GB50267-97核电厂抗震设计规范

GB50267-97核电厂抗震设计规范
GB50267-97核电厂抗震设计规范

中华人民共和国国家标准

核电厂抗震设计规范

Code for seismic design of nuclear power plants

GB 50267-97

主编部门:国家地震局

批准部门:中华人民共和国建设部

施行日期:1998年2月1日

关于发布国家标准《核电厂抗震设计规范》的通知

建标[1997] 198号

根据国家计委计综(1986)2630号文的要求,由国家地震局会同有关部门共同制订的《核电厂抗震设计规范》已经有关部门会审,现批准《核电厂抗震设计规范》GB 50267-97为强制性国家标准,自1998年2月1日起施行。

本标准由国家地震局负责管理,具体解释等工作由国家地震局工程力学研究所负责,出版发行由建设部标准定额研究所负责组织。

中华人民共和国建设部

一九九七年七月三十一日

1 总则

1.0.1 为贯彻地震工作以预防为主、民用核设施安全第一的方针,使核电厂安全运行、确保质量、技术先进、经济合理,制订本规范。

1.0.2 本规范适用于极限安全地震震动的峰值加速度不大于0.5g地区的压水堆核电厂中与核安全相关物项的抗震设计。按本规范设计核电厂,当遭受相当于运行安全地震震动的地震影响时,应能正常运行,当遭受相当于极限安全地震震动的影响时,应能确保反应堆冷却剂压力边界完整、反应堆安全停堆并维持安全停堆状态,且放射性物质的外逸不超过国家规定限值。

注:①本规范所称的物项是指安全壳、建筑物、构筑物、地下结构、管道、设备及有关部件。

②g为重力加速度,取值为9.81m/s2。

1.0.3 核电厂的物项应根据其对核安全的重要性划分为下列三类:

(1)Ⅰ类物项:核电厂中与核安全有关的重要物项,包括损坏后会直接或间接造成事故的物项;保证反应堆安全停堆并维持停堆状态及排出余热所需的物项;地震时和地震后为减轻核事故破坏后果所需的物项以及损坏或丧失功能后会危及上述物项的其他物项。

(2)Ⅱ类物项:核电厂中除Ⅰ类物项外与核安全有关的物项,以及损坏或丧失功能后会危及上述物项的与核安全无关的物项。

(3)Ⅲ类物项:核电厂中与核安全无关的物项。

注:Ⅰ、Ⅱ、Ⅲ类物项可按本规范附录A的举例划分。

1.0.4 各类物项的抗震设计应采用下列抗震设防标准:

(1)Ⅰ类物项应同时采用运行安全地震震动和极限安全地震震动进行抗震设计;

(2)Ⅱ类物项应采用运行安全地震震动进行抗震设计;

(3)Ⅲ类物项应按国家现行的有关抗震设计规范进行抗震设计。

1.0.5 核电厂抗震设计时,除应符合本规范的规定外,尚应符合国家现行的有关标准规范的规定。

2 术语和符号

2.1 术语

2.1.1 地震震动 ground motion

由地震引起的岩土层震动。

2.1.2 运行安全地震震动 operational safety ground motion

在设计基准期中年超越概率为2‰的地震震动,其峰值加速度不小于0.075g。通常为核电厂能正常运行的地震震动。

2.1.3 极限安全地震震动 ultimate safety ground motion

在设计基准期中年超越概率为0.1‰的地震震动,其峰值加速度不小于0.15g。通常为核电厂区可能遭遇的最大地震震动。

2.1.4 能动断层 capable fault

在地表或接近地表很可能产生相对位移的断层。

2.1.5 地震活动断层 seismo-active(seismotectonic)fault

可能发生破坏性地震的断层。

2.1.6 断层活动段 faulting segment

活动断层中活动状态及特性一致的一段。

2.1.7 衰减规律 attenuation law

地区或建设场地的地震震动强度随着震源距离的增大而减小的现象。

2.1.8 综合概率法 hybird probabilistic method

综合考虑地质构造因素和地震的时空不均匀性的概率方法。

2.1.9 试验反应谱 test response spectrum

抗震试验中采用的激振加速度时间过程所对应的反应谱。

2.1.10 事故工况荷载 accidenal load

核电厂运行中对运行工况的严重偏离情况下产生的荷载。

2.2 符号

2.2.1 地震和地震震动

2.2.2 作用和作用效应

2.2.3 材料性能和抗力

2.2.4 几何参数

2.2.5 计算系数

2.2.6 其他

3 抗震设计的基本要求

3.1 计算模型

3.1.1 在核电厂的抗震设计中,主体结构可作为主体系;其它被支承的结构、系统和部件可作为子体系,并应符合下列规定:

3.1.1.1 通常情况下,主体系和子体系宜进行耦联计算。

3.1.1.2 符合下列情况之一时,主体系和子体系可不作耦联计算:

3.1.1.3 不进行耦联计算的子体系,其地震输入可由主体系的计算确定,并可利用楼层反应时间过程或楼层反应谱进行。在进行主体系计算时,当子体系与主体系为刚性连接时,可将其质量包括在主体系质量内;当子体系与主体系为柔性连接时,可不计入子体系的质量和刚度。

3.1.2 计算模型的确定应符合下列要求:

(1)对于质量和刚度不对称分布的物项,宜计入平移和扭转的耦联作用;

(2)当采用集中质量模型时,集中质量的个数不宜少于所计入振型数的两倍;

(3)当结构计算模型中,对地基土平均剪切波速不大于1100m/s的地基,应计入地基与结构的相互作用,基础埋深与基础底面等效半径之比小于1/3的浅埋结构宜采用集中参数模型,深埋结构宜采用有限元模型,对于基础底面土层平均剪切波速大于1100m/s 的地基,可不计入地基与结构的相互作用;

(4)当物项支承构件的刚度明显影响物项的动力作用效应时,应计入其刚度的作用;

(5)应计入物项内液体以及附属部件等的质量;

(6)对于因地震引起内部液体振荡的物项,应计入液体晃动效应和其他液压效应。

3.2 抗震计算

3.2.1 Ⅰ、Ⅱ类物项应按两个相互垂直的水平方向和一个竖向的地震作用进行计算;水平地震作用的方向应取对物项最不利的方向。

3.2.2 核电厂物项的抗震计算可采用线性计算方法。物项的弱非线性,可采用较大的阻尼来处理;物项的强非线性,计算时必须计入刚度和阻尼的变化。土体结构的强非线性,可采用等效线性化法进行计算。

3.2.3 通常情况下,Ⅰ、Ⅱ类物项的抗震设计应采用反应谱法和时间过程计算法。当有充分论据能保证安全时也可采用等效静力计算法。

3.2.4 当采用反应谱法时,物项的最大反应值可取各振型最大反应值的平方和的平方根。当两个振型的频率差的绝对值与其中一个较小的频率之比不大于0.1时,应取此两振型最大反应值的绝对值之和与其他振型的最大反应值按平方之和的平方根(SRSS)进行组合;也可采用完全二次型组合(CQC)进行组合。地震反应值不超过10%的高阶振型可略去不计。

3.2.5 当采用时间过程法时,输入地震震动应采用地面或特定楼层平面处的设计加速度时间过程。

3.2.6 地震震动的三个分量引起的反应值,当采用反应谱法时,可取每个分量在物项同一方向引起震动的最大反应值,按平方和的平方根法进行组合。当采用时间过程法时,可求出作为时间函数的反应分量的代数和,并应取组合反应值的最大值。

3.3 地震作用

3.3.1 场地的设计地震震动参数和设计反应谱应符合本规范第4章的规定。

3.3.2 设备抗震设计时,设计楼层反应谱可根据支承体系对设计地震震动在相应楼层或规定高程处的时间过程计算值确定,并应符合下列要求:

3.3.2.1 设计楼层反应谱应包括两个相互垂直的水平向分量和一个竖向分量。对于质量、刚度对称的支承体系,给定位置处每个方向的楼层反应谱可根据该方向的地震反应直接确定;对于质量或刚度不对称的支承体系,每个方向的楼层反应谱,均应根据在两个水平向和一个竖向三个地震震动分量分别作用下沿该方向地板反应按平方和的平方根法组合的结果确定。

3.3.2.2 计算楼层反应谱时,其频率增量宜按表3.3.2采用。

3.3.2.3 确定设计楼层反应谱时,应按下列要求对计算得到的楼层反应谱进行调整。

(1)应按结构和地基的材料性质、阻尼比值、地基与结构相互作用等技术参数不确定性以及地震计算方法的近似性而产生的结构频率不确定性,对计算确定的楼层反应谱予以修正;

(2)应拓宽与结构频率相关的每一峰值,拓宽量可取该结构频率的0.15倍;拓宽峰值由平行于原谱峰值直线段的直线确定。

3.3.3 Ⅰ、Ⅱ类物项的阻尼比应符合下列要求:

3.3.3.1 物项阻尼比可按表3.3.3采用。

3.3.3.2 对不同材料组成的混合结构,阻尼比宜按能量加权的方法确定。

3.4 作用效应组合和截面抗震验算

3.4.1 地震作用效应应与核电厂中各种工况下的使用荷载效应进行最不利的组合。

3.4.2 混凝土结构的安全壳、建筑物、构筑物、地下结构、地下管道的截面抗震验算应符合下式要求:

3.4.4 设备、部件和工艺管道的作用效应取值及其截面抗震验算,应分别符合本规范第8章、第9章的有关规定。

3.5 抗震构造措施

3.5.1 核电厂的安全壳、建筑物、构筑物,宜坐落在基岩或剪切波速大于400m/s的岩土上。

3.5.2 混凝土安全壳、混凝土建筑结构构件的抗震构造措施,应符合现行国家标准《建筑抗震设计规范》对抗震等级为一级的混凝土结构构件的有关要求;其他混凝土结构构件和各种钢结构构件的抗震构造措施,应符合现行国家标准《建筑抗震设计规范》对9度抗震设防时的有关要求。

3.5.3 设备、部件和工艺管道的抗震构造措施,应符合现行国家标准《建筑抗震设计规范》对9度抗震设防时的有关要求。

4 设计地震震动

4.1 一般规定

4.1.1 核电厂抗震设计,其物项的地震作用应根据设计地震震动参数确定。

4.1.2 核电厂的设计地震震动参数的确定应符合下列要求:

4.1.2.1 设计地震震动参数应包括两个水平向和一个竖向的设计加速度峰值、两个水平向和一个竖向的设计反应谱以及不少于三组的三个分量的设计加速度时间过程。

4.1.2.2 两个水平向的设计加速度峰值应采用相同数值,竖向设计加速度峰值应采用水平向设计加速度峰值的2/3。

4.1.2.3 设计地震震动的加速度时间过程应按本规范第4.4节的方法确定。

4.1.3 设计地震震动参数宜采用自由地面的数值;计算覆盖土层的地震震动参数时,应计入土层的刚度和阻尼;计算基岩面可采用剪切波速大于700m/s的土层的顶面,其下应无更低波速的土层。

4.1.4 地震震动的加速度峰值应符合下列规定:

4.1.4.1 极限安全地震震动的加速度峰值应按本规范第4.2.1条的规定采用。

4.1.4.2 运行安全地震震动的加速度峰值的取值不得小于对应的极限安全地震震动加速度峰值的1/2。

4.1.5 地震震动资料的搜集、调查和分析应符合下列要求:

4.1.

5.1 地震震动的资料应包括工作区内的全部地震资料和地震地质资料。

4.1.

5.2 地震震动现场调查的内容应符合《核电厂厂址选择安全规定》HAF100的要求。

4.1.

5.3 地震震动分析报告应包括地震活动断层的判定、地震构造图和工作区内发生强震的地震构造条件。

4.2 极限安全地震震动的加速度峰值

4.2.1 极限安全地震震动应取地震构造法、最大历史地震法和综合概率法确定结果中的最大值,其水平加速度峰值不得低于0.15g。

4.2.2 当采用地震构造法确定极限安全地震震动时,应符合下列要求:

4.2.2.1 根据工作区内的地震资料,应进行地震活动断层和历史地震的分析,划分地震构造区,并判定其中地震活动断层的空间位置和最大地震震级Mmax。

4.2.2.2 根据断层性质及活动状况,应划分可能发生最大地震的断层活动段。

4.2.2.3 对每一断层活动段,可能发生的最大地震震级Mmax可根据下述因素综合确定:该断层段上历史地震的最大震级;与断层活动段密切相关的历史地震的最大震级;断层活动段的长度;断层活动段的第四纪滑移率;断层的延展深度和断层带宽度;断层活动的形式和动力特征。

4.2.2.4 在每一断层活动段内,应规定最大震级的地震将发生在该断层段最靠近厂区的部位,并根据本规范规定的地震震动衰减规律计算厂区的地震震动,然后应取所有断层活动段分别引起的厂区地震震动中的最大值。

4.2.2.5 在地震构造区内,对与地震活动断层没有明确关系的历史地震,应取其震级最大者,移到距厂址最近处,并计算所引起的厂址的地震震动。

4.2.3 采用最大历史地震法确定极限安全地震震动时应符合下列要求:

4.2.3.1 根据各次历史地震的震中位置、震中烈度和震级,应按地震震动衰减规律确定各次地震在厂区引起的地震震动,并应取其最大值。

4.2.3.2 当历史地震参数不完备时,可按历史地震在厂区或附近场地记录的最高烈度确定地震震动最大值。

4.2.4 采用综合概率法确定极限安全地震震动时,应符合下列要求:

4.2.4.1 当采用综合概率法时,应首先根据地震地质与地震活动性特征划分地震带,然后根据地震活动性和地震活动断层、地球物理场等地震地质的分析结果,在下列工作成果的基础上确定潜在震源区:

(1)地震带内中、强以上地震活动的时空分布特征;

(2)弱震活动空间分布;

(3)地震活动断层和古地震遗迹的特点和分布;

(4)新构造和现代构造的特点;

(5)地球物理场资料所反映的深部构造;

(6)工作区内已经发生中、强以上地震和具备发生中、强以上地震的构造条件的部位。

4.2.4.2 潜在震源区地震活动性参数应包括下列内容:

(1)震级上限;

(2)大小地震发生次数比例关系;

(3)地震年平均发生率;

(4)起算震级可取4级。

4.2.4.3 震级上限应根据下列因素确定:

(1)潜在震源区内历史地震的最大震级;

(2)地震活动图象特征;

(3)断层的活动性和断层活动段的规模;

(4)地震构造的特征和规模的类比。

4.2.4.4 地震发生次数比例关系系数应根据下列要求确定:

(1)被统计的地震数据及相应的震级有足够的样本量;

(2)被统计的地震数据所覆盖的时间段和震级域有足够的可信度;

(3)被划分的地震带内地震活动的一致性和相关性。

4.2.4.5 地震年平均发生率应根据下列因素确定:

(1)一定时间内可能发生的地震活动水平;

(2)地震带内的地震年平均发生率应与各潜在震源区中的该值之和相等;

(3)未来地震活动在时间、强度和地点上的不均匀性;

(4)潜在震源区发生强震的可能性。

4.2.4.6 可选用适当的地震发生模型,如泊松模型或修正泊松模型,或经论证可以表示本工作区地震发生时空特征的其他模型,计算所有潜在震源区对厂区地震震动超过某一给定值的概率之和,绘出厂区地震危险性的超越概率曲线,并应进行不确定性校正。

4.2.4.7 经过不确定性校正之后,应取对应于年超越概率为10-4的加速度峰值为本法确定的极限安全地震震动值。

4.2.5 地震震动的衰减规律应符合下列规定:

4.2.

5.1 烈度衰减规律应按下列步骤统计计算确定:

(1)收集工作区或在更大范围内的强地震等震线或烈度调查资料以及每一强震的震级、震源深度、震中位置和震中烈度;

(2)统计出本工作区的地震烈度衰减规律,沿等震线长、短轴方向可有不同的衰减关系。

4.2.

5.2 加速度峰值的衰减规律应分别按下列情况确定:

(1)在有较多强地震加速度记录的地区,可采用统计方法确定加速度衰减规律;

(2)在缺少强地震加速度记录但有足够烈度资料的地区,可利用本地区的烈度衰减规律和外地区的烈度衰减与加速度衰减规律,换算得到适合于本地区的加速度衰减规律;

(3)在既缺少强震加速度记录又缺少烈度资料的地区,经过合理论证可选用地质构造条件相似地区的加速度衰减规律。

4.3 设计反应谱

4.3.1 设计反应谱宜采用标准反应谱或经有关主管部门批准的场地地震相关反应谱。

4.3.2 基岩场地的水平向和竖向标准反应谱应根据阻尼比分别按表4.3.2-1和表

4.3.2-2采用(图4.3.2-1和图4.3.2-2);硬土场地的水平向和竖向标准反应谱,应根据阻尼比分别按表4.3.2-3和表4.3.2-4采用(图4.3.2-3和图4.3.2-4)。

注:谱系按加速度峰值为1.0g给出的,应用时应按采用的设计地震震动加速度峰值调整。

4.3.3 华北地区的基岩地震相关反应谱可按本规范附录C确定。

4.3.4 硬土场地的场地地震相关反应谱可根据基岩地震相关反应谱确定,其步骤如下:

(1)根据工作区地震环境确定厂区地震震动的时间过程包络函数;

(2)根据工作区烈度资料确定基岩地震相关反应谱;

(3)根据本规范规定的设计加速度时间过程生成方法确定时间过程包络函数和与基岩地震相关反应谱相符的自由基岩地震震动加速度时间过程;

(4)根据自由基岩地震震动加速度时间过程确定厂区土层下基岩顶面向上的入射波或基岩顶面的地震震动加速度时间过程,计算厂区场地地面的地震震动。

4.4 设计加速度时间过程

4.4.1 设计加速度时间过程可采用三角级数叠加法或实际地震加速度记录生成。

4.4.2 当采用三角级数叠加法生成时,应符合下列要求:

4.4.2.1 可采用相当于厂区地震条件的实际加速度记录的相角,也可根据相角在0~2π之内随机均匀分布的相角;

4.4.2.2 在满足时间过程包络函数条件下,应调整各谐波的幅值,使设计加速度时间过程的反应谱能包络阻尼比为5%~20%的给定的目标反应谱。对基岩地震震动,低于目标反应谱的控制点数不得多于五个,其相对误差不得超过10%,且反应谱控制点处纵坐标总和不得低于目标反应谱的相应值。

4.4.2.3 调整三角级数谐波幅值时,对基岩地震震动,在0.03~

5.00s周期域内,反应谱控制点数不得少于75个,且应大体均匀地分布于周期的对数坐标上,其各频段的频率增量可按表

4.4.2 人工生成模拟地震震动控制点的频段及其增量采用。

4.4.3 采用实际地震加速度记录生成时,生成的加速度记录的反应谱应符合本规范第4.4.2.2款的要求。

5 地基和斜坡

5.1 一般规定

5.1.1 本章适用于Ⅰ、Ⅱ类物项的地基和与Ⅰ、Ⅱ类物项安全有关的斜坡的地震安全性评价。对基础的稳定性验算应符合本规范第

6.4节基础抗震验算的规定。

5.1.2 岩土和地基的分类宜符合现行国家标准《建筑地基基础设计规范》和《建筑抗震设计规范》的规定。

5.1.3 不应选取在水平方向上由力学性质差异很大的岩土,也不应选取一部分为人工地基而另一部分为天然地基作为同一结构单元的地基。

5.1.4 不应选取由软土、液化土或填土等构成物项的地基。

5.2 地基的抗滑验算

5.2.1 本节适用于静承载力标准值大于0.34MPa或剪切波速大于400m/s的地基。

5.2.2 地基的抗震承载力设计值,可按现行国家标准《建筑抗震设计规范》规定的承载

力数值的75%采用。

5.2.3 地基抗滑验算应依次采用滑动面法、静力有限元法和动力有限元法,直到其中一种方法验证地基为稳定时为止。验算时应计入自重、水平地震作用、竖向地震作用、结构荷载等的不利组合。

5.2.4 当采用滑动面法、静力有限元法时,土层自重产生的地震作用,其水平地震系数应取0.2,其竖向地震系数应取0.1。

5.2.5 当采用动力有限元法时,基岩地震震动应根据给定的地面加速度时间过程,按基础底面处的具体地层条件换算成相应的计算基岩的加速度时间过程,或直接采用基岩的加速度时间过程。

5.2.6 宜采用安全系数验算地基抗滑,各项作用的分项系数宜采用1.0。抗滑安全系数宜按表5.2.6采用。

5.3 地基液化判别

5.3.1 对存在饱和砂土和饱和粉土的地基,应进行液化判别及其危害性计算。

5.3.2 地基液化判别可采用现行国家标准《建筑抗震设计规范》规定的标准贯入试验判别法。其中的标准贯入锤击数基准值宜按下列公式计算:

5.4 斜坡抗震稳定性验算

5.4.1 对与Ⅰ、Ⅱ类物项工程结构安全有关的斜坡必须进行抗震稳定性验算。

5.4.2 斜坡的抗震稳定性计算可依次按滑动面法、静力有限元法和动力有限元法进行,直到其中一种方法已验证斜坡为稳定时为止。

5.4.3 斜坡稳定性计算的地震作用应根据极限安全地震震动确定,并应计入水平与竖向地震作用在不利方向的组合。当采用滑动面法、静力有限元法时,地震作用中的水平地震系数宜取0.3,竖向地震系数宜取0.2。

5.4.4 斜坡抗震稳定性验算的安全系数应按表5.4.4采用。

6 安全壳、建筑物和构筑物

6.1 一般规定

6.1.1 本章适用于混凝土安全壳及Ⅰ、Ⅱ类建筑物和构筑物。

6.1.2 防震缝的设计宜符合下列要求:防震缝的宽度应按变形计算确定,并应等于或大于两物项地震变形之和的2倍。伸缩缝和沉降缝的设计应满足防震缝的要求。

6.2 作用和作用效应组合

6.2.1 安全壳、建筑物、构筑物的结构抗震设计应考虑下列各类作用或作用组合:

6.2.1.1 在正常运行和停堆期间所遇到的作用N,包括下列各项作用标准值效应:(1)永久荷载标准值效应G,包括自重、静水压力和固定设备荷载;

(2)活荷载标准值效应L,包括任何可活动的设备荷载以及施工前后的临时施工荷载;(3)施加预应力产生的荷载标准值效应F;

(4)在正常运行或停堆期间的温度作用标准值效应To;

(5)在正常运行或停堆期间的管道和设备反力标准值效应Ro,但不包括永久荷载和地震作用产生的反力标准值效应;

(6)由于安全壳内外压力差而产生的荷载标准值效应Po;

(7)侧向土压力标准值效应(He)。

6.2.1.2 严重环境条件下的运行安全地震震动产生的地震作用标准值效应E1,包括运行安全地震震动所引起的管道和设备反力标准值效应。

6.2.1.3 极端环境条件下的极限安全地震震动产生的地震作用标准值效应E2,包括极限安全地震震动所引起的管道和设备反力标准值效应。

6.2.1.4 在事故条件下产生的作用A,包括下列各项作用标准值效应:

(1)在设计基准事故工况下的压力荷载标准值效应Pa;

(2)在设计基准事故工况下温度作用标准值效应Ta,包括正常运行或停堆期间的温度作用标准值效应To;

(3)在设计基准事故工况下产生的管道和设备反力标准值效应Ra,包括正常运行或停堆期间的管道反力标准值效应Ro;

(4)在设计基准事故工况下产生的局部作用标准值效应Yy,包括:管道破裂时破裂管道在结构上产生的荷载标准值效应Yr;管道破裂时在结构上产生的喷射冲击荷载标准值效应Yj;管道破裂时在结构上施加的飞射物撞击荷载标准值效应Ym。

6.2.1.5 安全壳由于内部溢水而产生的荷载标准值效应Ha。

6.2.2 抗震设计应考虑下列作用的作用效应组合:

6.2.2.1 包括安全壳在内的Ⅰ类建筑物、构筑物:

(1)正常运行作用与严重环境作用的作用效应组合S1,当作用效应组合中计入温度作用To时为S'1;

(2)正常运行作用与严重环境作用以及事故工况下作用的效应组合S2;

(3)正常运行作用与严重环境作用以及事故工况后的水淹作用的效应组合S3(此组合仅适用于安全壳);

(4)正常运行作用与极端环境作用的效应组合S4;

(5)正常运行作用与极端环境作用以及事故工况下作用的效应组合S5。

6.2.2.2 Ⅱ类建筑物、构筑物仅取与运行安全地震震动产生的地震作用标准值效应E1,有关的各种组合S1,S'1,S2。

6.2.3 在进行各种作用效应组合时应符合下列要求:

6.2.3.1 当不均匀沉降、徐变或收缩产生的作用效应比较显著时,除第6.2.2.1款以外的各种作用效应组合中应按永久荷载加入组合。其作用效应应按实际情况进行计算。

6.2.3.2 根据第6.2.1条确定的标准值效应Pa、Ta、Ra、Yy均应乘以相应的动力系数,侧向土压力标准值效应He中应计入动土压力,活荷载标准值效应L中应包括运动荷载的冲击效应。

6..2.3.3 在包含设计基准事故工况下产生的局部作用标准值效应Yy的各种作用效应组合中,首先可在不考虑Yy的情况下进行承载力验算;在任何与安全有关的系统不致丧失其应有的功能(经过充分论证)的条件下,容许加入Yy后局部截面的内力超过其承载力。

6.2.3.4 在作用效应组合中根据第6.2.1条确定的标准值效应Pa、Ta、Ra和Yy均应取最大值,但经时间过程计算判断后,可以考虑上述作用的滞后影响。

6.2.4 作用效应组合的各种作用分项系数可按本规范附录B的规定采用。

6.3 应力计算和截面设计

6.3.1 应力计算应符合下列要求:

(1)安全壳宜采用有限元模型,建筑物和构筑物也宜采用有限元、板、壳等计算模型,当应力计算所采用的模型与地震反应计算所采用的模型不同时,可将地震反应计算的结果转换为应力计算模型中的等效作用;

(2)整体基础底板宜按有限元或厚板模型进行应力分析,底板周围的地基可进行有限元划分并与底板一起进行整体分析,也可用集中参数模型进行模拟;

(3)应力计算可采用弹性分析方法。

6.3.2 对混凝土安全壳应验算下列各项承载力:

(1)正载面受压、受拉和受弯承载力

(2)径向受剪承载力;

(3)切向受剪承载力,此时可不计入混凝土的受剪;

(4)集中力作用下的受冲切承载力,当有轴向拉力存在时,可不计入混凝土的冲切抗剪强度;

(5)扭矩作用下的受扭承载力。

6.4 基础抗震验算

6.4.1 混凝土安全壳和Ⅰ、Ⅱ类建筑物、构筑物的混凝土基础底板除应符合本章所规定的承载力要求外,尚应验算裂缝宽度。各种作用分项系数均应取1.0,最大裂缝宽度不应超过0.3mm。

6.4.2 天然地基的承载力验算应符合下列要求:

(1)当与有关标准值效应E1的作用效应组合时,基础底面接地率(见6.4.3条)应大于75%,且应符合下列公式规定:

(2)当与有关标准值效应E2的作用效应组合时,基础底面接地率应大于50%,并使结构不丧失其功能,且符合式(6.4.2-1)和式(6.4.2-2)的要求。

6.4.3 矩形基础底面接地率可按下式计算(见图6.4.3):

6.4.4 基础抗滑和抗倾覆稳定性验算的安全系数应符合表6.4.4的要求。

7 地下结构和地下管道

7.1 一般规定

7.1.1 本章适用于Ⅰ、Ⅱ类地下结构和地下管道。

7.1.2 地下结构和地下管道宜修建在密实、均匀、稳定的地基上。

7.1.3 承受水压的钢筋混凝土地下结构和地下管道除符合本章所规定的强度要求外,尚应符合国家现行标准《水工钢筋混凝土结构设计规范》抗裂的规定以及最大裂缝宽度容许值的规定。

建筑抗震设计规范

《建筑抗震设计规范》(GB 500011-2001) 《建筑抗震设计规范》 Code for seismic design of buildings GB 50011-2001 主编部门:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期:2002年1月1日 关于发布国家标准《建筑抗震设计规范》的通知 建标[2001] 156 号 根据我部《关于印发1997 年工程建设标准制订修订计划的通知》(建标[1997] 108 号)的要求,由建设部会同有关部门共同修订的《建筑抗震设计规范》,经有关部门会审,批准为国家标准,编号为GB50011-2001,自2002 年 1 月1 日起施行。其中,1.0.2、1.0.4、3.1.1、3.1.3 3.3.1、3.3.2、3.4.1、3.5.2、3.7.1、3.8.1、3.9.1、3.9.2、4.1.6、4.1.9、4.2.2、4.3.2、4.4.5、5.1.1、5.1.3、5.1.4、5.1.6、5..5、5.4.1、5.4.2、6.1.2、6.3.3、6.3.8、6.4.3、7.1.2、7.1.5、7.1.8、7..4、7.2.7、7.3.1、7.3.3、7.3.5、7.4.1、7.4.4、7.5.3、7.5.4、8.1.3、8.3.1、8.3.6、8.4.2、8.5.1、10.1.3、10.2.5、10.3.3、12.1.2、12.1.5、12.2.1、12.2.9 为强制性条文,必须严格执行。原《建筑抗震设计规范》GBJ11-89 以及《工程建设国家标准局部修订公告》(第1 号)于2002 年12 月31 日废止。 本标准由建设部负责管理,中国建筑科学研究院负责具体解释工作,建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2002 年1 月10 日 前言 本规范是根据建设部[1997]建标第108 号文的要求,由中国建筑科学研究院会同有关的设计、勘察、研究和教学单位对《建筑抗震设计规范》GBJ11-89 进行修订而成。 修订过程中,开展了专题研究和部分试验研究,调查总结了近年来国内外大

建筑抗震设计规范

修订说明 本次局部修订系根据住房和城乡建设部《关于印发2014年工程建设标准规范制订修订计划的通知》(建标[2013]169号)的要求,由中国建筑科学研究院会同有关的设计、勘察、研究和教学单位对《建筑抗震设计规范》GB 50011-2010进行局部修订而成。 此次局部修订的主要内容包括两个方面: 1 根据《中国地震动参数区划图》GB18306-2015和《中华人民共和国行政区划简册2015》以及民政部发布2015年行政区划变更公报,修订《建筑抗震设计规范》GB50011-2010附录A“我国主要城镇抗震设防烈度、设计基本地震加速度和设计地震分组”。 2 根据《建筑抗震设计规范》GB50011-2010实施以来各方反馈的意见和建议,对部分条款进行文字性调整。修订过程中广泛征求了各方面的意见,对具体修订内容进行了反复的讨论和修改,与相关标准进行协调,最后经审查定稿。 此次局部修订,共涉及一个附录和10条条文的修改,分别为附录A和第3.4.3条、第3.4.4条、第4.4.1条、第6.4.5条、第7.1.7条、第8.2.7条、第8.2.8条、第9.2.16条、第14.3.1条、第14.3.2条。 本规范条文下划线部分为修改的内容;用黑体字表示的条文为强制性条文,必须严格执行。 本次局部修订的主编单位: 本次局部修订的参编单位: 主要起草人员: 主要审查人员: 3.4.3建筑形体及其构件布置的平面、竖向不规则性,应按下列要求划分:

1 混凝土房屋、钢结构房屋和钢-混凝土混合结构房屋存在表3.4.3-1所列举的某项平面不规则类型或表3.4.3-2所列举的某项竖向不规则类型以及类似的不规则类型,应属于不规则的建筑: 表3.4.3-1 平面不规则的主要类型 表3.4.3-2 竖向不规则的主要类型 2 砌体房屋、单层工业厂房、单层空旷房屋、大跨屋盖建筑和地下建筑的平面和竖向不规则性的划分,应符合本规范有关章节的规定。 3当存在多项不规则或某项不规则超过规定的参考指标较多时,应属于特别不规则的建筑。 3.4.4 建筑形体及其构件布置不规则时,应按下列要求进行地震作用计算和内力调整,并应对薄弱部位采取有效的抗震构造措施: 1平面不规则而竖向规则的建筑,应采用空间结构计算模型,并应符合下列要求: 1)扭转不规则时,应计入扭转影响,且在具有偶然偏心的规定水平力作用下,楼层竖向 两端抗侧力构件最大的弹性水平位移或和层间位移的最大值与平均值的比值不宜大于1.5分别不宜大于楼层两端弹性水平位移和层间位移平均值的1.5 倍,当最大层间位移远小于规范限值时,可适当放宽; 2)凹凸不规则或楼板局部不连续时,应采用符合楼板平面内实际刚度变化的计算模型; 高烈度或不规则程度较大时,宜计入楼板局部变形的影响; 3) 平面不对称且凹凸不规则或局部不连续,可根据实际情况分块计算扭转位移比,对扭 转较大的部位应采用局部的内力增大系数。 2平面规则而竖向不规则的建筑,应采用空间结构计算模型,刚度小的楼层的地震剪力应乘以不小于1.15的增大系数,其薄弱层应按本规范有关规定进行弹塑性变形分析,并应符合下列要求: 1)竖向抗侧力构件不连续时,该构件传递给水平转换构件的地震内力应根据烈度高低和 水平转换构件的类型、受力情况、几何尺寸等,乘以1.25~2.0的增大系数; 2)侧向刚度不规则时,相邻层的侧向刚度比应依据其结构类型符合本规范相关章节的规 定;

核电厂抗震分析

核电站抗震分析 摘要:核电站抗震一直以来都是从设计、建设到运行时主要考虑的因素之一。拥有足够强度的结构,是发生地震时保证核电站各个设备的完整性,防止放射性物质向厂外泄露的必要条件。不同地区对核电站的抗震级别要求不同,需要根据当地的需求来设计、建造。随着核电发展和研究手段的进步,人类对核电站的抗震领域具有了较为成熟的经验和知识。本文根据日本福岛第一核电站事故,对核电站抗震问题进行简要分析,以及展望第三代反应堆AP1000、EPR在应付地震时的新措施。 关键词:核电站抗震、强度结构、完整性、第三代堆、新措施 核电站正常运行时不失为我们生活中的清洁能源,但核电站又具有很高的社会危险性,与一般工业建筑及民用建筑相比,核电站需具有较高的抗震要求。根据已经形成的国际惯例,核电站设计时要求依据两个地震危险水平进行。即:运行基准地震和安全停车地震。运行基准地震水平是核电站利用期间可能预计到的最大地震;安全停车地震水平是核电站场地内最大的可能性地震。对于核电站中,不管是建筑物及系统、设备及单元,某一元素的损坏都有可能导致核电厂放射性物质向周围环境泄露,对居民的健康和环境构成威胁。因为不同地区的核电站强度要求性能不同,所以要根据当地的实际情况来对核电站强度进行设计、建造,从而防止不必要的浪费。 2011年3月11日,日本附近海域发生了9.0级的地震,随之而来的是地震引起的10m高的海啸。福岛第一核电站的6台机组在地震时都紧急停堆,并启用了应急设备。但是海啸带来的海水将核电站备用的才有发电机给淹没,造成停堆后的堆芯的余热无法排除,引起堆芯的温度升高,堆芯融化,并引起堆芯燃料包壳锆和水蒸气发生反应,产生氢气,在安全壳内发生了爆炸,爆炸炸掀了安全壳的顶部,是防止放射性物质泄露的最后一层保护屏障也破坏了。最终导致了核电厂历史上的仅次于上世纪切尔诺贝利核电站放射性物质外泄的重大事故。 对于此次人类发展核电史的灾难,我们发现面对于这样的大自然灾害,虽说地震级数和海啸浪高是导致福岛第一核电站发生事故的根本因素,但仔细想想,

建筑抗震设计规范

建筑抗震设计规范(GB50011-2010)学习体会 2010抗震规范已经到货,抽空学习了一下,与去年注册工程师继续教育课时学的送审稿略有改动,以下简要记述认为对自己设计工作影响较多的修改,钢结构、砌体结构等本人接触不多的内容就不赘述了。一、第3章新增3.10节建筑抗震性能化设计的内容,3.10.3明确给出了中震(即设防烈度)计算的αmax值(送审稿是放在表5.1.4-1处的, 正式版本不知为何又改到了这里): 6度——0.12;7度(0.10g)——0.23;7度(0.15g)——0.34;8度(0.20g)——0.45;8度(0.30g)——0.68。对于平时设计来说,主要用于超限审查做的中震不屈服或中震弹性设计,一般的结构计算也没必 要做。 二、4.1.6条,将场地类别中的I类细化为I0和I1两个亚类。修订原因是考虑到剪切波速为500-800m/s的场地还不是很坚硬,将此种场地定为I1类,硬质岩石场地定为I0类。相应地,表5.1.4-2提供了这两种场地类别的特征周期值,其中I1类的特征周期值与2001规范中I类场地的 周期值相同。 三、5.1.4条: 1. 增加了6度罕遇地震的αmax值。 2. 计算罕遇地震作用时,特征周期应增加0.05s。01规范只是在计算8度、9度的罕遇地震才有此要求,现要求扩大至各种地震烈度。此条对超限审查的罕遇地震弹塑性分析等有影响。

四、5.1.6条,修改了地震影响系数曲线。曲线的表达式表面上没有变化,但其中曲线下降段的衰减指数γ、直线下降段的下降斜率调整系数η1及阻尼调整系数η2的公式均有变化。 五、5.2.5条,增加了6度地震计算的结构任一楼层的水平地震剪力要求, 01规范只对7-9度有要求。 六、6.1.1条,现浇钢筋混凝土房屋适用的最大高度有所调整。 1. 注4明确表中的框架结构不包括异形柱框架结构,异形柱结构的适用 高度应以异形柱规范为准。 2. 8度地震的适用高度分为0.2g和0.3g两种要求。 3. 框架结构适用高度有所降低。 4. 板柱-剪力墙结构的适用高度增大较多。 七、6.1.2条抗震等级,增加了24m作为抗震等级划分的高度分界。但编委们对条文细节的把握上依然令人失望,如抗震墙结构,H≤24m为四级抗震,H为25-80m为三级抗震,那24.5m应该按几级抗震,这不是又要让俺们和审查的老爷们扯皮吗?搞笑的是框架结构的划分——H≤24m为三级抗震,H为>24m为三级抗震就没有问题,难道结构抗震等级的划分还是一个委员确定一类结构?这种低级错误在02版高规也是俯拾即是,比如长厚比为5-8为短肢剪力墙,≥8以上为一般剪力墙,小于3为柱,长厚比为3-4之间的就不知为何物了。或许大师、专家们编制规范和我们做设计一样,也是加班加点熬出来的吧,写到后面都快睡着了,有点 错误也就不足为奇矣。 八、6.1.3条第3款修改:地下一层以下抗震构造措施的抗震等级可逐层

工程抗震设防中的烈度与加速度

工程抗震设防中的烈度与加速度 作者:鄢家全郝玉芹 烈度与加速度都是描述地震作用下地面震动或影响的标量,但在工程抗震设防中的作用却各不相同。它们类似于佳肴制作中的盐与糖。各种佳肴均离不开盐,但未必需要糖;即便是以糖为主要佐料的甜食,如果稍加一点点盐,则味道会更美好。它们之间可以互为补充,却不能相互代替。本文拟通过相关问题的论述,希望有助于科学地看待安评工作中烈度与加速度的结果。 抗震设计离不开烈度 当前,我国的抗震设计仍然是以概念设计为主。只有少数工程结构才使用抗震验算或模型实验等辅助设计手段。在概念设计中的抗震措施要求,是根据国内外震害经验的总结而规定的。所以,我国现行的各抗震设计规范大都是以“设防烈度”或“设计烈度”为依据的。特别是地基处理、选材选型和结构抗震措施等,均要求按烈度分档进行设计。就是在大型水利枢纽工程或核电厂的地安评工作中,甲方也都要求有“地震基本烈度复核”的内容。在《核电厂抗震设计规范》(GB50267-79,P12)中还规定,对安全壳等结构和构件的抗震措施,应符合现行国家标准《建筑抗震设计规范》对Ⅸ度抗震设防时的有关要求。可以说,当今中国的抗震设计还离不开烈度,只有少数需要进行抗震验算或模型实验的工程才用到加速度。 烈度与地面运动参数之间的关系 烈度与地面运动参数之间的关系是复杂的,还未找到由加速度换算烈度的科学依据。在《中国地震烈度表》(GB/T17742-99)中所列的地面运动强度标志,包括了水平加速度峰值和水平速度峰值。在相应的宣贯教材(P72~75)中,对该标志的依据和含义做了论述,尤其强调了“平均值”的重要性。且该标志只是综合评定烈度的依据之一,既不是“必要”依据,也不是“充分”依据。 世界上一些早期的烈度表,也曾把等价的地面加速度峰值作为烈度表的一部分。但在上世纪中后期的广泛讨论中(国外地震,1975.5,P5~24),相当一致的意见认为,烈度的定量标准应该全面反应地震的强度、频谱和持时,并对单纯以地

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么是反应谱理论 在房屋工程抗震研究中,反应谱是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应和加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力和变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自 振周期、振型和阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构 所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震 时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性和所选取地震波是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱和等强度延性需求谱,其实质是确定强度折减系数R,延性系数μ,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期和阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示?,它是在计算了大量地面运 动加速度的基础上,确定地震影响系数α与特征周期T之间关系的曲线

水工建筑物抗震设计规范(内容清晰)

中华人民共和国行业标准 SL203-97 水工建筑物抗震设计规范 Specificatins for seismic design of hydraulic structures 1997-08-04发布 1997-10-01实施 中华人民共和国水利部发布 中华人民共和国行业标准 主编单位:中国水利水电科学研究院 批准部门:中华人民共和国水利部施行日期:1997年10月1日 中华人民共和国水利部 关于发布《水工建筑物抗震设计规范》SL203-97的通知 水科技[1997]439号 根据部水利水电技术标准制定,修订计划,由水利水电规划设计总院主持,以中国水利水电科学研究院为主编单位修订的《水工建筑物抗震设计规范》,经审查批准为水利行业标准,现予以发布.标准的名称和编号为:SL203-97.原《水工建筑物抗震设计规范》SDJ10-78同时废止. 本标准自1997年10月1日起实施.在实施过程中各单位应注意总结经验,如有问题请函告主持部门,并由其负责解释. 本标准文本由中国水利水电出版社出版发行.一九九七年八月四日 前言 本规范是根据原能源部,水利部水利水电规划设计总院(91)水规设便字第35号文的通知,由中国水利水电科学研究院会同有关设计研究院和高等院校对原水利电力部于1978年发布试行的SDJ10-78《水工建筑物抗震设计规范》进行修订而成. 本规范在修订过程中,主编单位会同各协编单位开展了广泛的专题研究,调查总结了近年来国内外大地震的经验教训,吸收采用了地震工程新的科研成果,考虑了我国的经济条件和工程实际,提出修订稿后,在全国广泛征求了有关设计,施工,科研,教学单位及管理部门和有关专家的意见,经过反复讨论,修改和试设计,最后由电力工业部水电水利规划设计管理局会同水利部水利水电规划设计管理局组织审查定稿. 本规范为强制性行业标准,替代SDJ10-78. 本规范共分11章和1个标准的附录.这次修订的主要内容有:进一步明确了规范适用的烈度范围,水工建筑物等级和类型,并扩大了建筑物类型和坝高的适用范围;提出了对重要水工建筑物进行专门的工程场地地震危险性分析以确定地震动参数的要求,并给出了相应的设防概率水准;增加了场地分类标准,并相应修改了设计反应谱;改进了地基中可液化土的判别方法和抗液化措施;根据1994年国家批准发布的GB50199-94《水利水电工程结构可靠度设计统一标准》的原则和要求,在保持规范连续性的条件下,区别不同情况,把各类主要水工建筑物的抗震计算从定值安全系数法向分项系数概率极限状态的体系"转轨,套改",并给出了各类水工建筑物相应的结构系数;采用了对混凝土水工建筑物以计入结构,地基和库水相互作用的动力法为主和拟静力法为辅的抗震计算方法,对土石坝采用按设计烈度取相应动态分布系数的拟静力抗震计算方法;在编写的格局上改为按水工建筑物类型分章,各章分别给出抗震计算和抗震措施,并补充了内容. 希望有关单位在执行本规范的过程中,结合工程实际,注意总结经验和积累资料,如发现需要修改和补充之处,请将意见和有关资料寄交归口管理单位,以便今后再次修订时考虑. 本规范由原能源部,水利部水利水电规划设计总院提出修订.

核电站抗震设计分析

核电站抗震设计分析 目录 ? 1.概述 ? 2.法规标准的采用 ? 3.设计基准输入的确定 ? 4.抗震分析方法 ? 5.抗震I类构筑物的设计 ? 6.结论 1.概述 为了保证核电厂的安全性,在我国的核安全导则中,要求核电厂的设计具有纵深防御的功能,设计中包括了多重的防御屏障。在核电厂的设计中,地震作为不可忽视的外在因素,得到了充分的考虑。在设计中,从采用的法规标准,地震输入水平的确定,计算分析的理论方法以及设计极限的采用方面,都有一套完整的、经过验证的程序。设计具有成熟的理论基础和经验积累。 在核电厂的设计当中,与核安全相关的重要物项,包括损坏后会直接或间接造成事故的物项;保证反应堆安全停堆并维持停堆状态及排出余热所需的物项,地震时和地震后为减轻核事故破坏后果所需的物项以及损坏或丧失功能后会危及上述物项的其他物项,均属于设计中的抗震I类物项。 我公司承担设计的核电站,核岛厂房的构筑物(包括反应堆厂房、燃料厂房、电气厂房、核辅助厂房、柴油机厂房),均属于抗震I类构筑物,按照核电厂最高的抗震设计要求来进行设计。 2.法规标准的采用 我们在抗震I类构筑物的抗震设计中,要遵循以下一系列的法规、导则和标准:HAF102 《核动力厂设计安全规定》 HAD101/01 《核电厂厂址选择中的地震问题》 HAD102/02 《核电厂的抗震设计与鉴定》 GB50267-97 《核电厂抗震设计规范》 此外,在上述规范的基础上,还要参考美国相关规范的要求,如:美国的标准审查大纲US NRC SRP;美国核安全相关构筑物的抗震设计规范ASCE 4-98等 3.设计基准输入的确定

在抗震I类构筑物的设计中,考虑两个水平的地震作用: ?运行安全地震作用(SL-1) ?极限安全地震作用(SL-2) 在运行安全地震作用下,抗震I类构筑物应能保证核电厂能够正常运行; 在极限安全地震作用下,抗震I类构筑物应能保证核电厂能够安全停堆,因此,此地震水平也被称作安全停堆地震(SSE)。 ●运行安全地震的年超越概率为2‰,也即五百年一遇的地震; ●安全停堆地震的年超越概率为0.1‰,即万年一遇的地震。 地震输入是根据地震部门在各个厂址地震安全性评价报告中给出的厂址地面运动最大加速度值(SL-2),以及场地相关谱或适用的标准谱(如RG1.60谱)。目前在核电厂址SL-2地震动参数的确定中,均采用确定性方法和概率论方法进行评价,并取两种方法计算的较大值,而且按照法规标准的要求此值不能小于0.15g。如:秦山地区厂址计算值为0.11g,实际设计取0.15g或更大(方家山由于翻版M310,核岛设计取0.2g);福清厂址计算值为0.19g,核岛实际设计取0.2g。 4.抗震分析方法 核岛厂房的抗震分析,采用的是国际上具有成熟的理论基础的时程分析方法和反应谱法。这些方法,在我国的核安全导则、抗震规范、以及美国的核安全相关构筑物的抗震设计规范中均有规定。 抗震分析采用的是国际通用的考虑结构物与土壤的相互作用的反应谱计算软件SASSI以及国际通用的有限元分析软件ANSYS、ABAQUS。 通常情况下,核岛构筑物的抗震分析采用时程分析法和反应谱法。当有充分论据能保证安全时也可采用等效静力计算法。目前已建和在建的电采用时程分析方法,并考虑结构物与土壤的相互作用。设计时程采用人工拟合地震加速度时程。人工时程至少包括相互统计独立的三条时程,分别代表X,Y,Z三个方向。根据SRP的要求,拟合时程的总持时应足够长,最少持时为20s,此外还要求强震平稳段持时不低于6s和对功率谱密度的要求等,以保证所输入的地

(整理)n《建筑抗震设计规范》

《建筑抗震设计规范》(gb50011-2001)问答 3.新规范中为何无烟囱、水塔等构筑物及钢筋混凝土异型柱结构的抗震设计内容?嵌固条件较好一般指下面两种情况:60.对医院、教学楼等横墙较少的多层砌体范围可否按7.3.14条的规定采取加强措施并满足抗震承载力要求,其高度和层数仍按表7.1.2的规定采用? 3.新规范中为何无烟囱、水塔等构筑物及钢筋混凝土异型柱结构的抗震设计内容? 嵌固条件较好一般指下面两种情况: 60.对医院、教学楼等横墙较少的多层砌体范围可否按7.3.14条的规定采取加强措施并满足抗震承载力要求,其高度和层数仍按表7.1.2的规定采用? 9.住宅工程中顶层为坡屋顶,屋顶是否需设水平楼板?顶层为坡屋顶时层高有无限制?总高度应如何计算? 《建筑抗震设计规范》(gb50011-2001)第7章的适用范围是烧结普通粘土砖、烧结多孔粘土砖、混凝土小型空心砌块等及材料性能满足要求的烧结砖和蒸压砖砌体承重的多层房屋,以及底层或底部二层框架-抗震墙和多层的多排柱内框架砖砌体房屋。多层砌体房屋中采用砌体墙和现浇钢筋混凝土墙混合承重的结构类型,在建筑方案和结构布置上超出了抗震规范第7章的适用范围,不符合国家标准的规定,属于超规范、规程设计。 1)山墙和钢筋混凝土排架柱结构材料不同,不仅侧移刚度不同,而且承载力也不同,在地震作用下,山墙和钢筋混凝土排架柱的受力和位移不协调不利抗震,可导致结构破坏,这种震害不少。 32.若多层砌体房屋的层数低于规范表7.3.1中砖房构造柱设置要求的最低层数,其构造柱应如何设置? 在砖房总高度、总层数已达限值的情况下,若在其上再加一层轻钢结构房屋,因抗震规范中无此种结构形式的有关要求,两种结构的阻尼比不同,上下部分刚度存在突变,属于超规范、超规程设计,设计时应按国务院《建筑工程勘察设计管理条例》第29条的要求执行,即需由省级以上有关部门组织的建设工程技术专家委员会进行审定。 29.钢筋混凝土柱厂房为什么不采用山墙(砌体隔墙)承重? 24.新规范中第7.1.8条1款要求底部框架-抗震墙房屋结构布置中,上部砌体抗震墙与底部框架梁或抗震墙对齐或基本对齐,在定量上如何把握? 30.规范规定多层砌体房屋的总高度指室外地面到主要屋面板顶或檐口的高

建筑抗震设计规范GB50011-2001

建筑抗震设计规范GB 50011-2001 主编部门:中华人民共和国建设部 批准部门:中华人民共和国建设部 施行日期: 2002年1月1日 关于发布国家标准《建筑抗震设计规范》的通知 建标[2001]156 号 根据我部《关于印发1997 年工程建设标准制订修订计划的通知》(建标[1997]108号)的要求,由建设部会同有关部门共同修订的《建筑抗震设计规范》,经有关部门会审,批准为国家标准,编号为GB50011-2001,自2002 年1 月1 日起施行。其中,1.0.2、1.0.4、3.1.1、3.1.3 3.3.1、3.3.2、3.4.1、3.5.2、3.7.1、3.8.1、3.9.1、3.9.2、4.1.6、4.1.9、4.2.2、4.3.2、4.4.5、5.1.1、5.1.3、5.1.4、5.1.6、5..5、 5.4.1、5.4.2、 6.1.2、6.3.3、6.3.8、6.4.3、 7.1.2、7.1.5、7.1.8、7..4、7.2.7、7.3.1、7.3.3、7.3.5、7.4.1、7.4.4、7.5.3、 7.5.4、 8.1.3、8.3.1、8.3.6、8.4.2、8.5.1、10.1.3、10.2.5、10.3.3、12.1.2、12.1.5、12.2.1、12.2.9为强制性条文,必须严格执行。原《建筑抗震设计规范》GBJ11-89以及《工程建设国家标准局部修订公告》(第1 号)于2002 年12 月31 日废止。 本标准由建设部负责管理,中国建筑科学研究院负责具体解释工作,建设部标准定额研究所组织中国建筑工业出版社出版发行。 中华人民共和国建设部 2001年7月20日 前言 本规范是根据建设部[1997]建标第108 号文的要求,由中国建筑科学研究院会同有关的设计、勘察、研究和教学单位对《建筑抗震设计规范》GBJ11-89 进行修订而成。 修订过程中,开展了专题研究和部分试验研究,调查总结了近年来国内外大地震的经验教训,采纳了地震工程的新科研成果,考虑了我国的经济条件和工程实践,并在全国范围内广泛征求了有关设计、勘察、科研教学单位及抗震管理部门的意见,经反复讨论、修改、充实和试设计,最后经审查定稿。 本次修订后共有13章11个附录,主要修订内容是:调整了建筑的抗震设防分类,提出了按设计基本地震加速度进行抗震设计的要求,将原规范的设计近、远震改为设计特征周期分区;修改了建筑场地划分、液化判别、地震影响系数和扭转效应计算的规定;增补了不规则建筑结构的概念设计、结构抗震分析、楼层地震剪力控制和抗震变形验算的要求;改进了砌体结构、混凝土结构、底部框架房屋的抗震措施;增加了有关发震断裂、桩基、混凝土筒体结构、钢结构房屋、配筋砌块房屋、非结构等抗震设计的内容以及房屋隔震、消能减震设计的规定。还取消了有关单排柱内框架房屋、中型砌块房屋及烟囱、水塔等构筑物的抗震设计规定。 本规范将来可能需要进行局部修订,有关局部修订的信息和条文内容将刊登在《工程建设标准化》杂志上。 本规范以黑体字标志的条文为强制性条文,必须严格执行。 本规范的具体解释由中国建筑科学研究院工程抗震研究所负责。在执行过程中,请各单位结合工程实践,认真总结经验,并将意见和建议寄交北京市北三环东路30号中国建筑科学研究院国家标准《建筑抗震设计规范》管理组(邮编:100013, E-mail:ieecabr@https://www.360docs.net/doc/f114929870.html,) 本规范的主编单位:中国建筑科学研究院 参加单位:中国地震局工程力学研究所、中国建筑技术研究院、冶金工业部建筑研究总院、建设部建筑设计院、机械工业部设计研究院、 中国轻工国际工程设计院(中国轻工业北京设计院)、北京市建筑设计研究院、上海建筑设计研究院、中南建筑设计院、中国建 筑西北设计研究院、新疆自治区建筑设计研究院、广东省建筑设计研究院、云南省设计

对核电站工程抗震设防的十二条建议

对核电站工程抗震设防的十二条建议 在东日本大地震后,造成福岛第一核电厂的事故以来,人们普遍对核电站的抗震安全性产生了怀疑。我认为人类认识自然的历史过程总是曲折的,和平利用核能的方向不能动摇,人类的任何工业发展活动对环境都会有影响。核电站相对火电站来说还是一种更清洁的能源,只要保证了它的安全性、可靠性,那么它不但比火电站运行成本低得多(其燃料运输量只有火电站的数千分子一),而且泄露的放射性物质也不会高于火电站(因为在不少燃煤中也存在放射性物质),更不要说其他污染方面吧,当然设计都应保证在容许范围之内。因此关键是如何保证它的安全性与可靠性。现在第四代高温气冷石墨球床反应堆,可以说在工艺本身的安全方面已经到了比较完满的地步,不过它在工艺和设备方面有没有考虑地震作用尚不知道。 总之,技术进步与完善是没有止境的,很多方面常常来源于事故的教训。人类建造核电站的历史还仅仅只有50多年,其中发生过三次大事故,即1) 1979年3月28日凌晨发生在美国宾夕法尼亚州萨斯奎哈纳河三里岛核电站的一次部分堆芯融毁事故; 2)1986年4月25日凌晨发生在原苏联的切尔诺贝利核电站的反应堆爆炸事故;3)今年3月11日的东日本大地震和海啸造成福岛第一核电厂的应急供电系统遭到海啸袭击损毁,而造成冷却系统失效,进而导致大面积的核泄漏的事故。从有关资料中可以知道,这些事故其主观原因可归纳为设计不周(包括对自然灾害的考虑不足、方案较陈旧等)、

管理不善、操作失误、对紧急事件的处理能力不足等等几方面。如切尔诺贝利核电站事故导火线是操作失误,但是其设计方案的落后,没有安全壳,其中压力管式石墨慢化沸水反应堆的设计缺陷,尤其是控制棒的设计问题才是导致事故的根本原因;再如美国三里岛核电站事故的直接原因也是设备机械故障和运行人员的操作错误,当然深层次的原因,也是上述的几方面。但是,此事故没有对公共安全和经济方面造成严重损害,主要是安全壳发挥了重要作用,这说明了安全壳作为核电站最后一道安全防线的重要作用;还有今年3月11日福岛第一核电厂的事故,当然导火线是地震与海啸,但是如果设计上再考虑周到一些,也许会大大减少其后患,如它的热能利用是采用一回路的老式沸水堆方案,这样在供汽轮机发电的高压蒸汽中就带有放射性;它的备用电源单一;土建设施考虑预防自然灾害能力偏低(如地震与海啸);可能对工艺与设备设计中没有考虑地震作用产生的动力效应,如此等等。从这里知道,如果我们以后的核电站能够吸取以往的教训,进一步完善设计(除了采用更先进的工艺外,应该考虑更多方面的不利因素影响)、完善管理监督体系、完善灾害产生后的应急体系等等,这样核电站完全能够做到十分安全的。以下仅仅从我自己的专业出发,对此就技术和管理两方面提出十二点建议,仅供有关方面参考,其中错误希望得到有关专家不吝指正: 一)抗震技术方面的建议: 1)考虑到以往工程的抗震设防主要是侧重于建筑结构。对工艺设备设计安装,很少考虑地震响应的影响。比如对在核电站的设计反应堆

建筑结构抗震设计课后习题答案

武汉理工大学《建筑结构抗震设计》复试 第1章绪论 1.震级和烈度有什么区别和联系? 震级是表示地震大小地一种度量,只跟地震释放能量地多少有关,而烈度则表示某一区域地地表和建筑物受一次地震影响地平均强烈地程度.烈度不仅跟震级有关,同时还跟震源深度.距离震中地远近以及地震波通过地介质条件等多种因素有关.一次地震只有一个震级,但不同地地点有不同地烈度. 2.如何考虑不同类型建筑地抗震设防? 规范将建筑物按其用途分为四类: 甲类(特殊设防类).乙类(重点设防类).丙类(标准设防类).丁类(适度设防类). 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度地预估罕遇地震影响时不致倒塌或发生危及生命安全地严重破坏地抗震设防目标. 2 )重点设防类,应按高于本地区抗震设防烈度一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施;地基基础地抗震措施,应符合有关规定.同时,应按本地区抗震设防烈度确定其地震作用. 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度地要求加强其抗震措施;但抗震设防烈度为9度时应按比9度更高地要求采取抗震措施.同时,应按批准地地震安全性评价地结果且高于本地区抗震设防烈度地要求确定其地震作用. 4 )适度设防类,允许比本地区抗震设防烈度地要求适当降低其抗震措施,但抗震设防烈度为6度时不应降低.一般情况下,仍应按本地区抗震设防烈度确定其地震作用. 3.怎样理解小震.中震与大震? 小震就是发生机会较多地地震,50年年限,被超越概率为63.2%; 中震,10%;大震是罕遇地地震,2%. 4.概念设计.抗震计算.构造措施三者之间地关系? 建筑抗震设计包括三个层次:概念设计.抗震计算.构造措施.概念设计在总体上把握抗震设计地基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性.加强局部薄弱环节等意义上保证抗震计算结果地有效性.他们是一个不可割裂地整体. 5.试讨论结构延性与结构抗震地内在联系. 延性设计:通过适当控制结构物地刚度与强度,使结构构件在强烈地震时进入非弹性状态后仍具有较大地延性,从而可以通过塑性变形吸收更多地震输入能量,使结构物至少保证至少“坏而不倒”. 延性越好,抗震越好.在设计中,可以通过构造措施和耗能手段来增强结构与构件地延性,提高抗震性能. 第2章场地与地基 1.场地土地固有周期和地震动地卓越周期有何区别和联系? 由于地震动地周期成分很多,而仅与场地固有周期T接近地周期成分被较大地放大,因此场地固有周期T也将是地面运动地主要周期,称之为地震动地卓越周期. 2.为什么地基地抗震承载力大于静承载力? 地震作用下只考虑地基土地弹性变形而不考虑永久变形.地震作用仅是附加于原有静荷载上地一种动力作用,并且作用时间短,只能使土层产生弹性变形而来不及发生永久变形,其结果

核电站用泵的抗震分析

https://www.360docs.net/doc/f114929870.html, 2009年 第9期 通用机械 64 GM in Electric Power 大连大学 二、地震的输入及抗震分析要求 地震输入其实就是确定地震时设备所在标高楼层图1 楼层反应谱 地震谱通常分为O B E(运行基准地震楼层反应 【摘 要】析的重视。 【关键词】分析 一、前言 加”——“A 醒核电站一定要重视设备的抗震性能。

2009年 第9期 https://www.360docs.net/doc/f114929870.html, 65 通用机械 GM in Electric Power 谱)和S S E(安全停堆地震楼层反应谱),或者叫S L1(运行安全地震楼层反应谱)和S L2(极限安全地震楼层反应谱)。谱线中有将X 、Y 、Z 方向分别描述的,也有在一张谱线中体现的。每张谱线通常会包含五条阻尼曲线,分别为临界阻尼的2%、4%、5%、7%和10% 。对于泵产品O B E的阻尼比值通常是临界阻尼的2%,而SSE的响应值小于或等于OBE的2倍。 抗震分析的目的在于证明泵设备在O B E和S S E地震期间或之后,能保证结构完整性,包括承压边界完整性以及泵的可运行性。通常要求如下分析。 1)承压部件即泵壳及轴承座部件的完整性。2)泵支撑件和连接螺栓以及地脚螺栓满足强度要求。3)在运行工况、地震和最大接管载荷共同作用下,保持可运行性,在转动件与静止件之间的相对变形应小于它们之间的间隙,不影响运转。 抗震分析也可以帮助分析泵壳承压边界应力分布、泵转子系统应力分布、泵体、轴承箱和底座的抗震分析等。从这个角度理解抗震分析可以作为设计验证的一种方法。 三、抗震分析程序、机构和方法 国内目前采用的抗震分析都是通过计算机模拟实体进行有限元分析,而多数泵制造厂没有该方面的程序或者程序不够权威或专业,所以只能求助于各大科研院所和核电设计院。仅以清华大学为例,根据泵厂提供的设备设计制造图样,采用三维C A D软件建立泵的几何模型,在MSC.Patran软件中建立泵的有限元分析模型,采用MSC.Nastran有限元程序进行抗震分析,并根据分析结果来校验泵各部位是否满足上述抗震要求。M S C.Nastran和MSC.Patran均是当前国际上比较权威的结构分析软件,被我国相关审查机关所认可。早期也用Super S A P w i n d o w s,它是美国A L G O R公司开发的一个结构分析程序。 四、分析过程 1.计算模型的建立 利用有限元分析程序进行分析首先要构建模型,建造的模型要与程序中的数学基础相符合,规定的假设条件尽可能与真实设备结构相近,模型的单元划分要合理。根据泵体、轴承箱和底座的几何结构特点,将其简 化成若干集中质量单元、梁单元和实体单元,然后建模。以大连苏尔寿泵及压缩机有限公司承制的设备冷却水泵为例,将叶轮、耐磨板和连轴器等作为集中质量处理;泵体、轴承箱在同一轴线上,泵轴用梁单元来模拟;泵体、轴承箱和底座都用实体单元描述。实体网格采用10节点4面体单元,包含泵体、出入口法兰、轴承箱和底座。泵体内水的质量被平均分配到泵体上。泵轴上相连的部件按照相应的集中质量表示,整个模型共有2个质量单元,54个梁单元,171 839个实体单元,300 044个节点。另外在两个法兰上还有两个多点约束单元,用于向法兰施加接管载荷中的3个力矩。有限元网格模型如图2所示。 图2 有限元网格模型 2.模态分析 抗震计算的第一步是对结构进行模态分析,以了解结构的基本动力学特性。对上面描述的有限元模型进行模态分析,得到其前5阶或10阶固有频率和各震形图。卧式泵结构简单,壳体等部件通常其基频(最低共振频率)高于截断频率 (其值通常接近33H z),可认为其是刚性的;而立式泵的结构复杂,常有较大的偏心质量,固有频率较低,不能假设它们是刚性的。泵的1阶固有频率大于截断频率,振型图为整体振型,可判定其为刚性设备, 根据核安全法规H A F0215,对刚性设备进行抗震分析时可以采用等效静力法。 按照楼层反应谱,读取零周期时X 、Y 、Z 方向的加速度。进行地震分析时,将3个方向的加速度乘以安全系数1.5后,以惯性力方式加载在质心。 3.材料特性、应力极限准则和载荷组合 核电站用泵的各部件的材料的力学性能参数不

建筑抗震设计规范

工程建设国家标准《建筑抗震设计规范》局部修订条文 前言 汶川地震表明,严格按照现行规范进行设计、施工和使用的建筑,在遭遇比当地设防烈度高一度的地震作用下,没有出现倒塌破坏,有效地保护了人民的生命安全。说明我国在1976年唐山地震后,建设部做出房屋从6度开始抗震设防和按高于设防烈度一度的“大震”不倒塌的设防目标进行抗震设计的决策,是正确的。 根据建设部落实国务院《汶川地震灾后恢复重建条例》的要求,依据地震局修编的灾区地震动参数的第1号修改单,相应变更了灾区的设防烈度,并拟增加部分条文的修订,合计改动28~29条,其内容统计如下: 1. 灾区设防烈度变更,涉及四川、陕西、甘肃,共3条。 2. 材料性能按产品标准修改,2条,其中有强制性条文1条。 3. 强制性条文15条。原有条文的文字调整6条,主要涉及设防分类和建筑方案设计;删去关于隔震、减震适用范围限制的规定1条;新增涉及结构构件基本要求、预制装配式楼盖、山区场地、非结构构件、楼梯间、专门的施工要求8条。 4. 其他修改8~9条,涉及坡地、单跨框架、土木石民居构造措施,以及楼梯参与整体计算等。 本报批稿中,下划线为修改的内容,黑体字为强制性条文。 3.1.1所有建筑应按现行国家标准《建筑工程抗震设防分类标准》GB 50223确定其抗震设防类别。

3.1.2 (删除) 3.1.3各抗震设防类别建筑的抗震设防标准,均应符合现行国家标准《建筑工程抗震设防分类标准》GB 50223的要求。 [修订说明] 划分不同的抗震设防类别并采取不同的设计要求,是在现有技术和经济条件下减轻地震灾害的重要对策之一。 本规范2001年版3.1.1的内容已经由分类标准GB50223予以规定,本次修订可直接引用,不再重复规定。 3.3.1选择建筑场地时,应根据工程需要,掌握地震活动情况、工程地质和地震地质的有关资料,对抗震有利、不利和危险地段做出综合评价。对不利地段,应提出避开要求;当无法避开时应采取有效措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 [修订说明] 本次修订,对在危险地段建造房屋建筑的要求,作了局部的调整。 3.3.5山区建筑场地和地基基础设计应符合下列要求: 1山区建筑场地应根据地质、地形条件和使用要求,因地制宜设置符合抗震设防要求的边坡工程;边坡应避免深挖高填,坡高大且稳定性差的边坡应采用后仰放坡或分阶放坡。 2建筑基础与土质、强风化岩质边坡的边缘应留有足够的距离,其值应根据抗震设防烈度的高低确定,并采取措施避免地震时地基基础破坏。 [修订说明]: 本条是新增的,针对山区房屋选址和地基基础设计,提出明确的抗震要求。 3.4.1建筑设计应符合抗震概念设计的要求,不规则的建筑方案应按规定采

抗震设计中反应谱的应用

抗震设计中反应谱的应用 一.什么就是反应谱理论 在房屋工程抗震研究中,反应谱就是重要的计算由结构动力特性所产生共振效应的方法。它的书面定义就是“在给定的地震加速度作用期间内,单质点体系的最大位移反应、速度反应与加速度反应随质点自振周期变化的曲线。用作计算在地震作用下结构的内力与变形”,反应谱理论考虑了结构动力特性与地震动特性之间的动力关系,通过反应谱来计算由结构动力特性(自振周期、振型与阻尼)所产生的共振效应,但其计算公式仍保留了早期静力理论的形式。地震时结构所受的最大水平基底剪力,即总水平地震作用为: FEK = kβ(T)G 式中,k为地震系数,β(T)则就是加速度反应谱Sa(T)与地震动最大加速度a的比值,它表示地震时结构振动加速度的放大倍数。 β(T)=Sa(T)/a 反应谱理论建立在以下基本假定的基础上:1)结构的地震反应就是线弹性的,可以采用叠加原理进行振型组合;2)结构物所有支承处的地震动完全相同:3)结构物最不利地震反应为其最大地震反应:4)地震动的过程就是平稳随机过程。 二.实际房屋抗震设计中的应用 为了进行建筑结构的抗震设计,必须首先求得地震作用下建筑结构各构件的内力。一般而言,求解建筑结构在地震作用下构件内力的方法主要有两种,一种就是建立比较精确的动力学模型进行动力时程分析计算,这种方法比较费时费力,其精确度取决于动力学模型的准确性与所选取地震波就是否适当,并且对于工程技术人员来说,这种方法不易掌握;第二种方法就是根据地震作用下建筑结构的加速度反映,求出该结构体系的惯性力,将此惯性力作为一种反映地震影响的等效力,即地震作用,然后进行抗震计算,抗震规范实际上采用了第二种方法,即地震作用反应谱法。实践也证明此方法更适合工程技术人员采用。 由于目前抗震规范中的地震作用反应谱仅考虑结构发生弹性变形情况下所得的反应谱,因此当结构某些部位发生非线性变形时,抗震规范中的反应谱就不能适用,而应采用弹塑性反应谱来进行计算。因此选用合适的弹塑性反应谱并提出适当的地震作用计算方法在我国抗震设计中具有重要的现实意义。弹塑性反应谱种类繁多,主要包括等延性强度需求谱与等强度延性需求谱,其实质就是确定强度折减系数R,延性系数,以及结构周期T之间的关系。下面就普通房屋设计中的弹塑性反应谱设计来举例说明。 反应谱就是指单自由度体系对于某地面运动加速度的最大反应与体系的自振特性(自振周期与阻尼比)之间的函数关系。抗震规范中所采用的弹性反应谱如图1所示? ,它就是在计算了大量地面运动加速度的基础上,确定地震影响系数与特征周期T之间关系的曲线

相关文档
最新文档