雷达目标跟踪转换坐标卡尔曼滤波算法

雷达目标跟踪转换坐标卡尔曼滤波算法
雷达目标跟踪转换坐标卡尔曼滤波算法

雷达目标跟踪的转换坐标卡尔曼滤波算法摘要:该文采用转换坐标卡尔曼滤波算法(cmkf)进行雷达目标跟踪,先将极坐标系下的测量值经坐标变换转换到直角坐标系下,再用统计的方法求出转换测量误差的均值和方差,去偏后利用标准卡尔曼滤波算法对目标进行跟踪。将仿真结果和推广卡尔曼滤波算法(ekf)的进行比较,结果表明,cmkf的滤波精度更高。

关键词:转换坐标卡尔曼滤波算法推广卡尔曼滤波算法雷达目标跟踪

中图分类号:o211 文献标识码:a 文章编号:1674-098x(2013)01(a)-00-02

雷达目标跟踪系统中,状态方程和测量方程往往不在同一坐标系下,通常可采用推广卡尔曼滤波算法对其跟踪,但该方法在线性化时会引起一定的误差。

该文采用转换坐标卡尔曼滤波算法,首先利用坐标变换将极坐标系下的测量值转换至直角坐标系下,再对统计方法所得转换后测量误差的均值和方差进行相应的去偏,最后利用标准卡尔曼滤波器进行滤波。

1 转换测量值误差的均值和方差

设雷达位于极坐标系下原点处,目标的斜距、方位角和俯仰角的测量值为,βm,θm,其与真实位置的关系为

式(1)中,量测误差均为互不相关的零均值高斯白噪声,其方差分别为。

Kalman滤波在运动跟踪中建模

目录 一、kalman滤波简介 (1) 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

几种非线性滤波算法的研究-内附程序

2017 年秋季学期研究生课程考核 (读书报告、研究报告) 考核科目:雷达系统导论 学生所在(系):电子与信息工程学院 学生所在学科:电子与同学工程 学生姓名: 学号: 学生类别: 考核结果阅卷人 第 1 页(共页)

几种非线性滤波算法的介绍与性能分析 作者姓名:学号: 专业院系:电信学院电子工程系 电子邮件: 摘要—非线性滤波算法在雷达目标跟踪中有着重要的应用,对雷达的跟踪性能有着至关重要的影响。好的滤波算法有利于目标航迹的建立及保持,能够得到较精确的目标位置,为发现目标后的后续工作提供可靠的数据依据。本文重点介绍了雷达数据处理中的几种非线性滤波算法:扩展卡尔曼滤波(EKF)、不敏卡尔曼滤波(UKF)、粒子滤波(PF),并且给出了一个利用这三种算法进行数据处理的一个实例,通过这个实例对比分析了这三种算法的性能以及优劣。 关键字—非线性滤波算法;扩展卡尔曼滤波;不敏卡尔曼滤波;粒子滤波; I.概述(一级表题格式) 在雷达对目标进行跟踪前要先对目标进行检测。对于满足检测条件的目标就需要进行跟踪,在跟踪的过程中可以利用新获得的数据完成对目标的进一步检测比如去除虚假目标等,同时利用跟踪获得数据可以进一步完成对目标动态特性的检测和识别。因此对目标进行准确的跟踪是雷达性能的一个重要指标。在检测到满足条件的目标后,根据目标运动状态建立目标运动模型,然后对目标跟踪算法进行设计,这是雷达目标跟踪中的核心部分。 目前主要的跟踪算法包括线性自回归滤波,两点外推滤波、维纳滤波、- αβ滤波、加权最小二乘滤波、维纳滤波和卡尔曼滤波[1]。对于线性系统而言最优滤波的方法就是卡尔曼滤波,卡尔曼滤波是线性高斯模型下的最优状态估计算法。但是实际问题中目标的运动模型往往不是线性的,因此卡尔曼滤波具有很大的局限性。目前主要用的非线性滤波算法可以分为高斯滤波和粒子滤波[2]。不敏卡尔曼滤波和扩展卡尔曼滤波就是高斯滤波中的典型代表,也是应用相对较为广泛的。粒子滤波的应用范围比高斯滤波的适用范围要广,对于系统状态非线性,观测模型非高斯等问题都有很好的适用性。本文具体分析阐述了扩展卡尔曼滤波算法,不敏卡尔曼滤波算法,粒子滤波算法,并且通过一个实例利用仿真的方法分析了这三种算法在滤波性能上的优劣,最后对这三种算法做了一定的总结。 我本科毕业设计题目为《基于历史数据的路径生成算法研究》,由于我是跨专业保研到电信学院,该课题所研究内容不属于雷达系统研究范围,是一种城市路网最快路径生成算法。 II.几种非线性滤波算法 A.扩展卡尔曼滤波 扩展卡尔曼滤波是将非线性系统转换为近似的线性系统的一种方法,其核心思想是围绕滤波值将非线性函数展开成泰勒级数并略去二阶及以上的项,得到一个近似的线性化模型,然后应用卡尔曼滤波完成状态估计。 扩展卡尔曼滤波状态空间模型: k k k w x f+ = + ) ( x 1 状态方程 k k k v x h+ =) ( z观测方程 其中(.) f和(.) h为非线性函数 在扩展卡尔曼滤波中,状态的预测以及观测值的预测由非线性函数计算得出,线性卡尔曼滤波中的状态转移矩阵A阵和观测矩阵H阵由f和h函数的雅克比矩阵代替。 对 (.) f和(.) h Taylor展开,只保留一次项有: ) ? ( ) ?( ) ( k k k k k x x A x f x f- + ≈ ) ? ( ) ?( ) ( k k k k k x x H x h x h- + ≈ 其中: k k x x k k dx df A ?= =为f对 1- k x求导的雅克比矩阵 k k x x k k dx dh H ?= =为h对 1- k x求导的雅克比矩阵 ) ?( ? 1-k k x f x=,于是可以得出: k k k k k k k w x A x f x A x+ - + ≈ + ) ? ) ?( ( 1 k k k k k k k v x H x h x H z+ - + ≈ + ) ? ) ?( ( 1 通过以上变换,将非线性问题线性化。接下来EKF 滤波过程同线性卡尔曼滤波相同,公式如下: )) | (?( ) |1 ( X?k k X f k k= + ) ( ) ( ) | ( ) ( ) |1 (P k Q k k k P k k k+ Φ' Φ = + )1 ( )1 ( ) |1 ( )1 ( )1 (S+ + + ' + + = +k R k H k k P k H k )1 ( )1 ( ) |1 ( )1 ( K1+ + ' + = +-k S k H k k P k

卡尔曼滤波算法总结

Kalman_Filter(float Gyro,float Accel) { Angle+=(Gyro - Q_bias) * dt; Pdot[0]=Q_angle - PP[0][1] - PP[1][0]; Pdot[1]= - PP[1][1]; Pdot[2]= - PP[1][1]; Pdot[3]=Q_gyro; PP[0][0] += Pdot[0] * dt; PP[0][1] += Pdot[1] * dt; PP[1][0] += Pdot[2] * dt; PP[1][1] += Pdot[3] * dt; Angle_err = Accel - Angle; PCt_0 = C_0 * PP[0][0]; PCt_1 = C_0 * PP[1][0]; E = R_angle + C_0 * PCt_0; K_0 = PCt_0 / E; K_1 = PCt_1 / E; t_0 = PCt_0; t_1 = C_0 * PP[0][1]; PP[0][0] -= K_0 * t_0; PP[0][1] -= K_0 * t_1; PP[1][0] -= K_1 * t_0; PP[1][1] -= K_1 * t_1; Angle += K_0 * Angle_err; Q_bias += K_1 * Angle_err; Gyro_x = Gyro - Q_bias; } 首先是卡尔曼滤波的5个方程: -=--+(1)先验估计 X k k AX k k Bu k (|1)(1|1)() -=--+(2)协方差矩阵的预测(|1)(1|1)' P k k AP k k A Q

(整理)Kalman滤波在运动跟踪中的建模.

目录一、kalman滤波简介 1 二、kalman滤波基本原理 (1) 三、Kalman滤波在运动跟踪中的应用的建模 (3) 四、仿真结果 (6) 1、kalman的滤波效果 (6) 2、简单轨迹的kalman的预测效果 (7) 3、椭圆运动轨迹的预测 (9) 4、往返运动归轨迹的预测 (10) 五、参数的选取 (11) 附录: (13) Matlab程序: (13) C语言程序: (13)

Kalman滤波在运动跟踪中的应用 一、kalman滤波简介 最佳线性滤波理论起源于40年代美国科学家Wiener和前苏联科学家Kолмогоров等人的研究工作,后人统称为维纳滤波理论。从理论上说,维纳滤波的最大缺点是必须用到无限过去的数据,不适用于实时处理。为了克服这一缺点,60年代Kalman把状态空间模型引入滤波理论,并导出了一套递推估计算法,后人称之为卡尔曼滤波理论。卡尔曼滤波是以最小均方误差为估计的最佳准则,来寻求一套递推估计的算法,其基本思想是:采用信号与噪声的状态空间模型,利用前一时刻地估计值和现时刻的观测值来更新对状态变量的估计,求出现时刻的估计值。它适合于实时处理和计算机运算。 Kalman滤波是卡尔曼(R.E.kalman)于1960年提出的从与被提取信号的有关的观测量中通过算法估计出所需信号的一种滤波算法。他把状态空间的概念引入到随机估计理论中,把信号过程视为白噪声作用下的—个线性系统的输出,用状方程来描述这种输入—输出关系,估计过程中利用系统状态方程、观测方程和白噪声激励(系统噪声和观测噪声)的统计特性形成滤波算法,由于所用的信息都是时域内的量,所以不但可以对平稳的一维随机过程进估计,也可以对非平稳的、多维随机过程进行估汁。 Kalman滤波是一套由计算机实现的实时递推算法.它所处理的对象是随机信号,利用系统噪声和观测噪声的统计特性,以系统的观测量作为滤波器的输入,以所要估计值(系统的状态或参数)作为滤波器的输出,滤波器的输入与输出之间是由时间更新和观测更新算法联系在一起的,根据系统方程和观测方程估计出所有需要处理的信号。所以,Kalman滤波与常规滤波的涵义与方法不同,它实质上是一种最优估计法。 卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法),对于解决很大部分的问题,他是最优,效率最高甚至是最有用的 二、kalman滤波基本原理 Kalman滤波器是目标状态估计算法解决状态最优估计的一种常用方法具有计算量小、存储量低、实时性高的优点。实际应用中,可以将物理系统的运行过程看作是一个状态转换过程,卡尔曼滤波将状态空间理论引入到对物理系统的数学建模过程中来。其基本思想是给系统信号和噪声的状态空间建立方程和观测方程,只用信号的前一个估计值和最近一个观察值就可以在线性无偏最小方差估计准则下对信号的当前值做出最优估计。 设一系统所建立的模型为:

基于卡尔曼滤波器的雷达目标跟踪

随机数字信号处理期末大作业(报告) 基于卡尔曼滤波器的雷达目标跟踪 Radar target tracking based on Kalman filter 学院(系):创新实验学院 专业:信息与通信工程 学生姓名:李润顺 学号:21424011 任课教师:殷福亮 完成日期:2015年7月14日 大连理工大学 Dalian University of Technology

摘要 雷达目标跟踪环节的性能直接决定雷达系统的安全效能。由于卡尔曼滤波器在状态估计与预测方面具有强大的性能,因此在目标跟踪领域有广泛应用,同时也是是现阶段雷达中最常用的跟踪算法。本文先介绍了雷达目标跟踪的应用背景以及研究现状,然后在介绍卡尔曼滤波算法和分析卡尔曼滤波器性能的基础上,将其应用于雷达目标跟踪,雷达在搜索到目标并记录目标的位置数据,对测量到的目标位置数据(称为点迹)进行处理,自动形成航迹,并对目标在下一时刻的位置进行预测。最后对在一个假设的情境给出基于卡尔曼滤波的雷达目标跟踪算法对单个目标航迹进行预测的MATLAB仿真,对实验的效果进行评估,分析预测误差。 关键词:卡尔曼滤波器;雷达目标跟踪;航迹预测;预测误差;MATLAB仿真 - 1 -

1 引言 1.1 研究背景及意义 雷达目标跟踪是整个雷达系统中一个非常关键的环节。跟踪的任务是通过相关和滤波处理建立目标的运动轨迹。雷达系统根据在建立目标轨迹过程中对目标运动状态所作的估计和预测,评估船舶航行的安全态势和机动试操船的安全效果。因此,雷达跟踪环节工作性能的优劣直接影响到雷达系统的安全效能[1]。 鉴于目标跟踪在增进雷达效能中的重要作用,各国在军用和民用等领域中一直非常重视发展这一雷达技术。机动目标跟踪理论有了很大的发展,尤其是在跟踪算法的研究上,理论更是日趋成熟。在跟踪算法中,主要有线性自回归滤波、两点外推滤波、维纳 α-滤波和卡尔曼滤波,其中卡尔曼滤波算法在目标跟踪滤波、加权最小二乘滤波、β 理论中占据了主导地位。 雷达跟踪需要处理的信息种类多种多样。除了目标的位置信息外,一般还要对目标运动速度进行估计,个别领域中的雷达还要对目标运动姿态进行跟踪。雷达跟踪的收敛速度、滤波精度和跟踪稳定度等是评估雷达跟踪性能的重要参数。因此提高雷达跟踪的精度、收敛速度和稳定度也就一直是改善雷达跟踪性能的重点。随着科技的发展,各类目标的运动性能和材质特征有了大幅度的改善和改变,这就要求雷达跟踪能力要适应目标特性的这种变化。在不断提高雷达跟踪性能的前提下,降低雷达跟踪系统的成本也是现代雷达必须考虑的问题。特别是在民用领域中由于雷达造价不能过高,对目标跟踪进行快收敛性、高精度和高稳定性的改良在硬件上是受到一些制约的,因此雷达跟踪算法的研究就越来越引起学者们的关注。通过跟踪算法的改进来提高雷达的跟踪性能还有相当大的挖掘潜力。考虑到雷达设备的造价,民用雷达的跟踪系统首要的方法就是对于雷达的跟踪算法进行开发。

TLD目标跟踪算法

TLD目标跟踪算法 一、算法的背景 TLD(Tracking-Learning-Detection)是英国萨里大学的一个捷克籍博士生Zdenek 出的一种新的单目标长时间(long term tracking)跟踪算法。该算法与传统跟踪算法的显著区别在于将传统的跟踪算法和传统的检测算法相结合来解决被跟踪目标在被跟踪过程中发生的形变、部分遮挡等问题。同时,通过一种改进的在线学习机制不断更新跟踪模块的“显著特征点”和检测模块的目标模型及相关参数,从而使得跟踪效果更加稳定、鲁棒、可靠。 对于长时间跟踪而言,一个关键的问题是:当目标重新出现在相机视野中时,系统应该能重新检测到它,并开始重新跟踪。但是,长时间跟踪过程中,被跟踪目标将不可避免的发生形状变化、光照条件变化、尺度变化、遮挡等情况。传统的跟踪算法,前端需要跟检测模块相互配合,当检测到被跟踪目标之后,就开始进入跟踪模块,而此后,检测模块就不会介入到跟踪过程中。但这种方法有一个致命的缺陷:即,当被跟踪目标存在形状变化或遮挡时,跟踪就很容易失败;因此,对于长时间跟踪,或者被跟踪目标存在形状变化情况下的跟踪,很多人采用检测的方法来代替跟踪。该方法虽然在某些情况下可以改进跟踪效果,但它需要一个离线的学习过程。即:在检测之前,需要挑选大量的被跟踪目标的样本来进行学习和训练。这也就意味着,训练样本要涵盖被跟踪目标可能发生的各种形变和各种尺度、姿态变化和光照变化的情况。换言之,利用检测的方法来达到长时间跟踪的目的,对于训练样本的选择至关重要,否则,跟踪的鲁棒性就难以保证。 考虑到单纯的跟踪或者单纯的检测算法都无法在长时间跟踪过程中达到理想的效果,所以,TLD方法就考虑将两者予以结合,并加入一种改进的在线学习机制,从而使得整体的目标跟踪更加稳定、有效。 简单来说,TLD算法由三部分组成:跟踪模块、检测模块、学习模块;如下图所示 其运行机制为:检测模块和跟踪模块互补干涉的并行进行处理。首先,跟踪模块假设相邻视频帧之间物体的运动是有限的,且被跟踪目标是可见的,以此来估计目标的运动。 如果目标在相机视野中消失,将造成跟踪失败。检测模块假设每一个视帧都是彼此独立的,并且根据以往检测和学习到的目标模型,对每一帧图片进行全图搜索以定位目标可能出现的区域。同其它目标检测方法一样,TLD中的检测模块也有可能出现错误,且错误无非是错误的负样例和错误的正样例这两种情况。而学习模块则根据跟踪模块的结果对检测模块的这两种错误进行评估,并根据评估结果生成训练样本对检测模块的目标模型进行更新,同时对跟踪模块的“关键特征点”进行更新,以此来避免以后出现类似的

卡尔曼滤波算法(C--C++两种实现代码)

卡尔曼滤波算法实现代码 C++实现代码如下: ============================kalman.h================= =============== // kalman.h: interface for the kalman class. // ////////////////////////////////////////////////////////////////////// #if !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__IN CLUDED_) #define AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C0__INCLU DED_ #if _MSC_VER > 1000 #pragma once #endif// _MSC_VER > 1000 #include #include "cv.h" class kalman { public: void init_kalman(int x,int xv,int y,int yv); CvKalman* cvkalman; CvMat* state; CvMat* process_noise; CvMat* measurement; const CvMat* prediction; CvPoint2D32f get_predict(float x, float y);

kalman(int x=0,int xv=0,int y=0,int yv=0); //virtual ~kalman(); }; #endif// !defined(AFX_KALMAN_H__ED3D740F_01D2_4616_8B74_8BF57636F2C 0__INCLUDED_) ============================kalman.cpp=============== ================= #include "kalman.h" #include /* tester de printer toutes les valeurs des vecteurs*/ /* tester de changer les matrices du noises */ /* replace state by cvkalman->state_post ??? */ CvRandState rng; const double T = 0.1; kalman::kalman(int x,int xv,int y,int yv) { cvkalman = cvCreateKalman( 4, 4, 0 ); state = cvCreateMat( 4, 1, CV_32FC1 ); process_noise = cvCreateMat( 4, 1, CV_32FC1 ); measurement = cvCreateMat( 4, 1, CV_32FC1 ); int code = -1;

目标跟踪算法的分类

运动目标跟踪就是在一段序列图像中的每幅图像中实时地找到所感兴趣的运动目标 (包括位置、速度及加速度等运动参数)。在运动目标跟踪问题的研究上,总体来说有两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一、运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测。 静态背景下运动检测就是摄像机在整个监视过程中不发生移动,只有被监视目标在摄像机视场内运动,这个过程只有目标相对于摄像机的运动;动态背景下运动检测就是摄像机在整个监视过程中发生了移动 (如平动、旋转或多自由度运动),被监视目标在摄像机视场内也发生了运动,这个过程就产生了目标与摄像机之间复杂的相对运动。 1、静态背景 背景差分法 背景差分法是利用当前图像与背景图像的差分来检测运动区域的一种技术。它一般能够提供最完全的特征数据,但对于动态场景的变化,如天气、光照、背景扰动及背景物移入移出等特别敏感,运动目标的阴影也会影响检测结果的准确性及跟踪的精确性。其基本思想就是首先获得一个背景模型,然后将当前帧与背景模型相减,如果像素差值大于某一阈值,则判断此像素属于运动目标,否则属于背景图像。背景模型的建立与更新、阴影的去除等对跟踪结果的好坏至关重要。 帧间差分法 相邻帧间差分法是通过相邻两帧图像的差值计算,获得运动物体位置和形状等信息的运动目标检测方法。其对环境的适应性较强,特别是对于光照的变化适应性强,但由于运动目标上像素的纹理、灰度等信息比较相近,不能检测出完整

基于meanshift的目标跟踪算法——完整版

基于Mean Shift的目标跟踪算法研究 指导教师:

摘要:该文把Itti视觉注意力模型融入到Mean Shift跟踪方法,提出了一种基于视觉显著图的Mean Shift跟踪方法。首先利用Itti视觉注意力模型,提取多种特征,得到显著图,在此基础上建立目标模型的直方图,然后运用Mean Shift方法进行跟踪。实验证明,该方法可适用于复杂背景目标的跟踪,跟踪结果稳定。 关键词:显著图目标跟踪Mean Shift Mean Shift Tracking Based on Saliency Map Abstract:In this paper, an improved Mean Shift tracking algorithm based on saliency map is proposed. Firstly, Itti visual attention model is used to extract multiple features, then to generate a saliency map,The histogram of the target based on the saliency map, can have a better description of objectives, and then use Mean Shift algorithm to tracking. Experimental results show that improved Mean Shift algorithm is able to be applied in complex background to tracking target and tracking results are stability. 1 引言 Mean Shift方法采用核概率密度来描述目标的特征,然后利用Mean Shift搜寻目标位置。这种方法具有很高的稳定行,能够适应目标的形状、大小的连续变化,而且计算速度很快,抗干扰能力强,能够保证系统的实时性和稳定性[1]。近年来在目标跟踪领域得到了广泛应用[2-3]。但是,核函数直方图对目标特征的描述比较弱,在目标周围存在与目标颜色分布相似的物体时,跟踪算法容易跟丢目标。目前对目标特征描述的改进只限于选择单一的特征,如文献[4]通过选择跟踪区域中表示目标主要特征的Harris点建立目标模型;文献[5]将初始帧的目标模型和前一帧的模型即两者的直方图分布都考虑进来,建立混合模型;文献[6]提出了以代表图像的梯度方向信息的方向直方图为目标模型;文献[7-8]提出二阶直方图,是对颜色直方图一种改进,是以颜色直方图为基础,颜色直方图只包含了颜色分布信息,二阶直方图在包含颜色信息的前提下包含了像素的均值向量和协方差。文献[9]提出目标中心加权距离,为离目标中心近的点赋予较大的权值,离目标中心远的点赋予较小的权值。文献[4-9]都是关注于目标和目标的某一种特征。但是使用单一特征的目标模型不能适应光线及背景的变化,而且当有遮挡和相似物体靠近时,容易丢失目标;若只是考虑改进目标模型,不考虑减弱背景的干扰,得到的效果毕竟是有限的。 针对上述问题,文本结合Itti 提出的视觉注意模型[5],将自底向上的视觉注意机制引入到Mean Shift跟踪中,提出了基于视觉显著图的Mean Shift跟踪方法。此方法在显著图基础上建立目标模型,由此得到的目标模型是用多种特征来描述的,同时可以降低背景对目标的干扰。 2 基于视觉显著图的Mean Shift跟踪方法

卡尔曼滤波简介及其算法实现代码

卡尔曼滤波简介及其算法实现代码 卡尔曼滤波算法实现代码(C,C++分别实现) 卡尔曼滤波器简介 近来发现有些问题很多人都很感兴趣。所以在这里希望能尽自己能力跟大家讨论一些力所能及的算法。现在先讨论一下卡尔曼滤波器,如果时间和能力允许,我还希望能够写写其他的算法,例如遗传算法,傅立叶变换,数字滤波,神经网络,图像处理等等。 因为这里不能写复杂的数学公式,所以也只能形象的描述。希望如果哪位是这方面的专家,欢迎讨论更正。 卡尔曼滤波器– Kalman Filter 1.什么是卡尔曼滤波器 (What is the Kalman Filter?) 在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”。跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡尔曼全名Rudolf Emil Kalman,匈牙利数学家,1930年出生于匈牙利首都布达佩斯。1953,1954年于麻省理工学院分别获得电机工程学士及硕士学位。1957年于哥伦比亚大学获得博士学位。我们现在要学习的卡尔曼滤波器,正是源于他的博士论文和1960年发表的论文《A New Approach to Linear Filtering and Prediction Problems》(线性滤波与预测问题的新方法)。如果对这编论文有兴趣,可以到这里的地址下载: https://www.360docs.net/doc/ee9439302.html,/~welch/media/pdf/Kalman1960.pdf。 简单来说,卡尔曼滤波器是一个“optimal recursive data processing algorithm(最优化自回归数据处理算法)”。对于解决很大部分的问题,他是最优,效率最高甚至是最有用的。他的广泛应用已经超过30年,包括机器人导航,控制,传感器数据融合甚至在军事方面的雷达系统以及导弹追踪等等。近年来更被应用于计算机图像处理,例如头脸识别,图像分割,图像边缘检测等等。 2.卡尔曼滤波器的介绍 (Introduction to the Kalman Filter) 为了可以更加容易的理解卡尔曼滤波器,这里会应用形象的描述方法来讲解,而不是像大多数参考书那样罗列一大堆的数学公式和数学符号。但是,他的5条公式是其核心内容。结合现代的计算机,其实卡尔曼的程序相当的简单,只要你理解了他的那5条公式。 在介绍他的5条公式之前,先让我们来根据下面的例子一步一步的探索。 假设我们要研究的对象是一个房间的温度。根据你的经验判断,这个房间的温度是恒定的,也就

卡尔曼滤波在目标跟踪中的应用

卡尔曼滤波在目标跟踪中的应用 摘要:机动卡尔曼算法(VD 算法)在扩展卡尔曼滤波诸算法中原理较为简单,目标跟踪效果也较好。 一. 模型建立 (1) 非机动模型(匀速直线运动) 系统模型 )()()1(k GW k X k X +Φ=+ 其中 ?????? ????? ???=)()()()()(k V k y k V k x k X y x ; ? ? ??????????=Φ10001000010001 T T ; ????? ? ? ???? ???=10200102T T G ? ?? ???=)()()(k W k W k W y x ; 0)]([=k W E ; kj T Q j W k W E δ=)]()([ 测量模型为: )()()(k V k HX k Z +=; 其中 ?? ? ???=01000001H )(k V 为零均值,协方差阵为R 白噪声,与)(k W 不相关。 (2) 机动模型 系统模型 );(*)()1(k W G k X k X m m m m m +Φ=+ 其中

?? ? ? ??? ? ?? ??????????=)()()()()()()(k a k a k V k y k V k x k X m y m y m y m m x m m ;??? ???????????? ?????=Φ100 00 00100000100020100000100200 122 T T T T T T m ;??? ???????????????????=10012040020422T T T T G m 0)]([=k W E m , kj m m m Q j W k W E T δ=)]()([ 观测模型与机动模型的相同,只是H 矩阵为m H 。 ?? ? ???=000100000001m H 二.Kalman 滤波算法 作为一般的Kalman 滤波算法其算法可以描述如下: )1/1(?)1/(?--Φ=-k k X k k X T T G k GQ k k P k k P )1()1/)1()1/(-+Φ--Φ=- 1])1/([)1/()(-+--=R H k k HP H k k P k K T T )]1/()()[()1/(?)/(?--+-=k k HX k Z k K k k X k k X )1/()()1/()/(---=k k HP k K k k P k k P 起始估计值为 ()()()()()()()221/?2/2221/x x x y y y z z z T z z z T ????-??????=????????-???? X 起始估计的估计误差为 (2)(1)(2)(1)2(2/2)(2) (1)(2)(1)2x x x x y y y y v v v T u T v v v T u T -?? ??-?? ?+?? =??-?? -???+???? X 起始估计的估计误差协方差矩阵为

目标跟踪算法的分类

目标跟踪算法的分类

主要基于两种思路: a)不依赖于先验知识,直接从图像序列中检测到运动目标,并进行目标识别,最终跟踪感兴趣的运动目标; b)依赖于目标的先验知识,首先为运动目标建模,然后在图像序列中实时找到相匹配的运动目标。 一.运动目标检测 对于不依赖先验知识的目标跟踪来讲,运动检测是实现跟踪的第一步。运动检测即为从序列图像中将变化区域从背景图像中提取出来。运动目标检测的算法依照目标与摄像机之间的关系可以分为静态背景下运动检测和动态背景下运动检测 (一)静态背景 1.背景差 2.帧差 3.GMM 4.光流 背景减算法可以对背景的光照变化、噪声干扰以及周期性运动等进行建模,在各种不同情况下它都可以准确地检测出运动目标。因此对于固定

个关键技术: a)匹配法则,如最大相关、最小误差等 b)搜索方法,如三步搜索法、交叉搜索法等。 c) 块大小的确定,如分级、自适应等。 光流法 光流估计的方法都是基于以下假设:图像灰度分布的变化完全是目标或者场景的运动引起的,也就是说,目标与场景的灰度不随时间变化。这使得光流方法抗噪声能力较差,其应用范围一般局限于目标与场景的灰度保持不变这个假设条件下。另外,大多数的光流计算方法相当复杂,如果没有特别的硬件装置,其处理速度相当慢,达不到实时处理的要求。 二.目标跟踪 运动目标的跟踪,即通过目标的有效表达,在图像序列中寻找与目标模板最相似候选目标区位置的过程。简单说,就是在序列图像中为目标定位。运动目标的有效表达除了对运动目标建模外,目标跟踪中常用到的目标特性表达主要包括视觉特征 (图像边缘、轮廓、形状、纹理、区域)、统计特征 (直方图、各种矩特征)、变换系数特

Kalman滤波算法

Kalman 滤波算法 姓名:刘金强 专业:控制理论与控制工程 学号:2007255 ◆实验目的: (1)、掌握klman 滤波实现的原理和方法 (2)、掌握状态向量预测公式的实现过程 (3)、了解Riccati 差分方程实现的过程和新息的基本性质和过程的计算 ◆实验要求: 问题: F=[a1,a2,a3],其中a1=[1.0 0 0]的转置,a2=[0.3 1.0 0]的转置,a3=[0.1 0.2 0.4]的转置,x(0)=[3,-1,2]的转置;C=[b1,b2,b3],其中b1=[0.3 0.5]的转置,b2=[1,0.4]的转置,b3=[0.8 -0.7]的转置;V1(n)=[0 0 n1(n)sin(0.1n)]的转置,V2(n)=[n2(n) n3(n)];n1(n)为均值为零,方差为1的均匀分布白噪声;n2(n),n3(n)为均值为0,方差为0.1的均匀分布白噪声,n1(n),n2(n),n3(n)相互独立,试用卡尔曼滤波器算法估计x^(n). ◆实验原理: 初始条件: 1?(1)x =E{x(1)} K(1,0)=E{[x(1)- (1)x ][x(1)- (1)H x ]},其中(1)x =E{x(1)} 输入观测向量过程: 观测向量序列={y(1),…………y(n)} 已知参数: 状态转移矩阵F(n+1,n) 观测矩阵C(n) 过程噪声向量的相关矩阵1()Q n 观测噪声向量的相关矩阵2()Q n 计算:n=1,2,3,………………. G(n)=F(n+1,n)K(n,n+1) ()H C n 12[()(,1)()()]H C n K n n C n Q n --+ Kalman 滤波器是一种线性的离散时间有限维系统。Kalman 滤波器的估计性能是:它使滤波后的状态估计误差的相关矩阵P(n)的迹最小化。这意味着,kalman 滤波器是状态向量x(n)的线性最小方差估计。 ◆实验结果: ◆程序代码: (1)主程序

基于卡尔曼滤波的目标跟踪研究_毕业设计

毕业设计 设计题目:基于卡尔曼滤波的目标跟踪研究 姓名 院系信息与电气工程学院 专业电气工程及其自动化 年级 学号 指导教师 2012年4月24 日

独创声明 本人郑重声明:所呈交的毕业论文(设计),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议。尽我所知,除文中已经注明引用的内容外,本论文(设计)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。 此声明的法律后果由本人承担。 作者签名: 二〇一年月日 毕业论文(设计)使用授权声明 本人完全了解鲁东大学关于收集、保存、使用毕业论文(设计)的规定。 本人愿意按照学校要求提交论文(设计)的印刷本和电子版,同意学校保存论文(设计)的印刷本和电子版,或采用影印、数字化或其它复制手段保存论文(设计);同意学校在不以营利为目的的前提下,建立目录检索与阅览服务系统,公布论文(设计)的部分或全部内容,允许他人依法合理使用。 (保密论文在解密后遵守此规定) 论文作者(签名): 二〇一年月日

目录 引言 1.绪论 1.1研究背景 1.1.1卡尔曼滤波提出背景 1.1.2 应用范围 1.2本文研究的主要内容 2 2.初步认识卡尔曼滤波 2 2.1关于卡尔曼 2.2滤波及滤波器问题浅谈 2 2.3 卡尔曼滤波起源及发展 3.估计原理和卡尔曼滤波 2 4.卡尔曼滤波的实现 4.1卡尔曼滤波的基本假设 5 4.2卡尔曼滤波的特点 5 4.3卡尔曼滤波基本公式 6 4.4卡尔曼滤波参数的估计和调整 5.卡尔曼滤波的相关知识 5.1 8 5.2 8 5.3 9 6.卡尔曼滤波器的设计 7.目标跟踪模型的建立 8.结合数学模型进行matlb编程 9.目标跟踪仿真 10.结论11 11.参考文献11 12.致谢12 13 15 16

几种卡尔曼滤波算法理论

自适应卡尔曼滤波 卡尔曼滤波发散的原因 如果卡尔曼滤波是稳定的,随着滤波的推进,卡尔曼滤波估计的精度应该越来越高,滤波误差方差阵也应趋于稳定值或有界值。但在实际应用中,随着量测值数目的增加,由于估计误差的均值和估计误差协方差可能越来越大,使滤波逐渐失去准确估计的作用,这种现象称为卡尔曼滤波发散。 引起滤波器发散的主要原因有两点: (1)描述系统动力学特性的数学模型和噪声估计模型不准确,不能直接真实地反映物理过程,使得模型与获得的量测值不匹配而导致滤波发散。这种由于模型建立过于粗糙或失真所引起的发散称为滤波发散。 (2)由于卡尔曼滤波是递推过程,随着滤波步数的增加,舍入误差将逐渐积累。如果计算机字长不够长,这种积累误差很有可能使估计误差方差阵失去非负定性甚至失去对称性,使滤波增益矩阵逐渐失去合适的加权作用而导致发散。这种由于计算舍入误差所引起的发散称为计算发散。 针对上述卡尔曼滤波发散的原因,目前已经出现了几种有效抑制滤波发散的方法,常用的有衰减记忆滤波、限定记忆滤波、扩充状态滤波、有限下界滤波、平方根滤波、和自适应滤波等。这些方法本质上都是以牺牲滤波器的最优性为代价来抑制滤波发散,也就是说,多数都是次优滤波方法。 自适应滤波 在很多实际系统中,系统过程噪声方差矩阵Q和量测误差方差阵R事先是不知道的,有时甚至连状态转移矩阵 或量测矩阵H也不能确切建立。如果所建立的模型与实际模型不符可能回引起滤波发散。自适应滤波就是这样一种具有抑制滤波发散作用的滤波方法。在滤波过程中,自适应滤波一方面利用量测值修正预测值,同时也对未知的或不确切的系统模型参数和噪声统计参数进行估计修正。自适应滤波的方法很多,包括贝叶斯法、极大似然法、相关法与协方差匹配法,其中最基本也是最重要的是相关法,而相关法可分为输出相关法和新息相关法。 在这里只讨论系统模型参数已知,而噪声统计参数Q和R未知情况下的自适应滤波。由于Q和R等参数最终是通过增益矩阵K影响滤波值的,因此进行自适应滤波时,也可以不去估计Q和R等参数而直接根据量测数据调整K就可以了。

目标跟踪算法综述

。 目标跟踪算法综述 大连理工大学卢湖川一、引言 目标跟踪是计算机视觉领域的一个重 要问题,在运动分析、视频压缩、行为识 别、视频监控、智能交通和机器人导航等 很多研究方向上都有着广泛的应用。目标 跟踪的主要任务是给定目标物体在第一帧 视频图像中的位置,通过外观模型和运动 模型估计目标在接下来的视频图像中的状 态。如图1所示。目标跟踪主要可以分为5 部分,分别是运动模型、特征提取、外观 模型、目标定位和模型更新。运动模型可 以依据上一帧目标的位置来预测在当前帧 目标可能出现的区域,现在大部分算法采用的是粒子滤波或相关滤波的方法来建模目标运动。随后,提取粒子图像块特征,利用外观模型来验证运动模型预测的区域是被跟踪目标的可能性,进行目标定位。由于跟踪物体先验信息的缺乏,需要在跟踪过程中实时进行模型更新,使得跟踪器能够适应目标外观和环境的变化。尽管在线目标跟踪的研究在过去几十年里有很大进展,但是由被跟踪目标外观及周围环境变化带来的困难使得设计一个鲁棒的在线跟踪算法仍然是一个富有挑战性的课题。本文将对最近几年本领域相关算法进行综述。 二、目标跟踪研究现状 1. 基于相关滤波的目标跟踪算法 在相关滤波目标跟踪算法出现之前,大部分目标跟踪算法采用粒子滤波框架来进行目标跟踪,粒子数量往往成为限制算法速度的一个重要原因。相关滤波提出了 一种新颖的循环采样方法,并利用循环样 本构建循环矩阵。利用循环矩阵时域频域 转换的特殊性质,将运算转换到频域内进 行计算,大大加快的分类器的训练。同时, 在目标检测阶段,分类器可以同时得到所 有循环样本得分组成的响应图像,根据最 大值位置进行目标定位。相关滤波用于目 标跟踪最早是在MOSSE算法[1]中提出 的。发展至今,很多基于相关滤波的改进 工作在目标跟踪领域已经取得很多可喜的 成果。 1.1. 特征部分改进 MOSSE[1] 算法及在此基础上引入循 环矩阵快速计算的CSK[2]算法均采用简单 灰度特征,这种特征很容易受到外界环境 的干扰,导致跟踪不准确。为了提升算法 性能,CN算法[3]对特征部分进行了优 化,提出CN(Color Name)空间,该空 间通道数为11(包括黑、蓝、棕、灰、绿、 橙、粉、紫、红、白和黄),颜色空间的引 入大大提升了算法的精度。 与此类似,KCF算法[4]采用方向梯度 直方图(HOG)特征与相关滤波算法结合, 同时提出一种将多通道特征融入相关滤波 的方法。这种特征对于可以提取物体的边 缘信息,对于光照和颜色变化等比较鲁棒。 方向梯度直方图(HOG)特征对于运 动模糊、光照变化及颜色变化等鲁棒性良 好,但对于形变的鲁棒性较差;颜色特征 对于形变鲁棒性较好,但对于光照变化不 够鲁棒。STAPLE算法[5]将两种特征进行 有效地结合,使用方向直方图特征得到相 关滤波的响应图,使用颜色直方图得到的 统计得分,两者融合得到最后的响应图像 并估计目标位置,提高了跟踪算法的准确 度,但也使得计算稍微复杂了一些。 图1 目标跟踪算法流程图

卡尔曼(kalman)滤波算法特点及其应用

Kalman滤波算法的特点: (1)由于Kalman滤波算法将被估计的信号看作在白噪声作用下一个随机线性系统的输出,并且其输入/输出关系是由状态方程和输出方程在时间域内给出的,因此这种滤波方法不仅适用于平稳随机过程的滤波,而且特别适用于非平稳或平稳马尔可夫序列或高斯-马尔可夫序列的滤波,所以其应用范围是十分广泛的。 (2)Kalman滤波算法是一种时间域滤波方法,采用状态空间描述系统。系统的过程噪声和量测噪声并不是需要滤除的对象,它们的统计特征正是估计过程中需要利用的信息,而被估计量和观测量在不同时刻的一、二阶矩却是不必要知道的。 (3)由于Kalman滤波的基本方程是时间域内的递推形式,其计算过程是一个不断地“预测-修正”的过程,在求解时不要求存储大量数据,并且一旦观测到了新的数据,随即可以算的新的滤波值,因此这种滤波方法非常适合于实时处理、计算机实现。 (4)由于滤波器的增益矩阵与观测无关,因此它可预先离线算出,从而可以减少实时在线计算量。在求滤波器增益矩阵时,要求一个矩阵的逆,它的阶数只取决于观测方程的维数,而该维数通常很小,这样,求逆运算是比较方便的。另外,在求解滤波器增益的过程中,随时可以算出滤波器的精度指标P,其对角线上的元素就是滤波误差向量各分量的方差。 Kalman滤波的应用领域 一般地,只要跟时间序列和高斯白噪声有关或者能建立类似的模型的系统,都可以利用Kalman滤波来处理噪声问题,都可以用其来预测、滤波。Kalman滤波主要应用领域有以下几个方面。 (1)导航制导、目标定位和跟踪领域。 (2)通信与信号处理、数字图像处理、语音信号处理。 (3)天气预报、地震预报。 (4)地质勘探、矿物开采。 (5)故障诊断、检测。 (6)证券股票市场预测。 具体事例: (1)Kalman滤波在温度测量中的应用; (2)Kalman滤波在自由落体运动目标跟踪中的应用; (3)Kalman滤波在船舶GPS导航定位系统中的应用; (4)Kalman滤波在石油地震勘探中的应用; (5)Kalman滤波在视频图像目标跟踪中的应用;

相关文档
最新文档