀、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图3-1所示。 接 水 盒 图3-1 沿程损失实验原理图 三、实验原理

四、实验方法与步骤 1. 确定出水阀完全开启,进水阀半开启。启动水泵,排出实验管道、测压计中的气泡。 2. 逐渐开启进水阀,稳定2~3分钟,观测各个测压计中液面液高,并用体积法或称重 法测定流量。每次测量流量的时间应大于10秒。 3. 调整流量,继续测量,直至进水阀全开。 4. 如此测量10次以上,其中层流流动时测量3~5次。 5. 每次实验均要测量温度。 6. 实验完毕,先关闭进水阀,然后关闭出水阀,并切断电源,整理实验现场。 五、实验成果及要求 实验台号No 1.记录计算有关常数: 管径d = cm ,管长l = cm , 水温t = ℃,水的密度3______/kg m ρ=。 运动粘度6 21.7751010.03370.000221t t υ-?= =++ 2/m s

2.实验数据记录与计算 六、实验分析与讨论: 1.什么是沿程损失,影响沿程损失的因素有哪些? 2.沿程损失系数 与雷诺数Re之间有什么关系,请采用经验公式验证所计算得到的沿程损失系数。

实验四局部损失实验 一、实验目的 1、掌握管路中测定局部阻力系数的方法。 2、通过对圆管突扩局部阻力系数和突缩局部阻力系数的经验公式的实验验证与分析,熟悉用理论分析法和经验法建立函数式的途径。 3、加深对局部阻力损失机理的了解。 二、实验装置 实验设备为局部损失实验装置,其主要由恒压水箱、出水阀、测压计、接水盒以及自循环供水箱等部件组成,如图4-1所示。实验管道具有突扩与突缩段,在突扩与突缩段前后设置有测压计,用来测量突扩与突缩所造成的压力损失。 图4-1 局部阻力系数测定实验装置 三、实验原理

海岸动力学内容汇总

海岸动力学 第一章概论 1、海岸带宽度按从海岸线向内陆扩展10km,向外海延伸到-15~-20m水深计算。 2、海岸的类型: 按照岸滩的物质组成可以把海岸分作基岩海岸、沙质海岸、淤泥质海岸和生物海岸等类型。 基岩海岸,特征是:岸线曲折、湾岬相间;岸坡陡峭、滩沙狭窄。此类海岸水深较大,掩蔽较好,基础牢固,可以选作兴建深水泊位的港址。 沙质海岸:岸线平顺,岸滩较窄,坡度较陡,常伴有沿岸沙坝、潮汐通道和泻湖。此类海岸常是发展旅游、渔港的良好场所。 淤泥质海岸:此类海岸岸线平直,一般位于大河河口两侧,岸坡坦缓、潮滩发育好、宽而分带,潮流、波浪作用显著,以潮流作用为主;潮滩冲淤变化频繁,潮沟周期性摆动明显。淤泥质海岸滩涂资源丰富,有利于发展海洋水产养殖、发展海涂圈围成为陆用于发展农业与盐业或畜牧业等其他产业。 生物海岸:包括红树立海岸和珊瑚礁海岸。 海岸的基本概念:海岸是海洋和陆地相互接触和相互作用的地带,包括遭受海浪为主的海水动力作用的广阔范围,即从波浪所能作用到的海底,向陆延至暴风浪所能达到的地带。 外滩:指破波点到低潮线之间的滩地。 离岸区:破波带外侧延伸到大陆架边缘的区域。 淤泥质海岸从陆到海由三部分组成:潮上带,位于平均大潮高潮位以上;潮间带,为平均大潮高潮位到平均大潮低潮位之间的海水活动地带;和潮下带,在平均大潮低潮位向海一侧。 海岸侵蚀:指海水动力的冲击造成海岸线的后退和海滩的下蚀。 引起海岸侵蚀的原因主要有两种:一是由于自然原因:如河流改道或入海泥沙减少、海面上升或地面沉降、海洋动力作用增强等;二是由于为人原因,如拦河坝的建造、滩涂围垦、大量开采海滩沙、珊瑚礁,滥伐红树林,以及不适当的海岸工程设施等。 常见的海岸动力因素主要有:

气垫导轨实验报告

气轨导轨上的实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目的 1、学习气垫导轨和电脑计数器的使用方法。 2、在气垫导轨上测量物体的速度和加速度,并验证牛顿第二定律。 3、定性研究滑块在气轨上受到的粘滞阻力与滑块运动速度的关系。 二、实验仪器 气垫导轨(QG-5-1.5m)、气源(DC-2B 型)、滑块、垫片、电脑计数器(MUJ-6B 型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫的粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间的测量精度大3x v t ?= ?x t ??4过1s 、s 离s ?a =

速度和加速度的计算程序已编入到电脑计数器中,实验时也可通过按相应的功能和转换按钮,从电脑计数器上直接读出速度和加速度的大小。 5、牛顿第二定律得研究 若不计阻力,则滑块所受的合外力就是下滑分力,sin h F mg mg L θ==。假定牛顿第二定律成立,有h mg ma L =理论,h a g L =理论,将实验测得的a 和a 理论进行比较,计算相对误差。如果误差实在可允许的范围内(<5%),即可认为a a =理论,则验证了牛顿第二定律。 (本地g 取979.5cm/s 2) 6、定性研究滑块所受的粘滞阻力与滑块速度的关系 实验时,滑块实际上要受到气垫和空气的粘滞阻力。考虑阻力,滑块的动力 学方程为h mg f ma L -=,()h f m g ma m a a L =-=理论-,比较不同倾斜状态下的 平均阻力f 与滑块的平均速度,可以定性得出f 与v 的关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态”调平(粗调),后“动态”调平(细调),“静态”调平应在工作区间范围内不同的位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s 左右的速度(挡光宽度1cm ,挡光时间20ms 左右)前进时,通过两光电门所用的时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回的情况应基本相同。两光电门之间的距离一般应在50cm~70cm 之间。 2、测滑块的速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返的测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门的时间1t ?、2t ?,然后按转换健,记录滑块通过两个光电门速度1v 、2v ,如此重复3次,将测得的实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨的单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度1v 、2v 和加速度 a ,重复4次,取a 。再添2块(或1块)垫片,重复测量4 次。然后取下垫片,用游标卡尺测量两次所用垫片的高度h ,用钢卷尺测量单脚螺丝到双脚螺丝连线的距离L 。计算a 理论,进比较a 与a 理论,计算相对误差,写出实验结论。 4、用电子天平称量滑块的质量m ,计算两种不同倾斜状态下滑块受到的平

分子动力学实验报告

分子动力学实验报告 实验名称平衡晶格常数和体弹模量 实验目的 1、学习Linux系统的指令 2、学习lammps脚本的形式和内容 实验原理 原子、离子或分子在三维空间做规则的排列,相同的部分具有直线周期平移的特点。为了描述晶体结构的周期性,人们提出了空间点阵的概念。为了说明点阵排列的规律和特点,可以在点阵中去除一个具有代表性的基本单元作为点阵的组成单元,称为晶胞。晶胞的大小一般是由晶格常数衡量的,它是表征晶体结构的一个重要基本参数。 在本次模拟实验中,给定Si集中典型立方晶体结构:fcc,bcc,sc,dc。根据 可判定dc结构是否能量最低,即是否最稳定 材料在弹性变形阶段,其应力和应变成正比例关系(即符合胡克定律),其比例系数称为弹性模量。弹性模量是描述物质弹性的一个物理量,是一个总称,包括杨氏模量、剪切模量、体积模量等。在弹性变形范围内,物体的体应力与相应体应变之比的绝对值称为体弹模量。表达式为 B=? dP dV V 式中,P为体应力或物体受到的各向均匀的压强,dV V为体积的相对变化。对于立方晶胞,总能量可以表示为ε=ME,E为单个原子的结合能,M 为单位晶胞内的原子数。晶胞体积可以表示为V=a3,那么压强P为 P=?dε dV =? M 3a2 dE da 故体积模量可以表示为 根据实验第一部分算出的平衡晶格常数,以及能量与晶格间距的函数关系,可以求得对应晶格类型的体积模量。并与现有数据进行对比。 实验过程 (1)平衡晶格常数

将share文件夹中关于第一次实验的文件夹拷贝到本地,其中包含势函数文件和input文件。 $ cp□-r□share/md_1□. $ cd□md_1 $ cd□1_lattice 通过LAMMPS执行in.diamond文件,得到输出文件,包括体系能量和cfg文件,log文件。 $ lmp□-i□in.diamond 用gnuplot画图软件利用输出数据作图,得到晶格长度与体系能量的关系,能量最低处对应的晶格长度即是晶格常数。 Si为diamond晶格结构时晶格长度与体系能量关系图如图, 由图可得能量最小处对应取a0=5.43095。 Si为fcc晶格结构时晶格长度与体系能量关系图如图, a0=4.15。 改写后的sc、bcc脚本文件分别如图所示

实验报告总结(精选8篇)

《实验报告总结》 实验报告总结(一): 一个长学期的电路原理,让我学到了很多东西,从最开始的什么都不懂,到此刻的略懂一二。 在学习知识上面,开始的时候完全是老师讲什么就做什么,感觉速度还是比较快的,跟理论也没什么差距。但是之后就觉得越来越麻烦了。从最开始的误差分析,实验报告写了很多,但是真正掌握的确不多,到最后的回转器,负阻,感觉都是理论没有很好的跟上实践,很多状况下是在实验出现象以后在去想理论。在实验这门课中给我最大的感受就是,必须要先弄清楚原理,在做实验,这样又快又好。 在养成习惯方面,最开始的时候我做实验都是没有什么条理,想到哪里就做到哪里。比如说测量三相电,有很多种状况,有中线,无中线,三角形接线法还是Y形接线法,在这个实验中,如果选取恰当的顺序就能够减少很多接线,做实验就应要有良好的习惯,就应在做实验之前想好这个实验要求什么,有几个步骤,就应怎样安排才最合理,其实这也映射到做事情,不管做什么事情,就应都要想想目的和过程,这样才能高效的完成。电原实验开始的几周上课时间不是很固定,实验报告也累计了很多,第一次感觉有那么多实验报告要写,在交实验报告的前一天很多同学都通宵了的,这说明我们都没有合理的安排好自己的时间,我就应从这件事情中吸取教训,合理安排自己的时间,完成就应完成的学习任务。这学期做的一些实验都需要严谨的态度。在负阻的实验中,我和同组的同学连了两三次才把负阻链接好,又浪费时间,又没有效果,在这个实验中,有很多线,很容易插错,所以要个性仔细。 在最后的综合实验中,我更是受益匪浅。完整的做出了一个红外测量角度的仪器,虽然不是个性准确。我和我组员分工合作,各自完成自己的模块。我负责的是单片机,和数码显示电路。这两块都是比较简单的,但是数码显示个性需要细致,由于我自己是一个粗心的人,所以数码管我检查了很多遍,做了很多无用功。 总结:电路原理实验最后给我留下的是:严谨的学习态度。做什么事情都要认真,争取一次性做好,人生没有太多时间去浪费。 实验报告总结(二): 在分子生物学实验室为期两个月的实习使我受益匪浅,我不仅仅学习到了专业知识,更重要的是收获了经验与体会,这些使我一生受用不尽,记下来与大家共勉: 1.手脚勤快,热心帮忙他人。初来匝道,不管是不是自己的份内之事,都就应用心去完成,也许自己累点,但你会收获很多,无论是知识与经验还是别人的称赞与认可。 2.多学多问,学会他人技能。学问学问,无问不成学。知识和经验的收获能够说与勤学好问是成正比的,要记住知识总是垂青那些善于提问的人。 3.善于思考,真正消化知识。有知到识,永远不是那么简单的事,当你真正学会去思考时,他人的知识才能变成你自己的东西。 4.前人铺路,后人修路。墨守陈规永远不会有新的建树,前人的道路固然重要,但是学会另辟蹊径更为重要。

化工原理吸收实验报告总结归纳

一、实验目的 1.了解填料塔的一般结构及吸收操作的流程。 2.观察填料塔流体力学状况,测定压降与气速的关系曲线。 3.掌握总传质系数K x a的测定方法并分析其影响因素。 4.学习气液连续接触式填料塔,利用传质速率方程处理传质问题的方法。 二、实验原理 本实验先用吸收柱将水吸收纯氧形成富氧水后(并流操作),送入解吸塔再用空气进行解吸,实验需测定不同液量和气量下的解吸总传质系数K x a,并进行关联,得K x a=AL a V b的关联式。同时对不同填料的传质效果及流体力学性能进行比较。 1.填料塔流体力学特性 气体通过干填料层时,流体流动引起的压降和湍流流动引起的压降规律相一致。在双对数坐标系中△P/Z对G'作图得到一条斜率为~2的直线(图1中的aa线)。而有喷淋量时,在低气速时(c点以前)压降也比例于气速的~2次幂,但大于同一气速下干填料的压降(图中bc段)。随气速增加,出现载点(图中c点),持液量开始增大。图中不难看出载点的位置不是十分明确,说明汽液两相流动的相互影响开始出现。压降~气速线向上弯曲,斜率变徒(图中cd段)。当气体增至液泛点(图中d点,实验中可以目测出)后在几乎不变的气速下,压降急剧上升。 图1 填料层压降-空塔气速关系 2.传质实验 填料塔与板式塔气液两相接触情况不同。在填料塔中,两相传质主要是在填料有效湿表面上进行。需要完成一定吸收任务所需填料高度,其计算方法有:传质系数法、传质单元法和等板高度法。 本实验对富氧水进行解吸。由于富氧水浓度很小,可认为气液两相平衡服从亨利定律,可用对数平均浓度差计算填料层传质平均推动力。得速率方程式:

相关的填料层高度的基本计算式为: OL OL N Z H = 其中,m x x e OL x x x x x dx N ?-=-=?2 11 2 Ω= a K L H x OL 由于氧气为难溶气体,在水中的溶解度很小,因此传质阻力几乎全部集中于液膜中,即Kx=kx 。由于属液膜控制过程,所以要提高总传质系数Kxa ,应增大液相的湍动程度。 在y-x 图中,解吸过程的操作线在平衡系下方,在实验是一条平行于横坐标的水平线(因氧在水中浓度很小)。 三、实验装置流程 1.基本数据 解吸塔径φ=,吸收塔径φ=,填料层高度(陶瓷拉西环、陶瓷波纹板、金属波纹网填料)和(金属θ环)。 表1 填料参数 2.图2是氧气吸收解吸装置流程图。氧气由氧气钢瓶供给,经减压阀2进入氧气缓冲罐4,稳压,为确保安全,缓冲罐上装有安全阀6,由阀7调节氧气流量,并经转子流量计8计量,进入吸收塔9,与水并流吸收。富氧水经管道在解吸塔的顶部喷淋。空气由风机13供给,经缓冲罐14,由阀16调节流量经转子流量计17计量,通入解吸塔,贫氧水从塔底经平衡罐19排出。自来水经调节阀10,由转子流量计17计量进入吸收塔。 由于气体流量与气体状态有关,所以每个气体流量计前均有表压计和温度计。空气流量前装有计前表压计23。为了测量填料层压降,解析塔装有压差计22。

分子模型实验报告

分子模型实验报告 篇一:分子模拟实验实验报告生物大分子 分子模拟实验作业——生物大分子 一、实验部分 12-3-1获得PDB号为“1HCK”的蛋白(human-cyclin-dependent kinase 2,i,e.,CKD2和ATP的结合晶体结构),并采用不同的模型观察其特点 ①分别用卡通模型和丝带模型显示生物大分子结构,并用球棍模型、棒状模型显示其中小分子、金属离子等。 参考文献: Analysis of CDK2 Active-Site Hydration: A Method to Design New Inhibitors Zdeneˇk Krˇ?′z PROTEINS: Structure, Function, and Bioinformatics 55:258–274 (XX) 12.2 分子对接 ①聚合物对接前效果图 ②聚合物对接后效果图 对接后实际距离和设置的最优值 12-3-2在样本文件中,创建冰的晶体结构,分别做温度为260K,273K,298K,373K下的分子动力学模拟(10 ps),观察晶体机构的变化情况,并做定性解释。

①不同温度下冰晶体结构图: 原始冰晶体结构图 由冰晶体在不同温度下的结构可见,随温度升高,冰晶体的各个水分子之间的距离不断增加,晶体结构趋向于分散无序状。 ②不同温度下,冰晶体分子动力学模拟图 ③不同温度下体系的总能量与势能 由曲线形状可见,经过分子动力学模拟之后,体系的能量降低,变得更加稳定。 由计算结果可见,体系的总能量和势能随温度的升高而增大。因为当温度升高时,分子的热运动加剧,使分子的伸缩、转动、振动势能增加从而使分子总能量增加,而体系的是能增加是因为非键相互作用尤其是分子间氢键相互作用减弱。 二、实验心得与体会 本次实验主要进行了生物大分子的模拟。生物大分子一般包含上千个原子,目前还不能应用量子化学从头计算方法模拟,常用的方法有QM/MM方法,和纯粹的分子动力学模型。 1.关于分子力学要求掌握四点内容:(1)分子力学中,离子间的相互作用势能函数是什么?(2)势函数中存在特定的参数,怎么给参数赋初值?(3)原子类型怎样确定?(4)力场有哪些?各自的适用范围是什么?下面详细解释:

大学物理实验气垫导轨实验报告

气轨导轨上得实验 ——测量速度、加速度及验证牛顿第二运动定律 一、实验目得 1、学习气垫导轨与电脑计数器得使用方法。 2、在气垫导轨上测量物体得速度与加速度,并验证牛顿第二定律. 3、定性研究滑块在气轨上受到得粘滞阻力与滑块运动速度得关系。 二、实验仪器 气垫导轨(QG—5—1。5m)、气源(DC-2B型)、滑块、垫片、电脑计数器(MUJ-6B型)、电子天平(YP1201型) 三、实验原理 1、采用气垫技术,使被测物体“漂浮”在气垫导轨上,没有接触摩擦,只用气垫得粘滞阻力,从而使阻力大大减小,实验测量值接近于理论值,可以验证力学定律。 2、电脑计数器(数字毫秒计)与气垫导轨配合使用,使时间得测量精度大大提高( Array如图,设U ;越小(越小), 4 或

5、牛顿第二定律得研究 若不计阻力,则滑块所受得合外力就就是下滑分力,。假定牛顿第二定律成立,有,,将实验测得得与进行比较,计算相对误差。如果误差实在可允许得范围内(<5%),即可认为,则验证了牛顿第二定律。(本地g取979。5cm/s2) 6、定性研究滑块所受得粘滞阻力与滑块速度得关系 实验时,滑块实际上要受到气垫与空气得粘滞阻力.考虑阻力,滑块得动力学方程为,,比较不同倾斜状态下得平均阻力与滑块得平均速度,可以定性得出f与v 得关系。 四、实验内容与步骤 1、将气垫导轨调成水平状态 先“静态"调平(粗调),后“动态"调平(细调),“静态”调平应在工作区间范围内不同得位置上进行2~3次,“动态”调平时,当滑块被轻推以50cm/s左右得速度(挡光宽度1cm,挡光时间20ms左右)前进时,通过两光电门所用得时间之差只能为零点几毫秒,不能超过1毫秒,且左右来回得情况应基本相同.两光电门之间得距离一般应在50cm~70cm之间。 2、测滑块得速度 ①气垫调平后,应将滑块先推向左运动,后推向右运动(先推向右运动,后推向左运动,或者让滑块自动弹回),作左右往返得测量; ②从电脑计数器上记录滑块从右向左或从左向右运动时通过两个光电门得时间、,然后按转换健,记录滑块通过两个光电门速度、,如此重复3次,将测得得实验数据计入表1,计算速度差值。 3、测量加速度,并验证牛顿第二定律 在导轨得单脚螺丝下垫2块垫片,让滑块从最高处由静止开始下滑,测出速度、与加速度,重复4次,取.再添2块(或1块)垫片,重复测量4次。然后取下垫片,用游标卡尺测量两次所用垫片得高度h,用钢卷尺测量单脚螺丝到双脚螺丝连线得距离L.计算,进比较与,计算相对误差,写出实验结论。 4、用电子天平称量滑块得质量m,计算两种不同倾斜状态下滑块受到得平均阻力,并考察两种倾斜状态下滑块运动得平均速度(不必计算),通过分析比较得出f与v得定性关系,写出实验结论。 五、注意事项 1、保持导轨与滑块清洁,不能碰砸。未通气时,不能将滑块放在导轨上滑动.实验结束时,先取下滑块,后关闭气源。 2、注意用电安全。 六、数据记录与处理

压气机性能实验报告概要

天津市高等教育自学考试 模具设计与制造专业 热工基础与应用 综合实验报告 (一)压气机性能实验 主考院校: 专业名称: 专业代码: 学生姓名: 准考证号:

一、活塞式压气机概述 1.活塞式压气机结构及工作原理 (1)活塞式压气机结构 压气机在现代工业以及现代人的生活中被越来越多的广泛应用,不论是汽车上的涡轮增压系统还是航空航天发动机中的涡喷应用,随着技术的不断革新,其结构、性能也在不断的优化、提高。本实验旨在通过对简单形式的压气机,进行结构、工作原理以及性能的实验,以达到验证并深刻理解、掌握热工学课程中所学得的知识并应用于实际生产实践中。 本次实验所用压气机为“活塞式压气机”,现就其结构及特点作简要说明。 活塞式压气机是通用的机械设备之一,是一种将机械能转化为气体势能的机械。 图1.1 活塞式压气机机构简图 图1-2 三维仿真示意图

(2)活塞式压气机工作原理: 电机通过皮带带动曲柄转动,由连杆推动活塞作往复移动,压缩汽缸内的空气达到需要的压力。曲柄旋转一周,活塞往复移动一次,压气机的工作过程分为吸气、压缩、排气三步。 具体为:在气缸内作往复运动的活塞向右移动时,气缸内活塞左腔的压力低于大气压力pa ,吸气阀开启,外界空气吸入缸内,这个过程称为压缩过程。当缸内压力高于输出空气管道内压力p后,排气阀打开。压缩空气送至输气管内,这个过程称为排气过程。 这种结构的压缩机在排气过程结束时总有剩余容积存在。在下一次吸气时,剩余容积内的压缩空气会膨胀,从而减少了吸人的空气量,降低了效率,增加了压缩功。且由于剩余容积的存在,当压缩比增大时,温度急剧升高。特别的是,单级活塞式空压机,常用于需要 0 . 3 — 0 . 7MPa 压力范围的系统。压力超过 0 . 6MPa ,各项性能指标将急剧下降。故当输出压力较高时,应采取分级压缩。分级压缩可降低排气温度,节省压缩功,提高容积效率,增加压缩气体排气量。 活塞式空压机有多种结构形式。按气缸的配置方式分有立式、卧式、角度式、对称平衡式和对置式几种。按压缩级数可分为单级式、双级式和多级式三种。按设置方式可分为移动式和固定式两种。按控制方式可分为卸荷式和压力开关式两种。其中,卸荷式控制方式是指当贮气罐内的压力达到调定值时,空压机不停止运转而通过打开安全阀进行不压缩运转。这种空转状态称为卸荷运转。而压力开关式控制方式是指当贮气罐内的压力达到调定值时,空压机自动停止运转。 二、实验内容 1.实验目的 (1)压气机的压缩指数和容积效率等都是衡量其性能先进与否的重要参数。本实验是利用微机对压气机的有关性能参数进行实时动态采集,经计算处理、得到展开的和封闭的示功图。从而获得压气机的平均压缩指数、容积效率、指示功、指示功率等性能参数。 (2)掌握指示功、压缩指数和容积效率的基本测试方法。 (3)对使用电脑采集、处理数据的全过程和方法有所了解。 2.实验装置及测量系统 本实验仪器装置主要由:压气机、电动机及测试系统所组成。 测试系统包括:压力传感器、动态应变仪、放大器、计算机及打印机, 压气机型号:Z—0.03/7 汽缸直径:D=50mm 活塞行程: L=20mm 连杆长度:H=70mm,转速:n=1400转/分

(精选)河海大学海岸动力学试卷海岸答案

二、 1、波速,相速度或速度是一个特定的相在介质中移动的速率或水中波峰移动的速率。它可以通过波长比周期进行计算。 2、深水——水深大于波长的一半,即2L h >,波的相速度很难被水深影响。深水情况适用于很多由于海上的风在海面引起的风浪; 有限水深——水深202L L h << 浅水——20 L h < 3、深水区的波浪外形是波长长且波高小的。当波浪进入浅水区,传播速度和波长减小,波浪变得陡峭,波高增加直到波列由被平缓的波谷分隔的尖的波峰组成。(上一句有点拗口。。。)我觉得后面的没用,不翻译了。

4、间接作用的波浪趋势和近岸的水深测量对沿岸流有影响。?当波浪以某一角度破碎时,波浪破碎的动量形成了和破碎波前进方向一致的近岸流和段波。成堆的波浪形成了在破波带内和海岸平行的沿岸流。沿岸流会顺着海岸在碎浪区和海岸间流动。当波浪很高而且波浪接近海岸的角度是垂直的时候,沿岸流是最强的。沿岸流的最大速度一般是在波浪表面接近破波点的位置出现。

3、波浪破碎类型有三种:崩破波、卷破波和激破波。这个不如书上的详细P78 崩破波:波浪首先在波峰顶端出现白色浪花,随着波浪向前传播,波峰顶部浪花不断产生,直至海岸附近。(波陡大,水底坡度小时发生) 卷破波:波峰的前沿面首先变得陡立,然后卷曲成舌状,舌状波峰逐渐向下翻卷,最后投入水中,发生破碎,并伴随着空气的卷入。(波陡中等,水底坡度中等)激破波:波峰前后逐渐变得非常不对称,之后在波峰前沿根部开始出现破碎,随后波峰前面大部分呈非常杂乱的破碎状态,并沿斜坡上爬。(波陡小,水底坡度较大)影响因素:深水波陡和海岸坡度 4、不考虑侧向混合时,沿岸流速呈三角形分布,在破波线处,沿岸流速最大,而在破波点外,没有沿岸流,因而在破波点流速分布不连续。考虑侧向混合时,由于侧向紊动动量交换,促使破波带内沿岸流动量向带外扩散,发生流速再分布。沿岸流速分布趋于平坦,最

高分子物理实验报告

竭诚为您提供优质文档/双击可除高分子物理实验报告 篇一:高分子物理实验报告 高分子物理实验报告 实验名称: __________________________________________________ 学院:食品科学与工程 专业:包装工程 小组: 姓名: 学号: 任课老师:董同力嘎 指导教师:孙文秀 实验完成日期:20XX.12.17-20XX.01.04 一、实验项目综合训练方案 二、实验结果与总结 注明:(1)实验结果与总结用手写,其它用计算机打印,书写要整洁。

(2)必须进行误差分析。 篇二:高分子物理实验总结(加强版) 实验一熔体流动速率的测定 塑料熔体流动速率(mFR):是指在一定温度和负荷下,塑料熔体每10min通过标准口模的质量。实验原理:一定结构的塑料熔体,若所测得mFR愈大,表示该塑料熔体的平均分子量愈低,成型时流动性愈好。但此种仪器测得的流动性能指标是在低剪切速率下获得的,不存在广泛的应力-应变速率关系。因而不能用来研究塑料熔体粘度与温度,粘度与剪切速率的依赖关系,仅能比较相同结构聚合物分子量或熔体粘度的相对数值。 (1)为什么要分段取样?答:分段取样取平均值能使 实验结果更精确,且利于去除坏点,减小试验误差。 (2)哪些因素影响实验结果?举例说明。答:①标准 口模内径的选择不同的塑料应选择不同的口模内径,否则实验误差较大。②实验温度物料的形态与温度有关,不同的温度下,物料的熔体流动速率不同。③负荷不同负荷下,压力不同则影响样条质量。 实验二扫描电子显微镜观察物质表面微观结构 背散射电子 背散射电子是被固体样品中的原子核反弹回来的一部 分入射电子,其中包括弹性背散射电子和非弹性背散射电子。

热机实验报告

热机实验 热机实验是研究热机和热泵的效率,这是一个最近几年刚开发出来的较新颖的热学实验,对有关热学知识的掌握和理解,直接影响到本实验的成败。最好具有热力学三个定律、卡诺循环等知识准备。 预备知识 1、热力学三定律。 2、卡诺循环和卡诺热机。 3、半导体制冷方面的知识。 实验目的 1、了解半导体热电效应原理和应用,测量热泵的实际效率和卡诺效率。 2、在热机模式下确定帕尔帖器件的实际效率,计算帕尔帖的电阻和热机效率。 3、测量热泵的性能系数。 4、通过测量和计算,比较负载和阻,选定最佳效率下的最佳负载。 实验原理 热力学第一定律是对能量守恒和转换定律的一种表述方式。热力学第一定律指出,热能可以从一个物体传递给另一个物体,也可以与机械能或其他能量相互转换,在传递和转换过程中,能量的总值不变。 热力学第二定律 1、开尔文表述:不可能从单一热源吸取热量,使之完全变为有用功而不引起其它变化。 2、克劳修斯表述:不可能使热量从低温物体传向高温物体而不引起其它变化。 或者: ①热不可能自发地、不付代价地从低温传到高温。(不可能使热量由低温物体传递到高温物体,而不引起其他变化,这是按照热传导的方向来表述的) ②不可能从单一热源取热,把它全部变为功而不产生其他任何影响 热力学第三定律是对熵的论述,一般当封闭系统达到稳定平衡时,熵应该为最大值,在任何过程中,熵总是增加,但理想气体如果是等温可逆过程熵的变化为零,可是理想气体实际并不存在,所以现实物质中,即使是等温可逆过程,系统的熵也在增加,不过增加的少。在绝对零度,任何完美晶体的熵为零;称为热力学第三定律。 卡诺循环(Carnot Cycle)包括两个等温过程和两个绝热过程,理想气体体系在经历这四个过程后回到原点。在循环过程中每一步都是可逆的。

相关文档
最新文档