线段差的最大值与线段和的最小值问题421

线段差的最大值与线段和的最小值问题421
线段差的最大值与线段和的最小值问题421

线段差的最大值与线段和的最小值问题

有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。2、三角形的任意两边之和大于第三边(找和的最小值)。3、三角形的任意两边之差小于第三边(找差的最大值)。

作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。证明此类问题,可任意另找一点,利用以上原理来证明。

一两条线段差的最大值:

(1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。

作法:连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB

证明:在直线L上任意取一点P。,连结PA、PB,︱PA-PB︱<AB

(2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:1、作B关于直线L的对称点B。

B

2、连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB

证明:在直线L上任意取一点P。,连结PA、PB、PB。︱PA-PB︱=︱PA-PB︱<AB

(三角形任意两边之差小于第三边)

二、两条线段和的最小值问题:

(1))两点同侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。

(三角形的任意两边之和大于第三边(找和的最小值),P A+PB=AB

(2)两点异侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。

(两点之间线段最短)

三、中考考点:

08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小?若存在,请求出周长的最小值,若不存在,请说明理由。

提示:EF长不变。即求F N+NM+MF的最小值。利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。

C

N

一、以正方形为载体,求线段和的最小值

例1. 如图1,四边形ABCD是正方形,边长是4,E是

BC上一点,且CE=1,P是

对角线BD上任一点,则PE+PC的最小值是_____________。

例2. 如图2,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF =1,P是对角线AC上的一个动点,则PE+PF的最小值是()

二、以菱形为载体,求线段和的最小值

例3. (05,南充)如图3,点P是边长为1的菱形ABCD对角线AC上一个动点,M、N分别是AB,BC边上的中点,PM+PN的最小值是()

三、以等腰梯形为载体,求线段和的最小值

例4.(05,河南)如图4,在梯形ABCD中,AD∥BC,AB=CD=AD=1,∠B=60°,直线MN为梯形ABCD的对称轴,P为MN上一点,那么PC+PD的最小值为_____________。

线段差的最大值与线段和的最小值问题

线段差的最大值与线段和的最小值问题 有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。2、三角形的任意两边之和大于第三边(找和的最小值)。3、三角形的任意两边之差小于第三边(找差的最大值)。 作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。证明此类问题,可任意另找一点,利用以上原理来证明。 一两条线段差的最大值: (1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。 作法:连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB,︱PA-PB︱<AB p' (2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:1、作B关于直线L的对称点B。 B 2、连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB、PB。︱PA-PB︱=︱PA-PB︱<AB

(三角形任意两边之差小于第三边) 二、两条线段和的最小值问题: (1))两点同侧:如图,点P在直线L上运动,画出一点P使PA+PB取最小值。 (三角形的任意两边之和大于第三边(找和的最小值),PA+PB=AB (2)两点异侧:如图,点P在直线L上运动,画出一点P使PA+PB取最小值。 (两点之间线段最短) 三、中考考点: 08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小?若存在,请求出周长的最小值,若不存在,请说明理由。 提示:EF长不变。即求FN+NM+MF的最小值。利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。

最大值与最小值教案

班级:高二( )班 姓名:____________ 教学目标: 1.使学生理解函数的最大值和最小值的概念,掌握可导函数f (x )在闭区间上所有点(包括端点a ,b )处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 教学重点: 利用导数求函数的最大值和最小值的方法. 教学过程: 一、问题情境 1.问题情境.函数极值的定义是什么? 2.探究活动.求函数f (x )的极值的步骤. 二、建构数学 1.函数的最大值和最小值. 观察图中一个定义在闭区间[]b a ,上的函数)(x f 的图象. 图中)(1x f ,35(),()f x f x 是极小值,24(),()f x f x 是极大值. 函数)(x f 在[]b a ,上的最大值是)(b f ,最小值是3()f x . 一般地,在闭区间[]b a ,上连续的函数)(x f 在[]b a ,上必有最大值与最小值. 说明: (1)在开区间(,)a b 内连续的函数)(x f 不一定有最大值与最小值. 如函数x x f 1)(=在),0(+∞内连续,但没有最大值与最小值; (2)函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的; (3)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个. 2.利用导数求函数的最值步骤: 由上面函数)(x f 的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了. 设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下:

(先打)线段和差的最大值与最小值练习题(最全)

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、 E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧 , 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m 上的两个动点,P 在Q 的左侧,且PQ 间长度恒定,在直线m 上要求P 、Q 两点,使得PA+PQ+QB 的值最小。( 原理用平移知识解) (1)点A 、B 在直线m 两侧: 过A 点作AC ∥m,且AC 长等于PQ 长,连接BC,交直线m 于Q,Q 向左 平移PQ 长,即为P 点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线 m 同侧: m m A m A B m n n n m n n n m m n m n m n m m m m m

方法技巧练——最大值与最小值问题

方法技巧练——最大值与最小值问题 1.数字排列中的最大值与最小值。 解决数字排列中的最大值与最小值问题,要清楚:一个自然数,数位越多,这个数越大;数位越少,这个数 越小。 (1)一个六位的自然数,各个数位上的数字之和是13,这个自然数最大是( 940000),最小是( 100039)。 (2)一个八位的自然数,各个数位上的数字之和是21,这个自然数最大是( 99300000),最小是( 10000299)。 2.根据近似数推断精确数的最大值与最小值。 根据近似数推断精确数的最大值与最小值,要把两种情况考虑完整:这个精确数可能比近似数大,是经过“四舍”得到的;这个精确数也可能比近似数小,是经过“五入”得到的。再结合数值最大与最小的原则确定每一位上的数字。 (1)一个自然数,省略万位后面的尾数得到的近似数是93万,最大是多少?最小是多少? 最大:934999 最小:925000 【提示】“四舍五入”后是93万,“四舍”→万位上的数是3→千位上最大是4,其余各位最大是9→最大数。“五入”→万位上的数是2→千位上最小是5,其余各位最小是0→最小数。 (2)一个整数的近似数是200万,这个数最大是多少?最小是多少? 最大:2004999 最小:1995000 3.两个数的和一定,积的最大值与最小值。 (1)两个数的和是26,这两个数分别是多少时,积最大? 13+13=26 13×13=169 答:积最大是169。

(2)两个数的和是43,这两个数相乘,积最大是多少? 21+22=43 并且两个加数最接近 21×22=462 答:积最大是462。 (3)两个数的和是52,这两个数相乘,积最大是多少? 26+26=52 26×26=676 答:积最大是676。 (4)用1,4,5,8这四个数字组成两个无重复数字的两位数,再把这两个数相乘,积最大是多少?最小是多少? 积最大:先确定两个因数的十位8,5,再根据两个因数的相近原理确定个位81×54=4374 积最小:先确定两个因数的十位1,4,再根据两个因数的相近原理确定个位15×48=720 答:积最大是4374,最小是720。

线段和差最值问题

专题一.线段和(差)的最值问题 【知识依据】 1.线段公理——两点之间,线段最短; 2.对称的性质——①关于一条直线对称的两个图形全等;②对称轴是两个对称图形对应点连线的垂直平分线; 3.三角形两边之和大于第三边; 4.三角形两边之差小于第三边; 5、垂直线段最短。 一、已知两个定点: 1、在一条直线m 上,求一点P ,使PA+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: A 、A ’ 是关于直线m 的对称点。 2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。 (1)两个点都在直线外侧: P m A B m A B m A B P m A B A' n m A B Q P n m A B P'Q'

(2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: (4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短. n m A B Q P n m A B B'Q P n m A B B'A' n m A B m n A B E D m n A B A'B'm n A P Q m n A A'

二、一个动点,一个定点: (一)动点在直线上运动: 点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动:点B 在⊙O 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: 2、点与圆在直线同侧: m n A P m n A B m n A P m n A A'B m O A P'P m O B A B' m O A P m O A B A'

小学奥数最大值最小值问题归纳

小学奥数最大值最小值问题汇总 1.三个自然数的和为15,这三个自然数的乘积最大可能是_______。 3.一个长方形周长为24厘米,当它的长和宽分别是_______厘米、_______厘米时面积最大,面积最大是_______平方厘米。 4.现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个鸡舍面积最大,长应是_______米,宽应是_______米。 5.将16拆成若干个自然数的和,要使和最大,应将16拆成_______。 6.从1,2,3,…,2003这些自然数中最多可以取_______个数,才能使其中任意两个数之差都不等于5。 7.一个两位小数保留整数是6,这个两位小数最大是_______,最小是_______。 8.用1克、2克、4克、8克、16克的砝码各一个和一架天平,最多可以称出_______种不同的整数的重量。 9.有一架天平,左右都可以放砝码,要称出1~80克之间所有整克数的重量,如果使砝码个数尽可能少,应该用_______的砝码。 10.如下图,将1~9这9个数填入圆圈中,使每条线上的和相等,使和为A,A最大是_____。二、解答题(30分) 1.把19分成若干个自然数的和,如何分才能使它们的积最大? 2.把1~6这六个数分别填在下图中三角形三条边的六个圆圈内,使每条边上三个圆圈内的数的和相等,求这个和的最大值与最小值。 3.自行车的前轮轮胎行驶9000千米后要报废,后轮轮胎行驶7000千米后要报废。前后轮可在适当时候交换位置。问一辆自行车同时换上一对新轮胎,最多可行驶多少千米? 4.如下图,有一只轮船停在M点,

现需从OA岸运货物到OB岸,最后停在N点,这只船应如何行走才能使路线最短? 5.甲、乙两厂生产同一型号的服装,甲厂每月生产900套,其中上衣用18天,裤子用12天;乙厂每月也生产900套,但上衣用15天,裤子也要用15天。两厂合并后,每月最多可以生产多少套衣服? 6.现在有若干千克苹果,把苹果装入筐中,要求能取出1~63千克所有整千克数的苹果,并且每次都是整筐整筐地取出。问:至少需要多少个空筐?如何装? B卷(50分)一、填空题(每题2分,共20分) 1.在六位数865473的某一位数码后面再插入一个该数码,能得到的七位数中最小的是_____。 2.用1~8这八个数码组成两个四位数,要使这两个数的差尽量小,这个差是______。 3.三个质数的和是100,这三个质数的积最大是______。 4.有一类自然数,自左往右它的各个数位上的数字之和为8888,这类自然数中最小的 (1)求最大量的最大值:让其他值尽量小。例:21棵树载到5块大小不同的土地上,要求每块地栽种的棵数不同,问栽树最多的土地最多可以栽树多少棵?解析:要求最大量取最大值,且量各不相同,则使其他量尽可能的小且接近,即为从“1”开始的公差为“1”的等差数列,依次为1、2、3、4,共10棵,则栽树最多的土地最多种树11棵。(2)求最小量的最小值:让其他值尽量大。例:6个数的和为48,已知各个数各不相同,且最大的数是11,则最小数最少是多少?解析:要求最小数的最小值,则使其他量尽可能的大,

最大值和最小值问题

最大值和最小值问题 3.2.2 最大值、最小值问题教学过程:一、复习引入: 1.极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)<f(x0),就说f(x0)是函数f(x)的一个极大值,记作y极大值=f(x0),x0是极大值点 2.极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0).就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点 3.极大值与极小值统称为极值注意以下几点:(?。┘?值是一个局部概念由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小并不意味着它在函数的整个的定义域内最大或最小(??)函数的极值不是唯一的即一个函数在某区间上或定义域内极大值或极小值可以不止一个(?#┘?大值与极小值之间无确定的大小关系即一个函数的极大值未必大于极小值,如下图所示,是极大值点,是极小值点,而 > (?ぃ┖?数的极值点一定出现在区间的内部,区间的端点不能成为极值点而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点二、讲解新课: 1.函数的最大值和最小值观察图中一个定义在闭区间上的函数的图象.图中与是极小值,是极大值.函数在上的最大值是,最小值是.一般地,在闭区间上连续的函数在上必有最大值与最小值.说明:⑴在开区间内连续的函数不一定有最大值与最小值.如函数在内连续,但没有最大值与最小值;⑵函数的最值是比较整个定义域内的函数值得出的;函数的极值是比较极值点附近函数值得出的.⑶函数在闭区间上连续,是在闭区间上有最大值与最小值的充分条件而非必要条件. (4)函数在其定义区间上的最大值、最小值最多各有一个,而函数的极值可能不止一个,也可能没有一个⒉利用导数求函数的最值步骤: 由上面函数的图象可以看出,只要把连续函数所有的极值与定义区间端点的函数值进行比较,就可以得出函数的最值了.设函数在上连续,在内可导,则求在上的最大值与最小值的步骤如下:⑴求在内的极值;⑵将的各极值与、比较得出函数在上的最值三、讲解范例:例1求函数在区间上的最大值与最小值例2已知x,y为正实数,且满足,求的取值范围例

线段差的最大值与线段和的最小值问题

For personal use only in study and research; not for commercial use 线段差的最大值与线段和的最小值问题 有关线段差的最大值与线段和的最小值问题的主要应用原理是:1、两点这间线段最短。2、三角形的任意两边之和大于第三边(找和的最小值)。3、三角形的任意两边之差小于第三边(找差的最大值)。 作图找点的关键:充分利用轴对称,找出对称点,然后,使三点在一条直线上。即利用线段的垂直平分线定理可以把两条线段、三条线段、四条线段搬在同一条直线上。证明此类问题,可任意另找一点,利用以上原理来证明。 一两条线段差的最大值: (1)两点同侧:如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB,︱PA-PB︱<AB (2两点异侧:如图,如图,点P在直线L上运动,画出一点P,使︱PA-PB︱取最大值。作法:1、作B关于直线L的对称点B。 B

2、连结AB并延长AB交直线L于点P。点P即为所求。︱PA-PB︱=AB 证明:在直线L上任意取一点P。,连结PA、PB、PB。︱PA-PB︱=︱PA-PB︱<AB (三角形任意两边之差小于第三边) 二、两条线段和的最小值问题: (1))两点同侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。 (三角形的任意两边之和大于第三边(找和的最小值),P A+PB=AB (2)两点异侧:如图,点P在直线L上运动,画出一点P使P A+PB取最小值。 (两点之间线段最短) 三、中考考点: 08年林金钟老师的最后一题:如图,在矩形ABCO中,B(3,2),E(3,1),F(1,2)在X轴与Y轴上是否分别存在点M、N,使得四边形EFNM的周长最小?若存在,请求出周长的最小值,若不存在,请说明理由。 提示:EF长不变。即求F N+NM+MF的最小值。利用E关于X轴的对称点E,F的对称点F,把这三条线段搬到同一条直线上。

小学奥数最大值最小值问题汇总

小学奥数最大值最小值问题汇总 1. _____________________________________________________ 三个自然数的和为15,这三个自然数的乘积最大可能是 _______________ 。 3. _________________________________________________ —个长方形周长为24厘米,当它的长和宽分别是_____________________ 厘米、_______ 厘米时面积最大,面积最大是__________ 平方厘米。 4. 现在有20米的篱笆,利用一堵墙围一个长方形鸡舍,要使这个 鸡舍面积最大,长应是_________ 米,宽应是 _________ 米。 5 .将16拆成若干个自然数的和,要使和最大,应将16拆成__________ 。 6 .从1, 2 , 3,…,2003这些自然数中最多可以取 ____________ 个数,才能使其中任意两个数之差都不等于5。 7. __________________________________________________ —个两位小数保留整数是6,这个两位小数最大是____________________ ,最小是________ O 8. 用1克、2克、4克、8克、16克的砝码各一个和一架天平,最 多可以称出________ 种不同的整数的重量。 9. 有一架天平,左右都可以放砝码,要称出1?80克之间所有整克 数的重量,如果使砝码个数尽可能少,应该用__________ 的砝码。10 .如下图,将1?9这9个数填入圆圈中,使每条线上的和相等,使和为 A,A最大是_______ 。二、解答题(30分) 1. 把19分成若干个自然数的和,如何分才能使它们的积最大?

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232--∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32 R a ax x y ∈++=在]1,1[-上的最大值。

经典几何中线段和差最值(含答案)

几何中线段和,差最值问题 一、解决几何最值问题的通常思路 两点之间线段最短; 直线外一点与直线上所有点的连线段中,垂线段最短; 三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值) 是解决几何最值问题的理论依据,根据不同特征转化是解决最值问题的关键.通过转化减少变量,向三个定理靠拢进而解决问题;直接调用基本模型也是解决几何最值问题的高效手段.

一般处理方法: 常用定理: 两点之间,线段最短(已知两个定点时) 垂线段最短(已知一个定点、一条定直线时) 三角形三边关系(已知两边长固定或其和、差固定时) 二、典型题型 1.如图:点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 的周长的最小值为 6 . 2.如图,当四边形P ABN 的周长最小时,a = 4 7 . 线段和(周长)最小 转化 构造三角形 两点之间,线段最短 垂线段最短 P A +PB 最小, 需转化, 使点在线异侧 |P A -PB |最大, 需转化,使点在线同侧 线段差最大 线段最大(小)值 三角形三边关系定理 三点共线时取得最值 平移 对称 旋转 使点在线异侧 (如下图) 使点在线同侧 (如下图) 使目标线段与定长线段构成三角形 平移 对称 旋转 l B'A B P l B'B A P

3.如图,A、B两点在直线的两侧,点A到直线的距离AM=4,点B到直线的距离BN=1,且MN=4,P为直线上的动点,|P A﹣PB|的最大值为5. D P B′ N B M A 4.动手操作:在矩形纸片ABCD中,AB=3,AD=5.如图所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 2 . 5.如图,直角梯形纸片ABCD,AD⊥AB,AB=8,AD=CD=4,点E、F分别在线段AB、AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD 内部时,PD的最小值等于8- 5 4. 6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O的最大距离为1 2 .

二次函数的最大值和最小值问题

二次函数的最大值和最小值问题

————————————————————————————————作者: ————————————————————————————————日期:

二次函数的最大值和最小值问题 高一数学组主讲人---------蒋建平 本节课的教学目标: 重点:掌握闭区间上的二次函数的最值问题 难点:理解并会处理含参数的二次函数的最值问题 核心: 区间与对称轴的相对位置 思想: 数形结合、分类讨论 一、复习引入 1、二次函数相关的知识点回顾。 (1)二次函数的顶点式: (2)二次函数的对称轴: (3)二次函数的顶点坐标: 2、函数的最大值和最小值的概念 设函数)(x f 在0x 处的函数值是)(0x f ,如果不等式)()(0x f x f ≥对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0min x f y = 如果不等式)()(0x f x f ≤对于定义域内任意x 都成立,那么)(0x f 叫做函数)(x f y =的最小值。记作)(0max x f y = 二、新课讲解:二次函数最大值最小值问题探究 类型一:无限制条件的最大值与最小值问题 例1、(1)求二次函数322 ++-=x x y 的最大值 . (2)求二次函数x x y 422-=的最小值 . 本题小结:求无条件限制时二次函数最值的步骤 1、配方,求二次函数的顶点坐标。 2、根据二次函数的开口方向确定是函数的最大值还是最小值。 3、求出最值。

类型二:轴定区间定的最大值与最小值问题 例2、(1)求函数])1,3[(,232-∈-+=x x x y 的最大值 ,最小值 . (2)求函数])3,1[(232∈-+=x x x y 的最大值 ,最小值 . (3)求函数])2,5[(232 --∈-+=x x x y 的最大值 与最小值 . 本题小结:求轴定区间定时二次函数最值的步骤 1、配方,求二次函数的顶点坐标或求对称轴,画简图。 2、判断顶点的横坐标(对称轴)是否在闭区间内。 3、计算闭区间端点的值,并比较大小。 类型三:轴动区间定的最大值与最小值问题 例3、求函数)(32R a ax x y ∈++=在]1,1[-上的最大值。

中考复习线段和差的最大值与最小值拔高

中考二轮复习之线段和(差)的最值问题 一、两条线段和的最小值。 填空题: 1.如图,正方形的边长为2,E为的中点,P是上一动点.则的最小值是. 2.如图,⊙O的半径为2,点A、B、C在⊙O上,⊥,∠60°,P是上一动点,则的最小值是. 3.如图,在锐角△中,=42,∠=45°,∠的平分线交于点D,M、N分别是和上的动点,则的最小值是. 4.如图,在四边形中,∠=90°,∥,=4,=5,=6,点P是上一个动点,当+的和最小时,的长为. 5.已知A(-2,3),B(3,1),P点在x轴上,若+长度最小,则最小值为.若—长度最大,则最大值为. 6.如图,是半径为1的⊙O的直径,点A在⊙O 第1题第2题第3题第4题

上,∠=30°,B为弧的中点,P是直径上一动点,则+的最小值为. 7、如图,菱形中,2,∠120°,点P,Q,K分别为线段,,上的任意一点,则的最小值为 8、如图,正方形的边长是2,∠的平分线交于点E,若点P、Q 分别是和上的动点,则的最小值为. 综合题: 1.如图,∠45°,P是∠内一点,10,Q、R分别是、上的动点,求△周长的最小值.

2.如图,已知平面直角坐标系,A,B两点的 坐标分别为A(2,-3),B(4,-1) 设M,N分别为x轴和y轴上的动点,请问: 是否存在这样的点M(m,0),N(0,n),使四 边形的周长最短?若存在,请求出m=,n=(不必写解答过程);若不存在,请说明理由. 中考赏析: 1.著名的恩施大峡谷(A)和世界级自然保护区星斗山(B)位于笔直的沪渝高速公路X同侧,50、B到直线X的距离分别为10和40,要在沪渝高速公路旁修建一服务区P,向A、B两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图(与直线X垂直,垂足为P),P到A、B的距离之和S1=+,图(2)是方案二的示意图(点A关于直线X的对称点是A',连接'交直线X于点P),P到A、B的距离之和S2=+. (1)求S1、S2,并比较它们的大小; (2)请你说明S2=+的值为最小; (3)拟建的恩施到张家界高速公路Y与沪渝高速公路垂直,建立如图(3)所示的直角坐标系,B到直线Y的距离为30,请你在X旁和Y旁各修建一服务区P、Q,使P、A、B、Q组成的四边形的周长最小.并求出这个最小值.

线段和差最值问题-经典模型

线段和(差)的最值问题 此类问题特点:1.两个定点,一个定点; 2. 线段 和最小值,线段差最大值 一、线段和最小值问题 若在一条直线m 上,求一点P ,使PA+PB 最小; (1)两侧/异侧型:定点A 、B 在直线m (动点P 所在直线)两侧:直接连接A 、B 两点交直线m 于一点P ,该点P 即为所求点。(PA+PB=AB ) (2)同侧型:定点A 、B 在动点P 所在直线m 同侧:(方法:一找二作三连): 一找:找定点A 、B ,动点P 及动点所在的直线m ;二作:任选一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线于一点P ,该点P 即为所求。( PA+PB=PA’+PB=A’B ) Image Image 二、线段差最大值问题 若在一条直线m 上,求一点P ,使得最大 (1)同侧型:定点A 、B 在直线m (动点P 所在直线)两侧:直接连接 A 、 B 两点交直线 m 于一点P ,该点P 即为所求点。() (2)两侧/异侧型:定点A 、B 在直线m (动点P 所在直线)两侧:任选

一个定点做对称;三连:连接对称点与另一个定点,其连线交动点所在直线m于一点P,该点P即为所求点。() 线段和最小值练习题 1.如图1,在锐角三角形ABC中,AB=,∠BAC=45°,∠BAC的平分线交BC 于点D,M,N分别是AD和AB上的动点, 则BM+MN的最小值为. 2. 如图2所示,等边△ABC的边长为6,AD是BC边上的中线,M是AD上的动点,E是AC边上一点.若AE=2,EM+CM的最小值为 . 3.如图3,在直角梯形ABCD中,∠ABC=90°,AD∥BC,AD=4,AB=5,BC=6,点P是AB上一个动点,当PC+PD的和最小时,PB的长为 __________. 图1 图2 图3 图4 4. 如图4,菱形ABCD中,AB=2,∠BAD=60°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值为. 5. 如图5,圆柱形玻璃杯,高为12cm,底面周长为18cm,在杯内离杯底3cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为________cm. 6.已知正方形ABCD的边长为2,E为AB的中点,P是AC上一动点.则PB +PE的最小值是 7. 如图6,已知正方形ABCD的边长为8,点M在DC上,且DM=2,N是AC

初中数学常见8种最值问题(供参考)

最值问题,也就是最大值和最小值问题。它是初中数学竞赛中的常见问题。这类问题出现的试题,内容丰富,知识点多,涉及面广,解法灵活多样,而且具有一定的难度。本文以例介绍一些常见的求解方法,供读者参考。 一. 配方法 例1. (2005年全国初中数学联赛武汉CASIO杯选拔赛) 可取得的最小值为_________。 解:原式 由此可知,当时,有最小值。 二. 设参数法 例2. (《中等数学》奥林匹克训练题)已知实数满足。则 的最大值为________。 解:设,易知 由,得 从而, 由此可知,是关于t的方程的两个实根。 于是,有 解得。故的最大值为2。 例3. (2004年全国初中联赛武汉选拔赛)若,则 可取得的最小值为() A. 3 B. C. D. 6 解:设,则

从而可知,当时,取得最小值。故选(B)。 三. 选主元法 例4. (2004年全国初中数学竞赛)实数满足 。则z的最大值是________。 解:由得。 代入消去y并整理成以为主元的二次方程 ,由x为实数,则判别式。 即, 整理得 解得。 所以,z的最大值是。 四. 夹逼法 例5. (2003年北京市初二数学竞赛复赛)是非负实数,并且满足 。设,记为m的最小值,y为m的最大值。则__________。 解:由得 解得

由是非负实数,得 从而,解得。 又, 故 于是, 因此, 五. 构造方程法 例6. (2000年山东省初中数学竞赛)已知矩形A的边长为a和b,如果总有另一矩形B使得矩形B与矩形A的周长之比与面积之比都等于k,试求k的最小值。解:设矩形B的边长为x和y,由题设可得。 从而x和y可以看作是关于t的一元二次方程的两个实数根,则 因为, 所以, 解得 所以k的最小值是 四. 由某字母所取的最值确定代数式的最值 例7. (2006年全国初中数学竞赛)已知为整数,且 。若,则的最大值为_________。

二次函数中线段和差最值问题

二次函数中线段和、差最值问题 姓名: 1、如图,已知抛物线y=ax2+bx+3与x轴交于A、B两点,过点A的直线l与抛物线交于点C,其中A点的坐标是(1,0),C点坐标是(4,3).(1)求抛物线的解析式;(2)在(1)中抛物线的对称轴上是否存在点D,使△BCD的周长最小?若存在,求出点D的坐标,若不存在,请说明理由;并求出周长的最小值;(3)若点E是(1)中抛物线上的一个动点,且位于直线AC的下方,试求△ACE的最大面积及E点的坐标.

2、如图,△ABC的三个顶点坐标分别为A(-2,0)、B(6,0)、C(0,3 2 -),抛物线y=ax2+bx+c (a≠0)经过A、B、C三点。(1)求直线AC的解析式;(2)求抛物线的解析式;(3)若抛物线的顶点为D,在直线AC上是否存一点P,使得△BDP的周长最小,若存在,求出P点的坐标;若不存在,请说明理由。 3、如图,已知直线 1 1 2 y x =+与y轴交于点A,与x轴交于点D,抛物线2 1 2 y x bx c =++与直 线交于A、E两点,与x轴交于B、C两点,且B点坐标为(1,0)。⑴求该抛物线的解析式; ⑵动点P在x轴上移动,当△PAE是直角三角形时,求点P的坐标P。⑶在抛物线的对称轴上找一点M,使|| AM MC -的值最大,求出点M的坐标。

4、如图8,对称轴为直线x =2的抛物线经过点A (-1,0),C (0,5)两点,与x 轴另一交点为B ,已知M (0,1),E (a ,0),F (a +1,0),点P 是第一象限内的抛物线上的动点.(1)求此抛物线的解析式.(2)当a =1时,求四边形MEFP 面积的最大值,并求此时点P 的坐标.(3)若△PCM 是以点P 为顶点的等腰三角形,求a 为何值时,四边形PMEF 周长最小?请说明理由. 图8 O A E F B M C P x y 备用图 A O M C E F x B y P

初中几何中线段和与差最值问题

初中几何中线段和(差)的最值问题 一、两条线段和的最小值。 基本图形解析: 一)、已知两个定点: 1、在一条直线m 上,求一点P,使P A+PB 最小; (1)点A 、B 在直线m 两侧: (2)点A 、B 在直线同侧: 2、在直线m 、n 上分别找两点P、Q,使PA+P Q+QB 最小。 (1)两个点都在直线外侧: (2)一个点在内侧,一个点在外侧: (3)两个点都在内侧: m m B m A B m n m n n m n n n m

(4)、台球两次碰壁模型 变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短. 变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA +PQ+Q A周长最短. 二)、一个动点,一个定点: (一)动点在直线上运动: 点B在直线n上运动,在直线m 上找一点P,使PA +PB 最小(在图中画出点P和点B ) 1、两点在直线两侧: 2、两点在直线同侧: (二)动点在圆上运动 点B 在⊙O 上运动,在直线m 上找一点P,使PA+P B最小(在图中画出点P 和点B ) 1、点与圆在直线两侧: m n m n m n m m

2、点与圆在直线同侧: 三)、已知A 、B 是两个定点,P 、Q 是直线m上的两个动点,P 在Q 的左侧,且PQ间长度恒定,在直线m上要求P 、Q 两点,使得PA+P Q+QB 的值最小。(原理用平移知识解) (1)点A 、B 在直线m两侧: 作法:过A 点作AC ∥m,且AC长等于PQ长,连接BC ,交直线m 于Q,Q 向左平移PQ 长,即为P点,此时P 、Q 即为所求的点。 (2)点A 、B 在直线m同侧: 基础题 1.如图1,∠AO B=45°,P 是∠AO B内一点,PO =10,Q、R 分别是OA 、OB 上的动点,求△PQR 周长的最小值为 . 2、如图2,在锐角三角形ABC 中,AB=4 ,∠BAC=45°,∠B AC的平分线交B C于点D, M,N分别是AD 和AB上的动点,则BM+MN的最小值为 . m O A P m O A B m A B E Q P m A B Q m A Q m A C Q P

最大值和最小值问题

学科组高二数学组主备人田光海执教人 课题最大值与最小值问题(1)课型新授课时间2012. 课时教学目标 1、知识与技能 (1)通过生活中优化问题的学习,体会导数在解决设计问题中的作用。 (2)通过对实际问题的研究,促进学生分析问题,解决问题的能力。 2、过程与方法 结合实例,借助函数图形直观感知,并探索函数的极值与导数的关系。 3、情感与价值 感受导数在研究函数性质中一般性和有效性,通过学习让学生体会极值是函数的局部性质,增强学生数形结合的思维意识。 教学设想重点:函数的最值得定义与最值的求法 难点:函数的最值得定义与最值的求法 教法学法指导:引导探究,【多媒体演示】 教学程序与策略个性化修改 一、问题情境:【多媒体演示】 在日常生活、生产和科研中,常常会遇到求什么条件下可以使材料最省、时间最少、效率最高等问题,这往往可以归结为求函数的最大值与最小值. 如图,有一长80cm,宽60cm的矩形不锈钢薄板, 用此薄板折成一个长方体无盖容器,要分别 过矩形四个顶点处各挖去一个全等的小正方形, 按加工要求,长方体的高不小于10cm且不大于 20cm.设长方体的高为xcm,体积 为V cm3.问x为多大时,V最大? 并求这个最大值?这样的问题如何解决呢? 二、引出课题:【多媒体演示】 分析函数关系可以看出,以前学过的方法在这个问题中较难凑效,这节课我们将学习一种很重要的方法,来求某些函数的最值. 1.我们知道,在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.问题1:如果是在开区间(a,b)上情况如何? 问题2:如果[a,b]上不连续一定还成立吗? 2.如图,在闭区间[a,b]上函数f(x)有哪些极植点?

中考数学中的二次函数的线段和差以和最值问题

v1.0 可编辑可修改 二次函数与线段和差问题 例题精讲:如图抛物线与x轴交于A,B(1,0),与y 轴交于点C,直线经过点A,C.抛物线的顶点为D,对称轴为直线l,(1)求抛物线解析式。 (2)求顶点D的坐标与对称轴l. (3)设点E为x轴上一点,且AE=CE,求点E的坐标。 (4)设点G是y轴上的一点,是否存在点G,使得GD+GB的值最小,若存在,求出G点坐标,若不存在,说明理由。 (5)在直线l上是否存在一点F,使得△BCF的周长最小,若存在,求出点F 的坐标及△BCF周长的最小值,若不存在,说明理由。 (6)在y轴上是否存在一点S,使得SD-SB的值最大,若存在,求出S点坐标,若不存在,说明理由。 (7)若点H是抛物线上位于AC上方的一点,过点H作y轴的平行线,交AC 于点K,设点H的横坐标为h,线段HK=d ①求d关于h的函数关系式 ②求d的最大值及此时H点的坐标 (8)设点P是直线AC上方抛物线上一点,当P点与直线AC距离最大值时,求P点的坐标,并求出最大距离是多少

1.如图,矩形的边OA在轴上,边OC在轴上,点的坐标为(10,8),沿直线OD折叠矩形,使点正好落在上的处,E点坐标为(6,8),抛物线经过、、三点。 (1)求此抛物线的解析式。 (2)求AD的长。 (3)点P是抛物线对称轴上的一动点,当△PAD的周长最小时,求点P的坐标。

2.如图,在平面直角坐标系中,抛物线4 1 2+ =x y 与轴相交于点A ,点B 与点O 关于点A 对称。 (1)填空:点B 的坐标是 。 (2)过点的直线 (其中)与轴相交于 点C ,过点C 作直线平行于轴,P 是直线上一点,且PB=PC ,求线段PB 的长(用含k 的式子表示),并判断点P 是否在抛物线上,说明理由。 (3)在(2)的条件下,若点C 关于直线BP 的对称点恰好落在该抛物线的对称轴上,求此时点P 的坐标。

上海初三数学《线段和差最值》经典例题解析

上海初三数学《线段和差最值》经典例题解析 专题攻略 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1). 三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2). 两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长.如图3,P A 与PB 的差的最大值就是AB ,此时点P 在AB 的延长线上,即P ′. 解决线段和差的最值问题,有时候求函数的最值更方便,本讲不涉及函数最值问题. 图1 图2 图3 例题解析 例? 如图1-1,抛物线y =x 2-2x -3与x 轴交于A 、B 两点,与y 轴交于点C ,点P 是抛物线对称轴上的一个动点,如果△P AC 的周长最小,求点P 的坐标. 图1-1 【解析】如图1-2,把抛物线的对称轴当作河流,点A 与点B 对称,连结BC ,那么在△PBC 中,PB +PC 总是大于BC 的.如图1-3,当点P 落在BC 上时,PB +PC 最小,因此P A +PC 最小,△P AC 的周长也最小. 由y =x 2-2x -3,可知OB =OC =3,OD =1.所以DB =DP =2,因此P (1,-2). 图1-2 图1-3 例?如图,抛物线21442 y x x =-+与y 轴交于点A ,B 是OA 的中点.一个动点G 从点

B 出发,先经过x 轴上的点M ,再经过抛物线对称轴上的点N ,然后返回到点A .如果动点G 走过的路程最短,请找出点M 、N 的位置,并求最短路程. 图2-1 【解析】如图2-2,按照“台球两次碰壁”的模型,作点A 关于抛物线的对称轴对称的点A ′,作点B 关于x 轴对称的点B ′,连结A ′B ′与x 轴交于点M ,与抛物线的对称轴交于点N . 在Rt △AA ′B ′中,AA ′=8,AB ′=6,所以A ′B ′=10,即点G 走过的最短路程为10.根据 相似比可以计算得到OM =83,MH =43 ,NH =1.所以M (83, 0),N (4, 1). 图2-2 例? 如图3-1,抛物线248293 y x x =-++与y 轴交于点A ,顶点为B .点P 是x 轴上的一个动点,求线段P A 与PB 中较长的线段减去较短的线段的差的最小值与最大值,并求出相应的点P 的坐标. 图3-1 【解析】题目读起来像绕口令,其实就是求|P A -PB |的最小值与最大值. 由抛物线的解析式可以得到A (0, 2),B (3, 6).设P (x , 0). 绝对值|P A -PB |的最小值当然是0了,此时P A =PB ,点P 在AB 的垂直平分线上(如 图3-2).解方程x 2+22=(x -3)2+62,得416x = .此时P 41(,0)6 . 在△P AB 中,根据两边之差小于第三边,那么|P A -PB |总是小于AB 了.如图3-3,当 点P 在BA 的延长线上时,|P A -PB |取得最大值,最大值AB =5.此时P 3(,0)2-.

相关文档
最新文档