凸轮机构中常用的从动件运动规律

凸轮机构中常用的从动件运动规律
凸轮机构中常用的从动件运动规律

第9章凸轮机构及其设计(有答案)

1.图示凸轮机构从动件推程运动线图是由哪两种常用的基本运动规律组合而成?并指出有无冲击。如果有冲击,哪些位置上有何种冲击?从动件运动形式为停-升-停。 (1) 由等速运动规律和等加速等减速运动规律组合而成。 (2) 有冲击。 (3) ABCD 处有柔性冲击。 2. 有一对心直动尖顶从动件盘形凸轮机构,为改善从动件尖端的磨损情况,将其尖端改为滚子,仍使用原来的凸轮,这时该凸轮机构中从动件的运动规律有无变化?简述理 由。 (1) 运动规律发生了变化。 (见下图 ) (2)采用尖顶从动件时,图示位置从动件的速度v O P 2111=ω,采用滚子从动件时,图示位置的速度 '='v O P 2111ω,由于O P O P v v 1111 22≠'≠',;故其运动规律发生改变。

3. 在图示的凸轮机构中,画出凸轮从图示位置转过60?时从动件的位置及从动件的位移s。 总分5分。(1)3 分;(2)2 分 (1) 找出转过60?的位置。 (2) 标出位移s。

4. 画出图示凸轮机构从动件升到最高时的位置,标出从动件行程h ,说明推程运动角和回程运动角的大小。 总分5分。(1)2 分;(2)1 分;(3)1 分;(4)1 分 (1) 从动件升到最高点位置如图示。 (2) 行程h 如图示。 (3)Φ=δ0-θ (4)Φ'=δ' 0+θ

5.图示直动尖顶从动件盘形凸轮机构,凸轮等角速转动,凸轮轮廓在推程运动角Φ=? 从动件行程h=30 mm,要求: (1)画出推程时从动件的位移线图s-?; (2)分析推程时有无冲击,发生在何处?是哪种冲击? - 总分10分。(1)6 分;(2)4 分 (1)因推程时凸轮轮廓是渐开线,其从动件速度为常数v=r0?ω,其位移为直线, 如图示。

机械设计基础习题答案第4章

4-1试述凸轮机构的工作过程? 答:1.推程凸轮转过推程运动角δt。从动件在推程做功,称为工作行程。 2.静止在最远点凸轮继续转动,从动件停留在远离凸轮轴心的位置,称为远休止,凸轮转过远休止角。 3.回程凸轮继续转动,从动件在其重力或弹簧力作用下由最远点回到最近点,这一行程称为回程,凸轮转过回程运动角。从动件在回程中不作功,称为空回行程。 4.静止在最远点凸轮继续转动,从动件停留在离凸轮轴心最近位置A,称为近休止,凸轮转过近休止角。 4-2 凸轮机构常用的从动件运动规律中,哪些产生刚性冲击?哪些产生柔性冲击?如何选择? 答:等速运动规律产生刚性冲击,这种运动规律不宜单独使用。 等加速等减速运动规律和简谐运动规律产生柔性冲击,这种运动规律适用于中速凸轮机构。 4-3 已知凸轮机构从动件的运动规律,如表题4-3所示,绘制从动件的位移线图。解:1.将横坐标代表δh的线段分为若干等份,等分点为3、4、5、6、7、8、9、10。 2.在δh/2处作横坐标的垂线,按一定比例取升程h,将h也分成与横坐标相同的等份,等分点为、3'、4'、5'、6'、7'、8'、9'、10'。 3.分别由始点和终点向3'、4'、5'、6'、7'、8'、9'、10'联斜线,这些斜线与横坐标各等分点的垂线的交点,即为位移线图的点。 4.将这些交点连成圆滑的曲线,即得位移线图。 4-4 已知从动件位移线图如图,设计一对心直动尖顶从动件盘形凸轮的轮廓曲线。已知其基圆半径r min=40 mm,凸轮顺时针转动。 解:1.选取适当的比例尺υ,以r min为半径作基圆。基圆与导路的交点B0为从动件尖顶的起始位置。 2.在基圆上,自开始沿的相反方向依次取推程运动角β1、远休止角β'、回程运动角β及近休止角β'',并将β1和β2各分成与位移线图对应的若干等分,得基圆上各点B‘1、2 B‘2、B‘3…。连接各径向线O B‘1、O B‘2…得到从动件导路反转后的位置。

凸轮机构工作过程及从动件运动规律

1. 凸轮机构的工作过程; 2. 凸轮机构的从动件运动规律; 讲授教学方法教学过程: 复习、导入: 1. 复习回顾上节课所学内容: (1)凸轮机构的分类与特点; 2. 通过上节课的学习我们对凸轮机构有了一定的理解,那么它是怎么工作的其从动件的运动规律有是怎样的呢引出本课学习任务: (1 )凸轮机构的工作过程; (2)凸轮机构的从动件运动规律; 知识点/任务/环节一: 一、凸轮机构的工作过程 1. 凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动,凸轮回转时,从动件作“升-停-降-停”的运动循环。 教师活动和意图 课次19课时1 周次5课型新授 题 § 4 —1凸轮机构(2) 班级15机电1 日期 执行 日期 教 学 目 标 知识与技能 1. 理解凸轮机构的工作过程; 2. 掌握凸轮机构的从动件运动规律; 过程与方法 1.通过PPT的讲解过程,从而理解凸轮机构的工作过程,机构 的从动件运动规律; 掌握凸轮情感态度与价值观 1.通过复习旧知,明确本课的学习目的,并快速进入到最佳学习状 态; 1. 凸轮机构的工作过程; 2. 凸轮机构的从动件运动规律; 教学 难点 教学 重点 教学 方法 学生活动

1?请同学观看动画,凸轮做什么运动从动件做 什么运动 2. 提问:从动件上下运动的原因引岀基圆概念。 3. 根据PPT讲解推程,提问推程过程中从动件的 运动,并请同学指岀推程运动角; 4. 根据PPT讲解远停程,提问远停程过程中从动 件的运动,并请同学指出远停程运动角; 5. 请同学根据前 面所讲的推程,讨论讲解回程; 6. 请同学根据前面所讲的远停程,讨论讲解近停 程; 7. 讲解行程的概念; 8. 根据讲的凸轮过程,请同学上来填表格; 9?请同学做练习。 设计意图:动画演示直观易于理解,分组讨论总结 凸轮机构工作过程,加深理解,易于掌握目标达成 情况(手写):学生理解了凸轮机构的工作 过程。 知识点/任务/环节二: 二、从动件的运动规律 1 ?等速运动规律 2. 等加速、等减速运动规律 1. 观看动画,说明凸轮做什么运动从动件做什么运 动 2. 回答从动件上下运动的原因。 3. 回答推程过程中从动件的运动,并指岀推程运动 角; 4?回答远停程过程中从动件的运动,并指出远停程 角; 5. 讨论讲解回程; 6. 讨论讲解近停程; 7. 理解行程的概念; 8. 填表格; 9. 做练习。 教师活动和意图 1. 根据位移线图,分析从动件的运动规律; 2. 请同学根据推程阶段位移线图,讨论绘制等速运 动过程中速度、加速度线图,并请同学上来绘制; 3. 提出等加速等减速的概念,让同学绘制等加速等 减速运动过程中速度、加速度、位移线图; 4?讲解冲击概念; 5. 请同学做练习; 目标达成情况(手写):学生掌握了从动件的运动 规律。 学生活动 1. 理解从动件的运动规律; 2. 讨论绘制等速运动过程中速度、加速度线图, 并 请同学上来绘制; 3. 绘制等加速等减速运动过程中速度、加速度、位 移线图; 4?理解冲击概念; 5.做练习;

机械基础 常用机构 习题

铰链四杆机构的基本特性和凸轮机构 一、判断题 ()1、曲柄摇杆机构的急回特性是用行程速度比系数K来表征,K值越小,急回作用越明显。 ()2、当K>1,θ>0时,机构具有急回特性。 ()3、曲柄摇杆机构以曲柄为原动件时就一定存在急回运动特性。 ()4、偏心曲柄滑块机构以曲柄为原动件时一定存在急回运动特性。 ()5、对心曲柄滑块机构无急回特性。 ()6、摆动导杆机构以曲柄为原动件时不一定存在急回运动特性。 ()7、在曲柄和连杆同时存在的平面四杆机构中,只要曲柄和连杆处于共线位置,就是曲柄的“死点”位置。 ()8、曲柄摇杆机构一定存在死点位置。 ()9、缝纫机踏板机构有时会出现踩不动或倒机的现象,这是因为死点位置造成的。 ()10、缝纫机踏板机构是利用飞轮惯性使其通过死点位置的。 ()11、曲柄摇杆机构以摇杆为原动件时存在两个死点位置。 ()12、内燃机中的曲柄滑块机构不存在死点位置。 ()13、滚子从动件凸轮机构中,从动件与凸轮之间的滚动摩擦阻力小,适于高速传动场合。 ()14、从动件的运动规律取决于凸轮轮廓的形状。 ()15、在柱体凸轮机构中,从动件可以通过直径不大的圆柱凸轮或端面凸轮获得较大的行程。 ()16、尖顶从动件易于磨损,而平底从动件磨损则较小,这是因为前者与凸轮组成高副,而后者与凸轮组成低副的原因。 ()17、凸轮机构能将原动件的旋转运动转化为从动件的往复直线运动。()18、尖顶从动件盘形凸轮机构,基圆与实际工作轮廓线相切。 ()19、凸轮机构的压力角是指凸轮轮廓线某点的法线方向与从动杆速度方向之间的夹角,一般情况下,在工作过程中它是恒定不变的。 ()20、凸轮机构中,升程一定时,基圆半径增大,压力角也随之增大。()21、移动从动件盘形凸轮机构,当从动件不动时,对应的凸轮轮廓线为一直线。 ()22、压力角影响机构的传力特性,压力角越大,传力特性越好。 二、选择题 ()1、当行程速度比系数为时,曲柄摇杆机构才有急回特性。 A. K>1 B. K<1 C. K=0 D. K<0 ()2、下列关于急回特性的描述,错误的是。 A. 机构有无急回特性取决于行程速度比系数 B. 急回特性可使空回行程的时间缩短,有利于提高生产率 C. 极位夹角值越大,机构的急回特性越显著 D. 只有曲柄摇杆机构具有急回特性 ()3、下列机构中存在急回特性的是。 A. 对心曲柄滑块机构且以曲柄为原动件 B. 偏心曲柄滑块机构且以滑块为原动件 C. 摆动导杆机构且以曲柄为原动件 D. 摆动导杆机构且以导杆为原动件 ()4、当四杆机构出现死点位置时,可在从动件上使其顺利通过。 A. 加设飞轮 B. 加大驱动力 C. 减小阻力 D. 更换原动件()5、关于缝纫机踏板机构,以下论述错误的是。

凸轮机构设计及运动分析

凸轮机构设计及运动分析 问题描述: 如图1所示为以对心直动尖顶盘形凸轮机构。从动杆位移s随时间变化曲线如图2所示。要求设计凸轮机构并分析从动件速度v,加速度a随时间变化的规律,及应力、应变随时间变化的规律。 任务与要求 1.设计满图2运动规律的凸轮机构;(要有设计计算步骤) 2.对所设计的机构运用ansys软件分析从动件速度、加速度随时间变化的规律; 3.查阅资料、了解所给机构的在生产、生活中的应用,说明其工作原理,并附相应的图片或视频。 凸轮机构设计及运动分析指导书

一、设计的目的 通过设计,训练学生机构设计的能力,掌握运用ANSYS Workbench进行瞬态动力学分析的方法、步骤和过程,提高学生解决实际问题的能力。 二、设计报告的主要要求 设计报告包括设计报告书Word文档和Powerpoint演示文稿两部分。 1.设计报告书内容包括目录、任务书、正文、参考文献、组员工作内容表。 (1)文档格式严格遵守设计书文档规范要求。 (2)目录必须层次清楚,并标有页码数。 (3)正文按章节编写,按照任务书要求合理安排内容,并附有参考文献。 2.Powerpoint演示文稿要求内容简洁,重点突出。 三、人员要求:1人 四、时间安排 1.布置任务、准备、查阅资料:2天; 2.机构设计及动画:6天; 3.Ansys分析:6天; 4.编写报告书、Powerpint演示文稿、验收:2天。 5.答辩。 五、成绩形成: 设计报告书:50分;答辩:50分 组内成员按实际完成工作量评定每位学生最终成绩;不参加答辩的学生没有答辩成绩。 六、参考资料:机械原理的平面机构,ansys机械工程应用精华59例

凸轮机构工作过程及从动件运动规律

教 案 课次 19 课时 1 执行日期 班级 15机电1 周次 5 课型 新授 日期 课 题 §4—1 凸轮机构(2) 教 学 目 标 知识与技能 1.理解凸轮机构的工作过程; 2.掌握凸轮机构的从动件运动规律; 过程与方法 1.通过PPT 的讲解过程,从而理解凸轮机构的工作过程,掌握凸轮机构的从动件运动规律; 情感态度与价值观 1.通过复习旧知,明确本课的学习目的,并快速进入到最佳学习状态; 教学难点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 重点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学方法 讲授教学方法 教学过程: 复习、导入: 1.复习回顾上节课所学内容: (1)凸轮机构的分类与特点; 2.通过上节课的学习我们对凸轮机构有了一定的理解,那么它是怎么工作的其从动件的运动规律有是怎样的呢引出本课学习任务: (1)凸轮机构的工作过程; (2)凸轮机构的从动件运动规律; 知识点/任务/环节一: 一、凸轮机构的工作过程 1.凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动,凸轮回转时,从动件作“升→停→降→停”的运动循环。 推程 远停程 回程 近停程 δ0 δ1 δ2 δ3 升 停 降 停 教师活动和意图 学生活动

1.请同学观看动画,凸轮做什么运动从动件做 什么运动 2.提问:从动件上下运动的原因引出基圆概 念。 3.根据PPT讲解推程,提问推程过程中从动件 的运动,并请同学指出推程运动角; 4.根据PPT讲解远停程,提问远停程过程中从 动件的运动,并请同学指出远停程运动角; 5.请同学根据前面所讲的推程,讨论讲解回 程; 6.请同学根据前面所讲的远停程,讨论讲解近 停程; 7.讲解行程的概念; 8.根据讲的凸轮过程,请同学上来填表格; 9.请同学做练习。 设计意图:动画演示直观易于理解,分组讨 论总结凸轮机构工作过程,加深理解,易于 掌握。 1.观看动画,说明凸轮做什么运动从动件做什么 运动 2.回答从动件上下运动的原因。 3.回答推程过程中从动件的运动,并指出推程运 动角; 4.回答远停程过程中从动件的运动,并指出远停 程角; 5.讨论讲解回程; 6.讨论讲解近停程; 7.理解行程的概念; 8.填表格; 9.做练习。 目标达成情况(手写): 学生理解了凸轮机构的工作过程。 知识点/任务/环节二: 二、从动件的运动规律 1.等速运动规律 2.等加速、等减速运动规律 教师活动和意图学生活动 1.根据位移线图,分析从动件的运动规律; 2.请同学根据推程阶段位移线图,讨论绘制等 速运动过程中速度、加速度线图,并请同学上 来绘制; 3.提出等加速等减速的概念,让同学绘制等加 速等减速运动过程中速度、加速度、位移线图; 4.讲解冲击概念; 5.请同学做练习; 1.理解从动件的运动规律; 2.讨论绘制等速运动过程中速度、加速度线图, 并请同学上来绘制; 3.绘制等加速等减速运动过程中速度、加速度、 位移线图; 4.理解冲击概念; 5.做练习; 目标达成情况(手写): 学生掌握了从动件的运动规律。

凸轮机构工作过程及从动件运动规律

教案 课次 19 课时 1 执行 日期 班级15机电1 周次 5 课型新授日期2017.3.16 课 题 §4—1 凸轮机构(2) 教 学 目 标 知识与技能 1.理解凸轮机构的工作过程; 2.掌握凸轮机构的从动件运动规律; 过程与方法 1.通过PPT的讲解过程,从而理解凸轮机构的工作过程,掌握凸 轮机构的从动件运动规律; 情感态度与价值观 1.通过复习旧知,明确本课的学习目的,并快速进入到最佳学习 状态; 教学 难点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 重点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 方法 讲授教学方法 教学过程: 复习、导入: 1.复习回顾上节课所学内容: (1)凸轮机构的分类与特点; 2.通过上节课的学习我们对凸轮机构有了一定的理解,那么它是怎么工作的?其从动件的运动规律有是怎样的呢?引出本课学习任务: (1)凸轮机构的工作过程; (2)凸轮机构的从动件运动规律; 知识点/任务/环节一: 一、凸轮机构的工作过程 1.凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动,凸轮回转时,从动件作“升→停→降→停”的运动循环。 推程远停程回程近停程 δ0δ1δ2δ3 升停降停 教师活动和意图学生活动

1.请同学观看动画,凸轮做什么运动?从动件 做什么运动? 2.提问:从动件上下运动的原因?引出基圆概 念。 3.根据PPT讲解推程,提问推程过程中从动件 的运动,并请同学指出推程运动角; 4.根据PPT讲解远停程,提问远停程过程中从 动件的运动,并请同学指出远停程运动角; 5.请同学根据前面所讲的推程,讨论讲解回 程; 6.请同学根据前面所讲的远停程,讨论讲解近 停程; 7.讲解行程的概念; 8.根据讲的凸轮过程,请同学上来填表格; 9.请同学做练习。 设计意图:动画演示直观易于理解,分组讨 论总结凸轮机构工作过程,加深理解,易于 掌握。 1.观看动画,说明凸轮做什么运动?从动件做什 么运动? 2.回答从动件上下运动的原因。 3.回答推程过程中从动件的运动,并指出推程运 动角; 4.回答远停程过程中从动件的运动,并指出远停 程角; 5.讨论讲解回程; 6.讨论讲解近停程; 7.理解行程的概念; 8.填表格; 9.做练习。 目标达成情况(手写): 学生理解了凸轮机构的工作过程。 知识点/任务/环节二: 二、从动件的运动规律 1.等速运动规律 2.等加速、等减速运动规律 教师活动和意图学生活动 1.根据位移线图,分析从动件的运动规律; 2.请同学根据推程阶段位移线图,讨论绘制等 速运动过程中速度、加速度线图,并请同学上 来绘制; 3.提出等加速等减速的概念,让同学绘制等加 速等减速运动过程中速度、加速度、位移线图; 4.讲解冲击概念; 5.请同学做练习; 1.理解从动件的运动规律; 2.讨论绘制等速运动过程中速度、加速度线图, 并请同学上来绘制; 3.绘制等加速等减速运动过程中速度、加速度、 位移线图; 4.理解冲击概念; 5.做练习;

凸轮机构设计-作业题

第九章凸轮机构设计 本章学习任务:凸轮机构的基本知识、其从动件的运动规律、凸轮曲线轮廓的设计、凸轮机构基本尺寸的设计。 驱动项目的任务安排:完成项目中的凸轮机构的具体设计。 思考题 9-1简单说明凸轮机构的优缺点及分类情况? 9-2在直动滚子从动件盘形凸轮机构中,如何度量凸轮的转角和从动件的位移? 9-3试说明等速运动规律,简谐运动规律和五次多项式运动规律的特点。 9-4简单说明从动件运动规律选择与设计的原则。 9-5简单说明凸轮廓线设计的反转法原理。 9-6什么是凸轮的理论廓线和实际廓线,二者有何联系? 9-7何谓凸轮机构的压力角?压力角对机构的受力和尺寸有何影响? 9-8如何选择(或设计)凸轮的基圆半径? 9-9什么是“运动失真”现象?如何选择(或设计)凸轮的滚子半径,才能避免机构的“运动失真”? 习题 9-1何谓凸轮机构传动中的刚性冲击和柔性冲击?试补全题图9-1 所示各段的,s -,v -,a - 曲线,并指出哪些地方有刚性冲击,哪些地方有柔性冲击? s O v O a 题图9-1 2| D| ? 2| D| ? 2| D| ? 9-2何谓凸轮工作廓线的变尖现象和推杆运动的失真现象?它对凸轮机构的工作有何影响?如何加以避免? 9-3力封闭与几何形状封闭凸轮机构的许用应力角的确定是否一样?为什么? 9-4有一滚子推杆盘形凸轮机构,在使用中发现推杆滚子的直径偏小,欲用较大的滚子,问是否可行? 为什么? 9-5有一对心直动推杆盘形凸轮机构,在使用中发现推程压力稍偏大,拟采用推杆偏置的方法来改善,问是否可行?为什么?

45?? | ? | ? 3 2 | ? O 1 9-6 用作图法求出题图 9-6 所示两凸轮机构从图示位置转过 45 时的压力角。 (a ) (b ) 题图 9-6 题图 9-7 9 -7 如题图 9-7 所示盘形凸轮机构是有利偏置,还是不利偏置。如将该凸轮廓线作为直动滚子推杆的理论 廓线,其滚子半径 r r = 8 mm 。试问该凸轮廓线会产生什么问题?为什么?为了保证推杆实现同样的运动规律,应采取什么措施(图中l = 0.001 m /mm )? 9 -8 在题图 9-8 所示的运动规律线图中各段运动规律未表示完全,请根据给定部分补足其余部分(位移 线图要求准确画出,速度和加速度线图可用示意图表示)。 s 1 2 v 3 4 2 s v 1 2 3 4 2 a a 题图 9-8 题图 9-9 9 - 如题图 9-9 中给出了某直动推杆盘形凸轮机构的推杆的速度线图。要求:(1)定性地画出其加速 度和位移线图;(2)说明此种运动规律的名称及特点(v 、a 的大小及冲击的性质);(3)说明此种运动规律的适用场合。 9 -10 在题图 9-10 所示凸轮机构中,已知偏心圆盘为凸轮实际轮廓,如图所示。试求: 1) 基圆半径 R ; 2) 凸轮机构的压力角 ; 3) 凸轮由图示位置转 90°后,推杆移动距离 s 。 2 1 3 4 2 /3 2/3 4/3 5/3 2

凸轮机构的设计计算和运动分析

% ******** 偏置移动从动件盘形凸轮设计绘图和运动分析******** disp ' ######## 已知条件########' disp ' 凸轮作逆时针方向转动,从动件偏置在凸轮轴心的右边' disp ' 从动件在推程作等加速/等减速运动,在回程作余弦加速度运动' % 基圆半径;滚子半径;从动件偏距;从动件升程 rb=40;rt=10;e=15;h=50; % 推程运动角;远休止角;回程运动角;推程许用压力角;凸轮转速 ft=100;fs=60;fh=90;alpha_p=35;n=200; % 角度和弧度转换系数;机构尺度 hd=pi/180;du=180/pi;se=sqrt(rb^2-e^2); w=n*pi/30; omega=w*du; % 凸轮角速度(°/s) fprintf(' 基圆半径rb = %3.4f mm \n',rb) fprintf(' 滚子半径rt = %3.4f mm \n',rt) fprintf(' 推杆偏距 e = %3.4f mm \n',e) fprintf(' 推程升程h = %3.4f mm \n',h) fprintf(' 推程运动角ft = %3.4f 度\n',ft) fprintf(' 远休止角fs = %3.4f 度\n',fs) fprintf(' 回程运动角fh = %3.4f 度\n',fh) fprintf(' 推程许用压力角alpha_p = %3.4f 度\n',alpha_p) fprintf(' 凸轮转速n = %3.4f r/min \n',n) fprintf(' 凸轮角速度(弧度) w = %3.4f rad/s \n',w) fprintf(' 凸轮角速度(度) omega = %3.4f 度/s \n',omega) disp ' ' disp ' 计算过程和输出结果' disp ' ' % (1)---校核凸轮机构的压力角和轮廓曲率半径' disp ' *** 计算凸轮理论轮廓的压力角和曲率半径***' disp ' 1 推程(等加速/等减速运动)' for f=1:ft if f<=ft/2 s(f)=2*h*f^2/ft^2;s=s(f); % 等加速-位移方程 ds(f)=4*h*f*hd/(ft*hd)^2;ds=ds(f); d2s(f)=4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*f/ft^2; % 等加速-速度方程else s(f)=h-2*h*(ft-f)^2/ft^2;s=s(f); % 等减速-位移方程 ds(f)=4*h*(ft-f)*hd/(ft*hd)^2;ds=ds(f); d2s(f)=-4*h/(ft*hd)^2;d2s=d2s(f); vt(f)=4*h*omega*(ft-f)/ft^2; % 等减速-速度方程end alpha_t(f)=atan(abs(ds-e)/(se+s)); % 推程压力角(弧度) alpha_td(f)=alpha_t(f)*du; % 推程压力角(度) pt1=((se+s)^2+(ds-e)^2)^1.5; pt2=abs((se+s)*(d2s-se-s)-(ds-e)*(2*ds-e));

最新机械基础——5 从动件的常用运动规律

章节名称从动件的常用运动规律 授课 形式 讲授 课 时 2 班 级 06机电1、2 教学 目的 了解从动件的常用运动规律教学 重点 常用运动规律特点和应用教学 难点 运动曲线的绘制 辅助手段课外作业 课后 体会 一、基本概念 1、基圆:以凸轮轮廓最小半径 r b 所作的圆 2、推程:从动件经过轮廓AB段,从动件被推到最高位置 3、推程角:角δ0,这个行程称为,δ2称为 4、回程:经过轮廓CD段,从动件由最高位置回到最低位置; 5、回程角:角δ2 6、远停程角:角δ1 7、近停程角:角δ3 二、凸轮与从动件的关系 凸轮的轮廓机构取决于从动件的运动规律,从动件的运动规律取决于工作要求。 三、从动件的运动规律 1.等速运动规律 当凸轮作等角速度旋转时,从动件上升或下降的速度为一常数,这种运动规律称为等速运动规律。 (1)位移曲线(S—δ曲线) 若从动件在整个升程中的总位移为 h,凸轮上对应的升程角为δ ,那么由运

图7—8 等加速等减速运动规律位移曲线 动学可知,在等速运动中,从动件的位移S 与时间t 的关系为: S =v ·t 凸轮转角δ与时间t 的关系为: δ=ω·t 则从动件的位移S 与凸轮转角δ之间的关系为: v 和ω都是常数,所以位移和转角成正比关系。因此,从动件作等速运动的位移曲线是一条向上的斜直线。 从动件在回程时的位移曲线则与下图相反,是一条向下的斜直线。 (2)等速运动凸轮机构的工作特点 由于从动件在推程和回程中的速度不变,加速度为零,故运动平稳;但在运动开始和终止时;从动件的速度从零突然增大到v 或由v 突然减为零,此时,理论上的加速度为无穷大,从动件将产生很大的惯性力,使凸轮机构受到很大冲击,这种冲击称刚性冲击。随着凸轮的不断转动,从动件对凸轮机构将产生连续的周期性冲击,引起强烈振动,对凸轮机构的工作十分不利。因此,这种凸轮机构一般只适用于低速转动和从动件质量不大的场合。 2.等加速、等减速运动规律 当凸轮作等角速度旋转时,从动件在升程(或回程)的前半程作等加速运动,后半程作等减速运动。这种运动规律称为等加速等减速运动规律。 (1)位移曲线(S —δ曲线) 由运动学可知,当物体作初速度为零的等加速度直线运动时,物体的位移方 程: 在凸轮机构中,凸轮按等角速度ω旋转,凸 轮转角δ与时间t 之间的关系为 t=δ/ω 则从动件的位移S 与凸轮转角δ之间的关系 为: 式中a 和ω都是常数,所以位移s 和转角δ成二次函数的关系,所以,从动件作等加速等减速运动的位移曲线是抛物线。因此,从动件在推程和回程中的位移曲线是由两段曲率方向相反的抛物线连成。 (2)等加速等减速运动凸轮机构的工作特点 从动件按等加速等减速规律运动时,速度由零逐渐增至最大,而后又逐步减小趋近零,这样就避免了刚性冲击,改善了凸轮机构的工作平稳性。因此,这种凸轮机构适合在中、低速条件下工作。 δω ?=v s 22 1at s =2 22δωa s =

凸轮机构运动分析及创新毕业设计试验平台研制

摘要 凸轮机构是工程中用来实现机械化和自动化的重要驱动和控制机构之一,在轻工、食品、纺织、印刷、医药、标准零件制造、交通运输等领域运行的工作机械中都获得广泛应用。但随着社会发展和科技进步,为了提高产品的质量和生产率,作为机械设备核心部件的凸轮机构而言,必须进一步提高它的设计水平,在解析法设计的基础上开展计算机辅助设计的研究和推广应用。因此,开展对凸轮机构运动分析的研究,对于揭示机构的运动性能,进行机构的优化设计和动力学分析有着重要的实际意义。 本文首先介绍了凸轮机构的发展概况,提出课题的背景和意义,接着指出国内外研究的趋势和国内高校凸轮机构实验仅局限于对运动参数的测量与分析,然后提出以现实生活中最常用的一些凸轮为基础来研究凸轮机构试验平台中从凸轮轮廓设计到加工到试验这一整个系统构成。凸轮轮廓线的设计在解析法的基础上用计算机软件进行绘制。凸轮加工的方法用最常见的线切割加工,用CAXA线切割软件来辅助写代码。平台可测量盘形凸轮,圆柱凸轮,直动从动件及摆动从动件组成的不同的凸轮机构的运动特性。从动件的回复力采用恒定重力的重力回复,直动的轨道用直线导轨,进一步的提高测量精度。在实验台中各个传感器的设计位置,可以让学生直观去观察从动件的速度、加速度;同时,为了让实验台的测量数据更加丰富,在实验台上加上旋转编码器,就可以观察和研究凸轮机构的在运行中输入轴的速度,让整个实验台的功能更加的强大,实验内容更加丰富,对凸轮机构运动研究也很有帮助。 关键词:凸轮机构;运动分析;解析法;试验台;软件辅助设计

Abstract The cam mechanism is one of the drive and control mechanism used to achieve the mechanization and automation project, running in the field of light industry, food, textile, printing, medicine, standard parts manufacturing, transportation machinery are widely available. With the social development and scientific and technological progress in order to improve product quality and productivity, as the core components of the cam mechanism of the machinery and equipment necessary to further improve the design level, on the basis of the analytical method designed to carry out the study of computer-aided design and application. Therefore, to carry out the analysis of motion of the cam mechanism to reveal the kinematic performance, the optimal design of the institutions and dynamics analysis has important practical significance. This paper first introduces the overview of the development of the cam mechanism, put forward the background and significance of the topic, then pointed out that research trends at home and abroad and domestic universities cam mechanism experiment is only limited to the measurement and analysis of motion parameters, and then put forward to the most commonly used in real life cam based design of an innovative test platform to conduct a series of experiments to design, analysis and testing of the cam mechanism. Cam profile design computer software to draw on the basis of the analytical method. Cam processing method with the most common line cutting, with CAXA line cutting software to assist write code. Platform to measure disk cam, cylindrical cam, direct-acting the motion characteristics of the follower and oscillating follower cam mechanism. The restoring force of the driven member with constant gravity gravity reply movable straight track with a linear guide, and further improve the measurement accuracy. In the experimental Taichung sensor design, allows students intuitive to observe the follower velocity, acceleration; richer, in order

凸轮机构工作过程及从动件运动规律

教案 课次 19课时1执行 日期 班级15机电1 周次5课型新授日期 课 题 §4—1 凸轮机构(2) 教 学 目 标 知识与技能 1.理解凸轮机构的工作过程; 2.掌握凸轮机构的从动件运动规律; 过程与方法 1.通过PPT的讲解过程,从而理解凸轮机构的工作过程,掌握凸轮 机构的从动件运动规律; 情感态度与价值观 1.通过复习旧知,明确本课的学习目的,并快速进入到最佳学习状 态; 教学 难点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 重点 1.凸轮机构的工作过程; 2.凸轮机构的从动件运动规律; 教学 方法 讲授教学方法 教学过程: 复习、导入: 1.复习回顾上节课所学内容: (1)凸轮机构的分类与特点; 2.通过上节课的学习我们对凸轮机构有了一定的理解,那么它是怎么工作的其从动件的运动规律有是怎样的呢引出本课学习任务: (1)凸轮机构的工作过程; (2)凸轮机构的从动件运动规律; 知识点/任务/环节一: 一、凸轮机构的工作过程 1.凸轮机构中最常用的运动形式为凸轮作等速回转运动,从动件作往复移动,凸轮回转时,从动件作“升→停→降→停”的运动循环。 推程远停程回程近停程 δ0δ1δ2δ3 升停降停 教师活动和意图学生活动

1.请同学观看动画,凸轮做什么运动从动件做 什么运动 2.提问:从动件上下运动的原因引出基圆概念。 3.根据PPT讲解推程,提问推程过程中从动件 的运动,并请同学指出推程运动角; 4.根据PPT讲解远停程,提问远停程过程中从 动件的运动,并请同学指出远停程运动角; 5.请同学根据前面所讲的推程,讨论讲解回程; 6.请同学根据前面所讲的远停程,讨论讲解近 停程; 7.讲解行程的概念; 8.根据讲的凸轮过程,请同学上来填表格; 9.请同学做练习。 设计意图:动画演示直观易于理解,分组讨论 总结凸轮机构工作过程,加深理解,易于掌握。 1.观看动画,说明凸轮做什么运动从动件做什么 运动 2.回答从动件上下运动的原因。 3.回答推程过程中从动件的运动,并指出推程运 动角; 4.回答远停程过程中从动件的运动,并指出远停 程角; 5.讨论讲解回程; 6.讨论讲解近停程; 7.理解行程的概念; 8.填表格; 9.做练习。 目标达成情况(手写): 学生理解了凸轮机构的工作过程。 知识点/任务/环节二: 二、从动件的运动规律 1.等速运动规律 2.等加速、等减速运动规律 教师活动和意图学生活动 1.根据位移线图,分析从动件的运动规律; 2.请同学根据推程阶段位移线图,讨论绘制等 速运动过程中速度、加速度线图,并请同学上 来绘制; 3.提出等加速等减速的概念,让同学绘制等加 速等减速运动过程中速度、加速度、位移线图; 4.讲解冲击概念; 5.请同学做练习; 1.理解从动件的运动规律; 2.讨论绘制等速运动过程中速度、加速度线图, 并请同学上来绘制; 3.绘制等加速等减速运动过程中速度、加速度、 位移线图; 4.理解冲击概念; 5.做练习; 目标达成情况(手写): 学生掌握了从动件的运动规律。

第九章 凸轮机构及其设计要点

第九章凸轮机构及其设计 1 什么是凸轮的理论轮廓曲线、实际轮廓曲线?两者之间有什么关系? 2 在凸轮机构设计中有哪几种常用的从动件运动规律?这些运动规律各有什么特点以及适用场合?在选择从动件运动规律时应考虑哪些主要因素? 3 发生刚性冲击的凸轮机构,其运动线图上有什么特征?如发生柔性冲击时又有什么特征? 4 用反转法设计盘形凸轮的廓线时,应注意哪些问题?移动从动件盘形凸轮机构和摆动从动件盘形凸轮机构的设计方法各有什么特点? 4 何谓凸轮机构的“失真”现象?失真现象在什么情况下发生?如何避免失真现象的发生? 6 一凸轮机构滚子从动件已损坏,要调换一个新的滚子从动件,但没有与原尺寸相同的滚子。试问用该不同尺寸的滚子行吗?为什么? 7 何谓凸轮机构的压力角?其在凸轮机构的设计中有何重要意义?一般是怎样处理的? 8 设计直动推杆盘形凸轮机构时,在推杆运动规律不变的条件下,要减小推程压力角,可采用哪两种措施? 9 图中两图均为工作廓线为圆的偏心凸轮机构,试分别指出它们的理论廓线是圆还是非圆,运动规律是否相同。 10 凸轮机构从动件按余弦加速度规律运动时,在运动开始和终止的位置,有突变,会产生冲击。 11根据从动件凸轮廓线保持接触方法的不同,凸轮机构可分为力封闭和几何形状封闭两大类型。写出两种几何形状封闭的凸轮机构和。12为了使凸轮廓面与从动件底面始终保持接触,可以利用,,或依靠凸轮上的来实现。 13 凸轮机构的主要优点为,主要缺点为。14为减小凸轮机构的推程压力角,可将从动杆由对心改为偏置,正确的偏置方向是将从动杆偏在凸轮转动中心的侧。 15凸轮机构的从动件按等加速等减速运动规律运动,在运动过程中,将发生突变,从而引起冲击。 16 当凸轮机构的最大压力角超过许用压力角时,可采取以下措施来减小压力角。 17凸轮基圆半径是从到的最短距离。18平底垂直于导路的直动杆盘形凸轮机构,其压力角等于。

机械原理-凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r0为半径所作的圆称为凸轮的基圆,r0称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限

从动件的运动规律(二)

课题从动件的常用运动规律(二)课型新授 授课日期授课 时数 总课 时数 教具 使用 课件 教学 目标 了解从动件的常用运动规律 教学重点和难点重点:常用运动规律特点和应用难点:运动曲线的绘制 学情分析本课教学有一定的难度,学生对空间实物向平面图形的转换有所欠缺,有待再度帮助理解。 板 书设计一、等速运动规律 二、等加速等减速运动规律 教学后记

第1页 课前提问: 1、凸轮机构的组成和应用 2、凸轮机构的分类 新授: 从动件的运动规律 1.等速运动规律 当凸轮作等角速度旋转时,从动件上升或下降的速度为一常数,这种运动规律称为等速运动规律。 (1)位移曲线(S—δ曲线) ,那么由运动学可知,若从动件在整个升程中的总位移为 h,凸轮上对应的升程角为δ 在等速运动中,从动件的位移S与时间t的关系为: S=v·t 凸轮转角δ与时间t的关系为: δ=ω·t 则从动件的位移S与凸轮转角δ之间的关系为: v和ω都是常数,所以位移和转角成正比关系。因此, 从动件作等速运动的位移曲线是一条向上的斜直线。 从动件在回程时的位移曲线则与下图相反,是一条向下的斜直线。 (2)等速运动凸轮机构的工作特点 由于从动件在推程和回程中的速度不变,加速度为零,故运动平稳;但在运动开始和终止时;从动件的速度从零突然增大到v或由v突然减为零,此时,理论上的加速度为无穷大,从动件将产生很大的惯性力,使凸轮机构受到很大冲击,这种冲击称刚性冲击。随着凸轮的不断转动,从动件对凸轮机构将产生连续的周期性冲击,引起强烈振动,对凸轮机构的工作十分不利。因此,这种凸轮机构一般只适用于低速转动和从动件质量不大的场合。 2.等加速、等减速运动规律 当凸轮作等角速度旋转时,从动件在升程(或回程)的前半程作等加速运动,后半程作等减速运动。这种运动规律称为等加速等减速运动规律。 (1)位移曲线(S—δ曲线)

凸轮机构及其设计汇总

第三章凸轮机构及其设计 §3-1 概述 1 凸轮机构的基本组成及应用特点 组成:凸轮、从动件、机架 运动特征:主动件(凸轮)作匀角速回转,或作匀速直线运动,从动件能实现各种复杂的预期运动规律。 尖底直动从动件盘形凸轮机构、尖底摆动从动件盘形凸轮机构滚子直动从动件盘形凸轮机构、滚子摆动从动件盘形凸轮机构圆柱凸轮机构、移动凸轮机构、平底直动从动件盘形凸轮机构端面圆柱凸轮机构、内燃机配气凸轮机构 优点: (1)从动件易于实现各种复杂的预期运动规律。 (2)结构简单、紧凑。 (3)便于设计。 缺点: (1)高副机构,点或线接触,压强大、易磨损,传力小。 (2)加工制造比低副机构困难。 应用: 主要用于自动机械、自动控制中(如轻纺、印刷机械)。 2 凸轮机构的分类 1.按凸轮形状分:盘型、移动、圆柱 2.按从动件运动副元素分:尖底、滚子、平底、球面(P197)3.按从动件运动形式分:直动、摆动 4.按从动件与凸轮维持接触的形式分:力封闭、形封闭 3 凸轮机构的工作循环与运动学设计参数

§3-2凸轮机构基本运动参数设计 一.有关名词 行程-从动件最大位移h。 推程-S↑的过程。 回程-S↓的过程。 推程运动角-从动件上升h,对应凸轮转过的角度。 远休止角-从动件停留在最远位置,对应凸轮转过的角度。 回程运动角-从动件下降h,对应凸轮转过的角度。 近休止角-从动件停留在低远位置,对应凸轮转过的角度。 一个运动循环凸轮:转过2π,从动件:升→停→降→停 基圆-以理论廓线最小向径r0作的圆。 尖底从动件:理论廓线即是实际廓线。 滚子从动件:以理论廓线上任意点为圆心,作一系列滚子圆,其内包络线为实际廓线。 从动件位移线图——从动件位移S与凸轮转角 (或时间t)之间 的对应关系曲线。 从动件速度线图——位移对时间的一次导数

相关文档
最新文档